CN111498880B - 一种双水相体系温和制备拜尔石微球的方法 - Google Patents

一种双水相体系温和制备拜尔石微球的方法 Download PDF

Info

Publication number
CN111498880B
CN111498880B CN202010267387.2A CN202010267387A CN111498880B CN 111498880 B CN111498880 B CN 111498880B CN 202010267387 A CN202010267387 A CN 202010267387A CN 111498880 B CN111498880 B CN 111498880B
Authority
CN
China
Prior art keywords
microspheres
sodium aluminate
bayer
aqueous
stone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010267387.2A
Other languages
English (en)
Other versions
CN111498880A (zh
Inventor
蔡卫权
杜超
李文杰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangzhou University
Original Assignee
Guangzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangzhou University filed Critical Guangzhou University
Priority to CN202010267387.2A priority Critical patent/CN111498880B/zh
Publication of CN111498880A publication Critical patent/CN111498880A/zh
Application granted granted Critical
Publication of CN111498880B publication Critical patent/CN111498880B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01FCOMPOUNDS OF THE METALS BERYLLIUM, MAGNESIUM, ALUMINIUM, CALCIUM, STRONTIUM, BARIUM, RADIUM, THORIUM, OR OF THE RARE-EARTH METALS
    • C01F7/00Compounds of aluminium
    • C01F7/02Aluminium oxide; Aluminium hydroxide; Aluminates
    • C01F7/04Preparation of alkali metal aluminates; Aluminium oxide or hydroxide therefrom
    • C01F7/14Aluminium oxide or hydroxide from alkali metal aluminates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • B01J20/08Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04 comprising aluminium oxide or hydroxide; comprising bauxite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • B01J20/28014Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties characterised by their form
    • B01J20/28016Particle form
    • B01J20/28021Hollow particles, e.g. hollow spheres, microspheres or cenospheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/02Boron or aluminium; Oxides or hydroxides thereof
    • B01J21/04Alumina
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • B01J35/51Spheres
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/612Surface area less than 10 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/30Particle morphology extending in three dimensions
    • C01P2004/32Spheres
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/12Surface area
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

本发明公开了一种双水相体系温和制备拜尔石微球的方法。该方法包括以下步骤:取一定乙醇加入铝酸钠溶液中,搅拌形成稳定的乙醇‑铝酸钠双水相体系,加入羧酸酯,在室温下静置沉淀一段时间;将产生的白色沉淀过滤,并用无水乙醇和水洗涤,最后得到滤饼,将滤饼干燥,得到拜尔石微球。本发明方法在常温、常压下进行,具有反应条件温和、反应时间短、工艺简单、环境友好和可添加羧酸酯种类广泛等优点,将水合氧化铝微球的制备拓展到了一个全新体系,有利于推动水合氧化铝及其焙烧产物在催化和吸附等领域的应用。

Description

一种双水相体系温和制备拜尔石微球的方法
技术领域
本发明属于氧化铝制备的技术领域,具体涉及一种双水相体系温和制备拜尔石微球的方法。
背景技术
包括拜尔石(α-Al(OH)3)在内的氧化铝水合物(其他如拟薄水铝石、三水铝石等)广泛用于催化、吸附、阻燃剂和牙膏等领域。拜尔石是氧化铝水合物中一种热力学稳定性较高的晶型,在氢氧化铝中具有最高的密度和对称性[Wefers K.,Misra C.Oxides andhydroxides of aluminum[M].Pittsburgh,PA:Alcoa Laboratories,1987.]。此外,拜尔石可作为前驱物,在不同温度下经水热或焙烧处理制备薄水铝石和一些过渡态氧化铝(θ-,γ-,η-Al2O3等),而焙烧过程往往不会改变其原有形貌。目前已知各种方法制备的拜尔石粒子形状多样,有球形、锥形、棱柱形、楔形、杆形等;相比于其他形状,球形可有效的提高粒子的机械强度并且降低流体阻力,无疑拓展了其应用性能。例如,常用作催化剂载体的活性氧化铝,其由纳米粒子组装而成的微米级球形颗粒一方面兼顾了纳米材料高表面积的特点,另一方面又有利于贵金属在其表面的分布;同时球形粒子良好的流动性有利于推动传质过程,从而有效的提高催化性能。因此,采用简单、低能耗、高产率的方法制备微米级球形拜尔石对高性能吸附、催化等领域材料的研制具有重要意义。
制备拜尔石微球的方法包括沉淀法、溶胶-凝胶法以及水热法等。其中,沉淀法包括无机铝盐与碱性物质发生沉淀反应、铝酸盐与酸性物质发生沉淀反应等,此法一般通过控制温度和pH等条件控制产物的形貌。溶胶-凝胶法一般需要添加相分离剂、络合剂等添加剂,过程较为复杂;而水热法的反应温度较高。Ge等人[Ge J.,Deng K.,Cai W.,Yu J.,LiuX.,Zhou J.Effect of structure-directing agents on facile hydrothermalpreparation of hierarchicalγ-Al2O3 and their adsorption performance toward Cr(VI)and CO2.Journal of Colloid and Interface Science,2013,401,34-39.]以pluronic三嵌段共聚物F127和聚丙烯酸钠作为结构导向剂,经水热、洗涤、焙烧后制备了平均粒径在0.5μm分散性较好的花状γ-Al2O3,但该方法需要添加结构导向剂,且水热反应的能耗较高。Yang等人[Yang H.,Xie Y.,Hao G.,Cai W.,Guo X.Preparation of porousalumina microspheres via an oil-in-water emulsion method accompanied by asol-gel process.New Journal of Chemistry,2016,40(1),589-595.]采用溶胶-凝胶过程以油包水乳液法经离心、洗涤、焙烧后制备了多孔γ-Al2O3微球,其不足之处在于使用了相分离剂PVP、络合剂乙酰乙酸乙酯和稳定剂Span 80等不易回收的物质,反应成本较高,且反应过程较为复杂。Jiao等人[Jiao W.Q.,Yue M.B.,Wang Y.M.,He M.Y.Synthesis ofmorphology-controlled mesoporous transition aluminas derived from thedecomposition of alumina hydrates.Microporous and Mesoporous Materials,2012,147(1),167-177.]以己二酸二乙酯为pH调节剂,沉淀铝酸钠溶液,在室温下制备得到纳米薄片组装的拜尔石微球;但以丙二酸二乙酯和己二酸作为pH调节剂时,则得到无定型的纳米薄片。但该方法在制备过程中采用了搅拌等手段,因此不利于水合氧化铝结晶成球。最近,CN110386613A公开了一种晶型可控的分等级介孔水合氧化铝微球的制备方法,它是在铝酸钠溶液中添加甲酰胺,并部分采用水热的方式,随着温度的升高和甲酰胺添加量的增加,包括拜尔石、拟薄水铝石以及它们的混合相微球,但该方法存在着产物团聚严重、甲酰胺等原料有毒等不足。刘惠平等[刘惠平,卢冠忠.纳米膜组装介孔Al2O3:合成及Pt/Al2O3的硝基苯催化加氢性能[J].无机化学学报,2011,27(10):2045-2052.]以铝酸钠为铝源,乙酸乙酯为沉淀剂,在室温、单相体系下反应后经洗涤、焙烧制备了分散性较差的γ-Al2O3微球。
上述方法虽然在一定条件下制备出了异形水合氧化铝微球,但在制备过程中往往需要添加模板剂、结构导向剂等添加剂,或增加水热、搅拌等反应条件。一方面,添加剂难以回收利用;另一方面,水热、搅拌反应条件增加了制备成本。制备过程复杂、耗时也是需要优化的问题。
发明内容
为解决现有氧化铝微球制备技术存在的缺陷与不足,本发明旨在提供一种条件温和、操作简便、环境友好的双水相体系制备拜尔石微球的方法。该方法是以羧酸酯作为沉淀剂,通过添加乙醇并增加铝酸钠溶液浓度形成双水相体系,制备得到分散性较好、粒径较为均一的拜尔石微球。
本发明采用铝工业上铝土矿中浸出液中的主要中间产品铝酸钠为铝源,该碱性原料廉价易得、无毒。铝酸钠和环境友好的乙醇通过一定配比可以形成较为稳定的乙醇-铝酸钠的双水相体系,下层相为高浓度的铝酸钠-水体系,上层相为低浓度的铝酸钠-水-乙醇体系。以乙酸乙酯等羧酸酯为pH调节剂,加入上层相体系中,并进行以上层为主的水解沉淀反应。此过程在室温静置的反应条件下,就可以实现原料在两相中的均匀扩散、产物自动控制脱离上层反应体系,得到分散性较好的拜尔石微球。
本发明目的通过以下技术方案实现:
本发明提供的双水相体系温和制备拜尔石微球的方法,包括以下步骤:
(1)取一定乙醇加入铝酸钠溶液中,搅拌形成稳定的乙醇-铝酸钠双水相体系,加入羧酸酯,在室温下静置沉淀一段时间;
(2)将步骤(1)产生的白色沉淀过滤,并用无水乙醇和水洗涤,最后得到滤饼,将滤饼干燥,得到拜尔石微球。
本发明所述方法在常温、常压下进行。
进一步的,所述羧酸酯为乙酸乙酯、丙酸乙酯、异丁酸乙酯和三甲基乙酸乙酯中的至少一种。
进一步的,上述反应原料中:所述铝酸钠溶液中铝酸钠的物质的量为0.1mol,所述羧酸酯的物质的量为0.0125-0.025mol,乙醇的物质的量为0.5-1.5mol。
进一步的,所述静置沉淀的时间为1.5-6h。
进一步的,所述铝酸钠溶液中,铝酸钠和水的质量比为8.2:45-63。
进一步的,所述用无水乙醇和水洗涤具体为:用无水乙醇洗涤除去未反应的羧酸酯,用水洗涤残留的羧酸钠、未反应的铝酸钠等,最后再用无水乙醇洗涤得到滤饼。
本发明所制备拜尔石微球的平均粒径为3.08-4.61μm、比表面积为1.26-11.20m2/g、孔容为0.009-0.031cm3/g、平均孔径为7.77-15.35nm。
上述拜尔石微球不仅可以用作吸附材料,其在不同温度下焙烧得到的γ-Al2O3等过渡态氧化铝也可应用于催化和吸附领域。具体的,上述拜尔石微球可用作制备拟薄水铝石和过渡态氧化铝的前驱物,也可以作为膦酸类物质和金属离子的吸附剂。
与现有技术相比,本发明具有以下优点及有益效果:
本发明将传统的双水相萃取进行物质分离的应用扩展到了控制反应与结晶过程,利用分子扩散及原料在不同相的分配差异,可以实现在较大原料配比范围内自动控制组装得到拜尔石微球。该过程在常温、常压下进行,具有反应条件温和、反应时间短、工艺简单、环境友好和可添加羧酸酯种类广泛等优点,将水合氧化铝微球的制备拓展到了一个全新体系,有利于推动水合氧化铝及其焙烧产物在催化和吸附等领域的应用。
附图说明
图1为实施例1制备的拜尔石微球的SEM照片。
图2为实施例2制备的拜尔石微球的SEM照片。
图3为实施例3制备的拜尔石微球的SEM照片。
图4为实施例4制备的拜尔石微球的SEM照片。
图5为实施例5制备的拜尔石微球的SEM照片。
图6为实施例6制备的拜尔石微球的SEM照片。
图7为实施例1-7制备的拜尔石微球的XRD图谱。
图8为实施例3、4、5、6制备拜尔石微球的N2吸附-脱附等温线和孔径分布曲线。
具体实施方式
下面结合实施例和附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。本发明涉及的原料均可从市场上直接购买。对于未特别注明的工艺参数,可参照常规技术进行。特别地,所有实施例中提到的沉淀反应均在室温(25℃)和常压(1atm)下进行。
实施例1
称取8.2g铝酸钠溶于54g去离子水中,并于25℃下磁力搅拌形成铝酸钠溶液;然后称取23g无水乙醇加入到上述溶液中,继续磁力搅拌1min,形成稳定的乙醇-铝酸钠双水相体系;之后加入1.105g乙酸乙酯,继续搅拌1min使乙酸乙酯在该体系中分散均匀后,将其放入到25℃的烘箱内,水解1.5h后将产生的白色沉淀过滤,并依次用无水乙醇、水、无水乙醇洗涤,最后在60℃的鼓风干燥箱中干燥12h,即得到拜尔石微球。
如表1和图1所示,实施例1所得到的拜尔石微球由纳米片组装而成,微球的平均粒径为3.08μm。
实施例2
称取8.2g铝酸钠溶于54g去离子水中,并于25℃下磁力搅拌形成铝酸钠溶液;然后称取46g无水乙醇加入到上述溶液中,继续磁力搅拌1min,形成稳定的乙醇-铝酸钠双水相体系;之后加入1.275g丙酸乙酯,继续搅拌1min,使丙酸乙酯在该体系中分散均匀后,将其放入到25℃的烘箱内,水解1.5h后将产生的白色沉淀过滤,并依次用无水乙醇、水、无水乙醇洗涤,最后在60℃的鼓风干燥箱中干燥12h,即得到拜尔石微球。
如表1和图2所示,实施例2所得到的拜尔石微球由纳米片组装而成,微球的平均粒径为4.47μm。
实施例3
称取8.2g铝酸钠溶于63g去离子水中,并于25℃下磁力搅拌形成铝酸钠溶液;然后称取23g无水乙醇加入到上述溶液中,继续磁力搅拌1min,形成稳定的乙醇-铝酸钠双水相体系;之后加入2.904g异丁酸乙酯,继续搅拌1min,使异丁酸乙酯在该体系中分散均匀后,将其放入到25℃的烘箱内,水解3h后将产生的白色沉淀过滤,并依次用无水乙醇、水、无水乙醇洗涤,最后在60℃的鼓风干燥箱中干燥12h,即得到拜尔石微球。
如表1和图3所示,实施例3所得到的拜尔石微球由纳米片组装而成,微球的平均粒径为3.41μm;比表面积为11.20m2/g、孔容为0.031cm3/g、平均孔径为7.77nm、孔径分布集中在3.67nm。
实施例4
称取8.2g铝酸钠溶于54g去离子水中,并于25℃下磁力搅拌形成铝酸钠溶液;然后称取57.5g无水乙醇加入到上述溶液中,继续磁力搅拌1min,形成稳定的乙醇-铝酸钠双水相体系;之后加入2.904g异丁酸乙酯,继续搅拌1min,使异丁酸乙酯在该体系中分散均匀后,将其放入到25℃的烘箱内,水解3h后将产生的白色沉淀过滤,并依次用无水乙醇、水和无水乙醇洗涤,最后在60℃的鼓风干燥箱中干燥12h,即得到拜尔石微球。
如表1和图4所示,实施例4所得到的拜尔石微球由纳米片组装而成,微球的平均粒径为4.61μm;比表面积为4.88m2/g、孔容为0.016cm3/g、平均孔径为8.82nm、孔径分布集中在3.48nm。
实施例5
称取8.2g铝酸钠溶于54g去离子水中,并于25℃下磁力搅拌形成铝酸钠溶液;然后称取69g无水乙醇加入到上述溶液中,继续磁力搅拌1min,形成稳定的乙醇-铝酸钠双水相体系;之后加入3.255g三甲基乙酸乙酯,继续搅拌1min,使三甲基乙酸乙酯在该体系中分散均匀后,将其放入到25℃的烘箱内,水解4h后将产生的白色沉淀过滤,并依次用无水乙醇、水和无水乙醇洗涤,最后在60℃的鼓风干燥箱中干燥12h,即得到拜尔石微球。
如表1和图5所示,实施例5所得到的拜尔石微球由纳米片组装而成,微球的平均粒径为4.28μm;比表面积为1.26m2/g、孔容为0.009cm3/g、平均孔径为15.35nm、孔径分布集中在3.23nm。
实施例6
称取8.2g铝酸钠溶于45g去离子水中,并于25℃下磁力搅拌形成铝酸钠溶液;然后称取46g无水乙醇加入到上述溶液中,继续磁力搅拌1min,形成稳定的乙醇-铝酸钠双水相体系;之后加入3.255g三甲基乙酸乙酯,继续搅拌1min,使三甲基乙酸乙酯在该体系中分散均匀后,将其放入到25℃的烘箱内,水解6h后将产生的白色沉淀过滤,并依次用无水乙醇、水和无水乙醇洗涤,最后在60℃的鼓风干燥箱中干燥12h,即得到拜尔石微球。
如表1和图6所示,实施例6所得到的拜尔石微球由纳米片组装而成,微球的平均粒径为3.91μm;比表面积为4.56m2/g、孔容为0.018cm3/g、平均孔径为12.27nm、孔径分布集中在3.51nm。
如图1-图7所示,本发明方法所得到的拜尔石微球均由纳米片组装而成,微球的平均粒径为3.08-4.61μm;比表面积为1.26-11.20m2/g、孔容为0.009-0.031cm3/g、平均孔径为7.77-15.35nm。由图8可知,实施例3-实施例6制备的拜尔石微球均表现为典型的IV等温线,表明这些样品为中孔材料;其滞后环表现为H3和H4混合型,没有明显的饱和吸附平台,表明其孔结构不完整,其反映的孔包括平板狭缝结构、裂缝和楔形结构等,且微球含有狭窄的裂隙孔。特别说明的是,实施例1、2的N2吸附-脱附曲线在低压下的吸附量呈现负值,表明微球不存在中孔结构,出现负值的原因是组成微球的纳米片之间的较大的裂隙,在吸附过程还未完成就开始脱附。
表1各实施例所制备样品的孔结构参数、平均粒径和晶型信息
Figure BDA0002441790370000081
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其他的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (6)

1.一种双水相体系温和制备拜尔石微球的方法,其特征在于,包括以下步骤:
(1)取一定乙醇加入铝酸钠溶液中,搅拌形成稳定的乙醇-铝酸钠双水相体系,加入羧酸酯,在室温下静置沉淀一段时间;
(2)将步骤(1)产生的白色沉淀过滤,并用无水乙醇和水洗涤,最后干燥,得到拜尔石微球;
所述羧酸酯为乙酸乙酯、丙酸乙酯、异丁酸乙酯和三甲基乙酸乙酯中的至少一种;
反应原料中:所述铝酸钠溶液中铝酸钠的物质的量为0.1 mol,所述羧酸酯的物质的量为0.0125-0.025 mol,乙醇的物质的量为0.5-1.5 mol;
所述铝酸钠溶液中,铝酸钠和水的质量比为8.2:45-63。
2.根据权利要求1所述的一种双水相体系温和制备拜尔石微球的方法,其特征在于,所述静置沉淀的时间为1.5-6 h。
3.根据权利要求1所述的一种双水相体系温和制备拜尔石微球的方法,其特征在于,所述用无水乙醇和水洗涤具体为:依次用无水乙醇、水、无水乙醇洗涤。
4.一种由权利要求1-3任一项所述方法制得的拜尔石微球,其特征在于,所述拜尔石微球的平均粒径为3.08-4.61μm、比表面积为1.26-11.20m2/g、孔容为0.009-0.031cm3/g、平均孔径为7.77-15.35nm。
5.如权利要求4所述拜尔石微球在催化和吸附领域中的应用。
6.根据权利要求5所述的应用,其特征在于,所述拜尔石微球用作制备拟薄水铝石和过渡态氧化铝的前驱物,或作为膦酸类物质和金属离子的吸附剂。
CN202010267387.2A 2020-04-08 2020-04-08 一种双水相体系温和制备拜尔石微球的方法 Active CN111498880B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010267387.2A CN111498880B (zh) 2020-04-08 2020-04-08 一种双水相体系温和制备拜尔石微球的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010267387.2A CN111498880B (zh) 2020-04-08 2020-04-08 一种双水相体系温和制备拜尔石微球的方法

Publications (2)

Publication Number Publication Date
CN111498880A CN111498880A (zh) 2020-08-07
CN111498880B true CN111498880B (zh) 2023-03-28

Family

ID=71867333

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010267387.2A Active CN111498880B (zh) 2020-04-08 2020-04-08 一种双水相体系温和制备拜尔石微球的方法

Country Status (1)

Country Link
CN (1) CN111498880B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112374514B (zh) * 2020-11-11 2022-09-30 广州大学 一种室温下双水解快速制备粒径均匀的拜尔石微球的方法
CN116351408A (zh) * 2023-04-25 2023-06-30 润和科华催化剂(上海)有限公司 一种羰基硫水解催化剂及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1143787A (en) * 1966-02-25 1969-02-26 Reynolds Metals Co Alumina hydrate
AU769770B2 (en) * 1998-09-25 2004-02-05 South32 Worsley Alumina Pty Ltd Improved bayer causticisation
JP5277633B2 (ja) * 2005-12-26 2013-08-28 日本軽金属株式会社 低ソーダ微粒水酸化アルミニウムの製造方法
WO2010135856A1 (zh) * 2009-02-24 2010-12-02 河南未来铝业(集团)有限公司 一种拜耳法氢氧化铝或氧化铝的生产工艺

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Synthesis of morphology-controlled mesoporous transition aluminas derived from the decomposition of alumina hydrates;Wen Qian Jiao et al.;《Microporous and Mesoporous Materials》;20110615;第147卷(第1期);167-177 *
纳米膜组装介孔Al2O3:合成及Pt/Al2O3的硝基苯催化加氢性能;刘惠平等;《无机化学学报》;20111031;第27卷(第10期);2045-2052 *

Also Published As

Publication number Publication date
CN111498880A (zh) 2020-08-07

Similar Documents

Publication Publication Date Title
CN111498880B (zh) 一种双水相体系温和制备拜尔石微球的方法
CN112808251A (zh) 盐湖提锂用吸附剂及其制备方法
WO2016202271A1 (zh) 从含稀土的铝硅废料中回收稀土、铝和硅的方法
CN108380170B (zh) 一种金属氧化物掺杂的氧化铝及其制备和应用
CN1288088C (zh) 一种制备高纯活性纳米二氧化铈的方法
WO2023165022A1 (zh) 多孔水化硅酸钙及其制备方法、吸附剂及其应用
CN114288983A (zh) 一种钛基锂离子交换剂及其制备方法
CN103601226A (zh) 一种薄水铝石的制备方法
CN110026177B (zh) 一种铈锆固溶体、其制备方法和应用
CN117427604A (zh) 一种砂状铝盐吸附剂及其制备方法和吸附法提锂中的应用
CN112850764A (zh) 一种无模板剂制备形貌可控氧化铝中空微球的方法
CN110639484B (zh) 一种拟薄水铝石的制备方法
CN116020397B (zh) 一种锰钛复合锂离子筛吸附剂的制备方法
CN112374514B (zh) 一种室温下双水解快速制备粒径均匀的拜尔石微球的方法
JP7529325B2 (ja) 多孔質ケイ酸カルシウム水和物、その調製方法、吸着剤及びその応用
CN114455618B (zh) 一种制备低钠低铁超细α-氧化铝及大孔容拟薄水铝石的方法
JP2003206137A (ja) 部分安定化または安定化ジルコニア微粉体とその前駆体およびそれらの製造方法
CN113372964B (zh) 氧化铁基脱硫剂的制备方法及组合物的用途
CN112919523B (zh) 一种六边形片状稀土氧化铈的制备方法
CN115920977B (zh) 一种球形氧化铝载体的成型方法
CN114560482A (zh) 一种拟薄水铝石粉体、成型载体及其制备方法
CN108236939B (zh) 一种含介孔/大孔的氧化铝载体及其制备方法
CN110655093A (zh) 一种超细氢氧化镁的制备方法
CN116253344B (zh) 一种拟薄水铝石及其制备方法和由其制备得到的氧化铝
CN113998717B (zh) 一种温和条件下稳定制备拟薄水铝石的方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant