CN111500985A - 一种用于低应力全介质光学薄膜的制备方法 - Google Patents

一种用于低应力全介质光学薄膜的制备方法 Download PDF

Info

Publication number
CN111500985A
CN111500985A CN202010422923.1A CN202010422923A CN111500985A CN 111500985 A CN111500985 A CN 111500985A CN 202010422923 A CN202010422923 A CN 202010422923A CN 111500985 A CN111500985 A CN 111500985A
Authority
CN
China
Prior art keywords
film
optical
stress
optical element
coating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010422923.1A
Other languages
English (en)
Other versions
CN111500985B (zh
Inventor
郭春
孔明东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Optics and Electronics of CAS
Original Assignee
Institute of Optics and Electronics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Optics and Electronics of CAS filed Critical Institute of Optics and Electronics of CAS
Priority to CN202010422923.1A priority Critical patent/CN111500985B/zh
Publication of CN111500985A publication Critical patent/CN111500985A/zh
Application granted granted Critical
Publication of CN111500985B publication Critical patent/CN111500985B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/10Glass or silica
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Surface Treatment Of Optical Elements (AREA)
  • Physical Vapour Deposition (AREA)
  • Optical Filters (AREA)

Abstract

本发明涉及一种用于低应力全介质光学薄膜的制备方法,属于真空镀膜技术领域,主要针对全介质光学薄膜中限制薄膜机械特性进而影响光学系统的光束传输和成像质量的关键因素——应力,采用高能辅助沉积技术,通过优化光学薄膜制备工艺参数,实现总应力小于2MPa的全介质光学薄膜制备。相对于传统的镀膜前光学元件镀膜面预加工、镀膜后光学元件背面拉面形,或者高温退火后处理等技术,本发明操作流程简单、执行成本低,适用于各种材质、尺寸和形状的光学元件低应力全介质光学薄膜制备。

Description

一种用于低应力全介质光学薄膜的制备方法
技术领域
本发明涉及真空镀膜技术领域,特别涉及一种用于低应力全介质光学薄膜的制备方法。
背景技术
全介质光学薄膜元件在航天/航空遥感和相机、量子/相干激光通信、激光陀螺仪以及地基/天基望远镜系统等众多方面都有着广泛的应用前景。面形是表征全介质光学薄膜元件品质和决定光学系统光束传输及成像质量的重要参数之一。应力则是导致全介质光学薄膜元件面形变差的主要因素,它主要产生于全介质光学薄膜的制备过程中,还与光学元件材质以及初始应力状态有关。应力的存在不仅影响光学元件面形,而且对全介质光学薄膜的牢固度构成威胁,进而使得全介质光学薄膜元件的环境适应性变差。因此,基于全介质光学薄膜应力控制技术,实现光学薄膜元件面形优化至关重要。
随着真空镀膜技术以及加工处理能力的提高,研究人员在全介质光学薄膜应力优化方面开展了大量的科学研究。J.B.Oliver报道了使用修正挡板技术实现光学元件镀膜面非均匀氧化硅膜层制备,通过制备的氧化硅膜层在光学元件中间薄、边缘厚,使得光学薄膜制备前,光学元件镀膜面呈现为对称的凹形面形,然后继续镀制均匀的全介质光学薄膜,只要初始加工的氧化硅非均匀层凹形面形与镀制全介质光学薄膜凸形面形匹配合理,就能使得最终制备的全介质光学薄膜元件具有极为理想的面形(J.B.Oliver,J.Spaulding,andB.Charles,"Stress compensation by deposition of a nonuniform correctivecoating,"Optical Interference Coating,WC.2(2019))。相比于镀膜前处理技术,全介质光学薄膜镀制后,通过在光学元件背面镀制均匀的氧化硅薄膜来匹配前镀膜面光学薄膜应力引起的面形变化的技术更为简便易于操作(S.Gensemer,and M.Gross,"Figuring largeoptics at the sub-nanometer level:compensation for coatings and gravitydistortions,"Opt.Exp.23:31171-31180(2015))。此外,高温退火后处理技术也被用来优化光学薄膜应力,并获得了较为理想的光学薄膜元件面形(S.
Figure BDA0002497622830000011
U.
Figure BDA0002497622830000012
andS.Melnikas,"Post deposition annealing of IBS mixture coatings forcompensation of film induced stress,"Opt.Mater.Exp.6:2236-2243(2016).)。当前,镀膜前光学元件镀膜面面形预处理和镀膜后光学元件背面拉面形技术存在如下问题,都需要对光学薄膜应力引起的面形量进行预估,操作流程环节过多,执行难度较大;对于非对称、非玻璃材质和背面蜂窝状或者其它轻量化处理的光学元件,两种技术途径都将不在适用。对于高温退火后处理技术,往往使用的温度极高,不仅使光学薄膜应力和面形发生改变,而且对膜层晶相结构、表面粗糙度和光学损耗等特性造成不利的影响,因此很难得到广泛的应用。综上所述,为优化全介质光学薄膜元件应力和面形需要更为简便、普适的真空镀膜技术。
发明内容
本发明要解决的技术问题:克服现有技术的不足,提供一种用于低应力全介质光学薄膜的制备方法,该方法具有操作流程简单、执行成本低等特点,特别适用于各种材质、尺寸和形状的光学元件低应力全介质光学薄膜制备。
本发明的技术解决方案是,一种用于低应力全介质光学薄膜的制备方法,具体步骤如下:
步骤(1)、将光学元件清洗干净,然后放入真空镀膜机;
步骤(2)、封闭真空室门,开始抽真空;控制镀膜机内真空室的本底真空度小于1×10-3Pa;
步骤(3)、将光学元件加热至160-220度,并恒温90-120分钟;
步骤(4)、采用高能辅助沉积技术镀制光学薄膜膜层材料,控制沉积速率0.2-0.8nm/s,离子源工作偏压100-140V,氧气流量10-40sccm;
步骤(5)、待真空室冷却至室温后取出镀制好的光学薄膜元件。
进一步地,所述的光学元件基底材料可以是常用的石英、微晶、K9和ULE玻璃,也可以是半导体材料,包括硅、锗和碳化硅。
进一步地,所述的光学元件镀膜面的形状可以为平面、抛物面和自由曲面。
进一步地,所述的光学薄膜可以是高反膜、分光膜、增透膜和滤光膜。
进一步地,所述的光学薄膜膜层材料是氧化物,包括氧化物单质和两种或者多种氧化物单质的混合膜层材料。
进一步地,所述的离子源可以是考夫曼(Kaufman)离子源、霍尔(Hall)离子源或者先进等离子体源(APS)。
本发明与现有技术相比具有如下优点:
(1)本发明与现有的通过镀膜前光学元件镀膜面预加工、镀膜后光学元件背面拉面形,或者高温退火后处理等技术相比,不需要更多的控制流程,操作简便、成本低,可执行性强;
(2)本发明基于光学薄膜制备工艺技术优化,特别适用于各种材质、尺寸和形状的低应力光学薄膜元件制备;
(3)本发明基于光学薄膜制备工艺技术优化,适用于低应力的高反膜、分光膜、增透膜和滤光膜制备;对于介质保护和/或增强的的金属光学薄膜同样适用。
附图说明
图1为本发明方法制备的全介质高反膜和分光膜的应力数据。
具体实施方式
通过具体实施例对本发明作进一步详细说明。
实施例1:
以口径310mm,厚度35mm的微晶玻璃为例,首先将其清洗干净,然后放入镀膜机中的工件架上;封闭真空室门,开始抽真空;当镀膜机内真空室的本底真空度小于1×10-3Pa;将光学元件加热至180度,并恒温120分钟;采用高能辅助沉积技术镀制全介质高反膜,其总层数54层,总厚度6.7微米。膜层材料选用氧化钛和氧化硅,镀制参数:氧化钛,沉积速率0.2nm/s,离子源工作偏压120V,氧气流量25sccm;氧化硅,沉积速率0.4nm/s,离子源工作偏压140V,氧气流量10sccm。光学薄膜制备后,待真空室冷却至室温,取出镀制好的光学薄膜元件。采用光学干涉仪对镀膜前后微晶玻璃镀膜面的反射面形进行检测,试验结果如下:镀膜前,反射面形PV=0.108λ,RMS=0.026λ,Power=0.017λ;镀膜后,反射面形PV=0.114λ,RMS=0.021λ,Power=0.029λ(λ=632.8nm)。通过分析确定本发明方法制备的全介质高反膜的应力为1.65MPa,由应力引起的微晶玻璃的反射面形RMS变化量为0.005λ。
实施例2:
以口径60mm,厚度6mm的石英玻璃为例,首先将其清洗干净,然后放入镀膜机中的工件架上;封闭真空室门,开始抽真空;当镀膜机内真空室的本底真空度小于1×10-3Pa;将光学元件加热至180度,并恒温120分钟;采用高能辅助沉积技术镀制全介质分光膜,其总层数26层,总厚度4.8微米。膜层材料选用氧化钛和氧化硅,镀制参数:氧化钛,沉积速率0.2nm/s,离子源工作偏压120V,氧气流量25sccm;氧化硅,沉积速率0.4nm/s,离子源工作偏压140V,氧气流量10sccm。光学薄膜制备后,待真空室冷却至室温,取出镀制好的光学薄膜元件。采用光学干涉仪对镀膜前后石英玻璃镀膜面的反射面形进行检测,试验结果如下:镀膜前,反射面形PV=0.074λ,RMS=0.013λ,Power=-0.014λ;镀膜后,反射面形PV=0.056λ,RMS=0.009λ,Power=-0.009λ(λ=632.8nm)。通过分析确定本发明方法制备的全介质分光膜的应力为0.74MPa,由应力引起的石英玻璃的反射面形RMS变化量为0.004λ。
本发明未详细阐述部分属于本领域公知技术。

Claims (6)

1.一种用于低应力全介质光学薄膜的制备方法,其特征在于,具体步骤如下:
步骤(1)、将光学元件清洗干净,然后放入真空镀膜机;
步骤(2)、封闭真空室门,开始抽真空;控制镀膜机内真空室的本底真空度小于1×10- 3Pa;
步骤(3)、将光学元件加热至160-220度,并恒温90-120分钟;
步骤(4)、采用高能辅助沉积技术镀制光学薄膜膜层材料,控制沉积速率0.2-0.8nm/s,离子源工作偏压100-140V,氧气流量10-40sccm;
步骤(5)、待真空室冷却至室温后取出镀制好的光学薄膜元件。
2.根据权利要求1所述的一种用于低应力全介质光学薄膜的制备方法,其特征在于:所述的光学元件基底材料可以是常用的石英、微晶、K9和ULE玻璃,也可以是半导体材料,包括硅、锗和碳化硅。
3.根据权利要求1所述的一种用于低应力全介质光学薄膜的制备方法,其特征在于:所述的光学元件镀膜面的形状可以为平面、抛物面和自由曲面。
4.根据权利要求1所述的一种用于低应力全介质光学薄膜的制备方法,其特征在于:所述的光学薄膜可以是高反膜、分光膜、增透膜和滤光膜。
5.根据权利要求1所述的一种用于低应力全介质光学薄膜的制备方法,其特征在于:所述的光学薄膜的膜层材料是氧化物,包括氧化物单质和两种或者多种氧化物单质的混合膜层材料。
6.根据权利要求1所述的一种用于低应力全介质光学薄膜的制备方法,其特征在于:所述的离子源可以是考夫曼(Kaufman)离子源、霍尔(Hall)离子源或者先进等离子体源(APS)。
CN202010422923.1A 2020-05-19 2020-05-19 一种用于低应力全介质光学薄膜的制备方法 Active CN111500985B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010422923.1A CN111500985B (zh) 2020-05-19 2020-05-19 一种用于低应力全介质光学薄膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010422923.1A CN111500985B (zh) 2020-05-19 2020-05-19 一种用于低应力全介质光学薄膜的制备方法

Publications (2)

Publication Number Publication Date
CN111500985A true CN111500985A (zh) 2020-08-07
CN111500985B CN111500985B (zh) 2022-08-02

Family

ID=71868573

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010422923.1A Active CN111500985B (zh) 2020-05-19 2020-05-19 一种用于低应力全介质光学薄膜的制备方法

Country Status (1)

Country Link
CN (1) CN111500985B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114182226A (zh) * 2021-10-22 2022-03-15 南京理工大学 基于预补偿的离子源辅助镀膜的介质反射镜面型控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6358572B1 (en) * 1998-09-22 2002-03-19 Toyota Jidosha Kabushiki Kaisha Method for manufacturing a nonlinear optical thin film
CN101139700A (zh) * 2007-10-24 2008-03-12 中国科学院上海硅酸盐研究所 氧等离子体辅助脉冲激光沉积法制备二氧化硅薄膜的方法
CN102747328A (zh) * 2012-06-27 2012-10-24 同济大学 一种提高高反射薄膜激光损伤阈值的镀制方法
CN103233200A (zh) * 2013-03-28 2013-08-07 同济大学 一种355nm高阈值高反膜的制备方法
CN104480428A (zh) * 2014-12-02 2015-04-01 中国航天科工集团第三研究院第八三五八研究所 一种离子束溅射二氧化硅光学薄膜应力的调控方法
CN106435487A (zh) * 2016-10-10 2017-02-22 同济大学 一种三硼酸锂晶体高激光损伤阈值增透膜的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6358572B1 (en) * 1998-09-22 2002-03-19 Toyota Jidosha Kabushiki Kaisha Method for manufacturing a nonlinear optical thin film
CN101139700A (zh) * 2007-10-24 2008-03-12 中国科学院上海硅酸盐研究所 氧等离子体辅助脉冲激光沉积法制备二氧化硅薄膜的方法
CN102747328A (zh) * 2012-06-27 2012-10-24 同济大学 一种提高高反射薄膜激光损伤阈值的镀制方法
CN103233200A (zh) * 2013-03-28 2013-08-07 同济大学 一种355nm高阈值高反膜的制备方法
CN104480428A (zh) * 2014-12-02 2015-04-01 中国航天科工集团第三研究院第八三五八研究所 一种离子束溅射二氧化硅光学薄膜应力的调控方法
CN106435487A (zh) * 2016-10-10 2017-02-22 同济大学 一种三硼酸锂晶体高激光损伤阈值增透膜的制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
孔明东等: "SiO2 光学薄膜的吸收边特性", 《光电工程》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114182226A (zh) * 2021-10-22 2022-03-15 南京理工大学 基于预补偿的离子源辅助镀膜的介质反射镜面型控制方法
CN114182226B (zh) * 2021-10-22 2023-11-21 南京理工大学 基于预补偿的离子源辅助镀膜的介质反射镜面型控制方法

Also Published As

Publication number Publication date
CN111500985B (zh) 2022-08-02

Similar Documents

Publication Publication Date Title
JP3808917B2 (ja) 薄膜の製造方法及び薄膜
Esposito et al. Optimization procedure and fabrication of highly efficient and thermally stable solar coating for receiver operating at high temperature
Butt et al. Thermal effect on the optical and morphological properties of TiO 2 thin films obtained by annealing a Ti metal layer
CN111500985B (zh) 一种用于低应力全介质光学薄膜的制备方法
CN113655592B (zh) 一种大口径高精度光学元件膜层应力形变调控方法
CN109136840A (zh) 一种真空紫外铝反射镜的制备方法
JP4713462B2 (ja) ルチル構造を有する透明チタン酸化物被膜の製造方法
CN111286700B (zh) 基于混合物单层膜的光学镀膜元件面形补偿方法
CN113061861A (zh) 一种大曲率光学元件曲率半径控制方法
D'Angelo et al. Spectrally selective solar coating based on W-AlN cermet fabricated by reactive sputtering processes at high deposition rate
Jakobs et al. Characterization of metal-oxide thin films deposited by plasma-assisted reactive magnetron sputtering
JP4793011B2 (ja) 反射防止膜形成方法
CN111485203A (zh) 一种用于提高光学薄膜光学性能的制备方法
EP3488272A1 (en) Optical elements with stress-balancing coatings
CN101210312A (zh) 平衡薄膜应力的薄膜制作系统与方法
Marszałek et al. The GdF3/MgF2 bilayer as an antireflective narrow-band ultraviolet filter
CN113721313B (zh) 一种低吸收低热畸变薄膜的实现方法
CN113881926B (zh) 一种提升光学薄膜沉积精度的方法
CN114815130B (zh) 基于离子束的光学薄膜元件的面形控制方法
Fulton et al. Approaches explored for producing a variety of ion-assisted deposited thin film coatings using an end-Hall ion source
JP4163151B2 (ja) 薄膜系のコーティング装置および方法
CN116590683B (zh) 一种光学薄膜及其制备方法、光学薄膜元件
CN112981353A (zh) 一种薄膜应力的消除方法
Frach et al. Large area precision optical coatings by pulse magnetron sputtering
CN116500707A (zh) 红外薄膜器件及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant