CN111471979A - 一种PbS/PbSe核壳结构纳米薄膜及集成锥形光纤放大器 - Google Patents

一种PbS/PbSe核壳结构纳米薄膜及集成锥形光纤放大器 Download PDF

Info

Publication number
CN111471979A
CN111471979A CN202010279847.3A CN202010279847A CN111471979A CN 111471979 A CN111471979 A CN 111471979A CN 202010279847 A CN202010279847 A CN 202010279847A CN 111471979 A CN111471979 A CN 111471979A
Authority
CN
China
Prior art keywords
pbs
pbse
core
nano
optical fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010279847.3A
Other languages
English (en)
Inventor
董艳华
苏采芸
赵阳阳
张海莹
王廷云
文建湘
张小贝
黄怿
商娅娜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Shanghai for Science and Technology
Original Assignee
University of Shanghai for Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Shanghai for Science and Technology filed Critical University of Shanghai for Science and Technology
Priority to CN202010279847.3A priority Critical patent/CN111471979A/zh
Publication of CN111471979A publication Critical patent/CN111471979A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/305Sulfides, selenides, or tellurides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • G02B6/0229Optical fibres with cladding with or without a coating characterised by nanostructures, i.e. structures of size less than 100 nm, e.g. quantum dots
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06708Constructional details of the fibre, e.g. compositions, cross-section, shape or tapering
    • H01S3/06745Tapering of the fibre, core or active region
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/06Construction or shape of active medium
    • H01S3/063Waveguide lasers, i.e. whereby the dimensions of the waveguide are of the order of the light wavelength
    • H01S3/067Fibre lasers
    • H01S3/06754Fibre amplifiers

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Lasers (AREA)

Abstract

本发明涉及一种PbS/PbSe核壳结构纳米薄膜及集成锥形光纤放大器,属于光纤技术和纳米材料制备技术领域。该纳米集成锥形光纤放大器由锥型光纤和光纤表面利用原子层沉积技术制备的PbS/PbSe核壳结构纳米薄膜组成,通过渐逝波原理实现光纤放大效果。所述纳米薄膜由核壳结构PbS/PbSe纳米材料组成,所述的核壳结构PbS/PbSe纳米材料包括PbS内核和包覆于所述PbS内核表面的PbSe外壳。本发明结合了PbS和PbSe纳米材料的发光特性,通过控制内核和外壳的沉积厚度精确调整发光波段,提高发光效率;PbSe外壳能够有效改善内核表面缺陷结构,提高内核的稳定性与分散性。所制备的核壳结构PbS/PbSe纳米半导体具有发光效率高、带宽精确可控、分散性高、掺杂浓度可控、损耗低、稳定性强等优点。

Description

一种PbS/PbSe核壳结构纳米薄膜及集成锥形光纤放大器
技术领域
本发明属于光纤技术和纳米材料制备技术领域,特别是涉及一种PbS/PbSe核壳结构纳米薄膜、应用这种薄膜制得的集成锥形光纤放大器及其制备方法。
背景技术
光纤放大器是光纤通信系统的关键部分,其主要性能取决于光纤放大器中的增益介质。以PbSe和PbS为代表的Ⅳ-Ⅵ族半导体纳米材料凭借其具有激发光谱宽且连续、荧光强度和光谱稳定性较高、荧光寿命长及荧光量子产率高、荧光谱覆盖波段正好可以满足光纤通讯放大器的要求等独特的物理及光学性质,使其成为薄膜材料的重要选择之一。PbSe和PbS均是直接带隙半导体材料,PbSe量子点和PbS量子点的激子波尔半径较大,分别为54nm 和 18nm,都具有很高的吸收系数和较窄的带隙,PbSe块体材料的带隙为 0.27e V,PbS块体材料的带隙为 0.41eV,所以这使得 PbSe和PbS量子点的吸收和发射波长都可以覆盖整个近红外波段(800nm-3000nm)。优益的光学性能使它们成为光通信领域的研究热点。
利用原子层沉积技术制备薄膜具有以下优点:①沉积薄膜厚度只取决于反应周期数,单个反应周期生长单原子层,能够从纳米尺度精确控制薄膜厚度;②真空反应环境中,通过前驱体交替脉冲进行反应,有效避免引入其它污染物质,生长薄膜组分单一;③单层饱和吸附、单层饱和反应确保所生长薄膜厚度分布均匀、不会出现针孔、空位等结构缺陷。虽然可以精确控制薄膜厚度,生成了保形、均匀、大面积的薄膜,但也存在着一定的问题。薄膜的结构单一,表面游离的化学键使得制备的PbS薄膜在空气中易氧化;PbS颗粒尺寸增加可能引起团聚从而影响发光效率;而且单一PbS粒子可调整的发光波段和光谱宽度都是有限的,所以我们提出了PbS/PbSe核壳结构来解决上述问题。
发明内容
针对现有的锥形光纤放大器技术的不足之处,本发明的目的在于提供了一种PbS/PbSe核壳结构纳米薄膜及集成锥形光纤放大器。通过表面修饰和核壳结构有效防止PbS内核的团聚现象,提高分散性;根据PbS和PbSe纳米材料的发光特性,通过调整内核和外壳厚度,可以精确调控发光谱宽,提高发光效率;在PbS纳米材料表面覆盖PbSe壳层,可以减少PbS颗粒表面的游离键,增加稳定性。该放大器结构简单,操作简易,且PbS/PbSe核壳结构的使用弥补了现有锥形光纤放大器发光效率低、稳定性差、发光光谱较窄等缺陷。为达到上述目的,本发明采用下述技术方案:
一种PbS/PbSe核壳结构纳米薄膜,包括PbS内核, PbS内核外包覆PbSe外壳形成PbS/PbSe核壳结构,PbS/PbSe核壳结构分布在表面修饰材料上。表面修饰材料含有惰性末端基团,惰性末端基团之间形成针孔状的成核位点,PbS/PbSe核壳结构镶嵌在成核位点上。
一种PbS/PbSe核壳结构纳米集成锥形光纤放大器,所述锥形光纤放大器由单模熔锥光纤和光纤表面利用原子层沉积技术制备的PbS/PbSe核壳结构纳米薄膜组成。
所述单模锥形光纤使用标准单模光纤通过熔融拉锥机拉制而成。
所述单模锥形光纤在进行原子层沉积之前先进行锥区表面活化处理,增加表面活性羟基的密度。
所述PbS/PbSe核壳结构纳米薄膜利用原子层沉积技术沉积在锥形光纤锥区表面,即包层的外部。形成纤芯—包层—核壳结构纳米薄膜—空气的结构。
所述的锥形光纤锥区表面在沉积PbS/PbSe核壳结构纳米薄膜之前先进行表面基底修饰。所沉积的材料含有惰性末端基团,通过原子层沉积技术将基底表面的活性羟基(-OH)替换成惰性末端基团,并将其形成时间控制在饱和时间以内以获得针孔。使得针孔内为未被惰性基团替换的活性羟基,而针孔外的活性羟基已被惰性基团替换。所述惰性末端基团为十八烷基三氯硅烷。
所述PbS/PbSe核壳结构纳米薄膜利用原子层沉积技术沉积PbS内核和PbSe外壳。
所述PbS内核利用原子层沉积技术沉积在进行了表面基底修饰的光纤锥区表面。其中未被惰性基团替换的针孔区域构成了PbS纳米材料的成核位点,使得PbS核成功沉积在锥形区域表面。
所述PbSe外壳结构利用原子层沉积技术选择性的沉积在PbS核上。因为PbSe前体不能和惰性末端基团反应,只能和PbS表面基团反应。从而形成PbS/PbSe核壳结构纳米薄膜。
所述的沉积PbS纳米材料所用Pb源的气相前驱体为:双(2,2,6,6-四甲基-3,5-庚二酮酸)铅,Bis(2,2,6,6-tetramethyl-3,5-heptanedionato)lead(II),Pb(TMHD)2;所用S的前驱体材料为H2S与N2的混合物。
所述的沉积PbSe纳米材料所用Pb源的气相前驱体为 :双(2,2,6,6-四甲基-3,5-庚二酮酸)铅,Bis(2,2,6,6-tetramethyl-3,5-heptanedionato)lead(II),Pb(TMHD)2;所用Se源为(trimethylsilyl) selenide ((Me3Si)2Se)。
所述PbS内核的粒径为5 nm ~ 20 nm,所述PbSe外壳的厚度为5 nm ~ 10 nm。通过控制PbS和PbSe的沉积层数来调整核的大小和壳的厚度。
一种PbS/PbSe核壳结构纳米集成锥形光纤放大器及其制备方法,其特征在于首先采用熔融拉锥技术制备单模熔锥光纤;接着利用原子层沉积技术在熔锥光纤上沉积PbS/PbSe核壳结构纳米薄膜,制备成光纤放大器;其具体工艺过程和工艺步骤如下:
1)采用熔融拉锥技术制备单模熔锥光纤,锥腰直径5 ~ 15μm,锥长2 ~ 5cm;
2)对锥区表面进行活化处理。
3)利用原子层沉积法(ALD)在单模熔锥光纤表面沉积含有惰性末端基团的材料,并将沉积时间控制在饱和时间以内。
4)利用原子层沉积法(ALD)沉积PbS纳米材料。
5)利用原子层沉积法(ALD)沉积PbSe纳米材料。
6)通过调整3)5)5)过程的沉积循环周期来控制纳米薄膜的厚度、掺杂粒子的分布情况、发光效率和发光谱宽,制得锥形光纤放大器。
该纳米集成锥形光纤放大器由锥型光纤和光纤表面利用原子层沉积技术制备的PbS/PbSe核壳结构纳米薄膜组成,通过渐逝波原理实现光纤放大效果。所述纳米薄膜由核壳结构PbS/PbSe纳米材料组成,所述的核壳结构PbS/PbSe纳米材料包括PbS内核和包覆于所述PbS内核表面的PbSe外壳。本发明结合了PbS和PbSe纳米材料的发光特性,通过控制内核和外壳的沉积厚度精确调整发光波段,提高发光效率; PbSe外壳能够有效改善内核表面缺陷结构,提高内核的稳定性与分散性。所制备的核壳结构PbS/PbSe纳米半导体具有发光效率高、带宽精确可控、分散性高、掺杂浓度可控、损耗低、稳定性强等优点。
本发明与现有技术相比较,具有如下显而易见的实质性特点和显著优点:
1)制备的核壳结构纳米薄膜的荧光效率高、宽带发光且波段精确可控;
2)制备的核壳结构纳米薄膜的分散性好、稳定性强,易于在空气中长时间保存;
3)放大光纤增益提高、结构简单、体积小,易于产业化生产。
附图说明
图1为本发明PbS/PbSe核壳结构纳米集成锥形光纤放大器的结构示意图。
图2为本发明表面结构形成过程示意图。
具体实施方式
本发明的优选实施例结合附图说明如下:
实施例1:
一种PbS/PbSe核壳结构纳米薄膜,包括PbS内核 2-2, PbS内核 2-2外包覆PbSe外壳2-3形成PbS/PbSe核壳结构,PbS/PbSe核壳结构分布在表面修饰材料2-1上。表面修饰材料2-1含有惰性末端基团,惰性末端基团之间形成针孔状的成核位点,PbS/PbSe核壳结构镶嵌在成核位点上。所述惰性末端基团为十八烷基三氯硅烷。
本核壳结构纳米薄膜在使用时首先需要在待涂覆的表面进行表面基底修饰,即沉积表面修饰材料2-1,所沉积的材料含有惰性末端基团,通过原子层沉积技术将基底表面的活性羟基(-OH)替换成惰性末端基团,并将其形成时间控制在饱和时间以内以获得针孔。使得针孔内为未被惰性基团替换的活性羟基,而针孔外的活性羟基已被惰性基团替换。之后再利用原子层沉积技术沉积PbS内核2-2。未被惰性基团替换的针孔区域构成了PbS纳米材料的成核位点,使得PbS核成功沉积在表面。最后利用原子层沉积技术沉积PbSe外壳2-3,因为PbSe前体不能和惰性末端基团反应,只能和PbS表面基团反应。从而形成PbS/PbSe核壳结构纳米薄膜
实施例2:
参见图1和图2,一种PbS/PbSe核壳结构纳米集成锥形光纤放大器,包括锥形光纤1和纳米薄膜2,所述锥形光纤1使用的光纤是纤芯直径为9 μm,光纤直径为125 μm的单模光纤,利用熔融拉锥机拉制成锥形光纤。所述纳米薄膜2由含有惰性末端基团的表面修饰材料2-1、PbS内核2-2和PbSe外壳2-3组成的PbS/PbSe核壳结构构成。利用原子层沉积技术依次将三者沉积在进行了表面修饰的锥形光纤1上。具体制作步骤:
1)采用熔融拉锥技术制备单模熔锥光纤,锥腰直径5 ~ 15μm,锥长2 ~ 5cm;
2)对锥区表面进行活化处理。
3)利用原子层沉积法(ALD)在单模熔锥光纤表面沉积含有惰性末端基团的材料,并将沉积时间控制在饱和时间以内。
4)利用原子层沉积法(ALD)沉积PbS纳米材料。
5)利用原子层沉积法(ALD)沉积PbSe纳米材料。
所用Pb源的气相前驱体为:双(2,2,6,6-四甲基-3,5-庚二酮酸)铅,Bis(2,2,6,6-tetramethyl-3,5-heptanedionato)lead(II),Pb(TMHD)2;所用S的前驱体材料为H2S与N2的混合物。所用Se源的气相前驱体为:(trimethylsilyl) selenide ((Me3Si)2Se)。通过控制沉积周期来控制纳米薄膜的厚度、掺杂粒子的分布情况、发光效率和发光谱宽。

Claims (10)

1.一种PbS/PbSe核壳结构纳米薄膜,包括PbS内核 (2-2),其特征在于:PbS内核 (2-2)外包覆PbSe外壳 (2-3)形成PbS/PbSe核壳结构,PbS/PbSe核壳结构分布在表面修饰材料(2-1)上。
2.根据权利要求1所述的PbS/PbSe核壳结构纳米薄膜,其特征在于:表面修饰材料(2-1) 含有惰性末端基团,惰性末端基团之间形成针孔状的成核位点,PbS/PbSe核壳结构镶嵌在成核位点上。
3.一种PbS/PbSe核壳结构纳米集成锥形光纤放大器,包括锥形光纤(1)其特征在于:锥形光纤(1)表面是PbS/PbSe核壳结构纳米薄膜(2),所述纳米薄膜(2)包括含有惰性末端基团的表面修饰材料(2-1)、PbS内核 (2-2) 和PbSe外壳 (2-3),PbSe外壳 (2-3)包覆在PbS内核 (2-2)上形成PbS/PbSe核壳结构,PbS/PbSe核壳结构分布在表面修饰材料(2-1)上。
4.根据权利要求3所述的PbS/PbSe核壳结构纳米集成锥形光纤放大器,其特征在于:使用熔融拉锥技术拉制锥形光纤,并进行表面活化处理,增加活性羟基密度。
5.根据权利要求3所述的PbS/PbSe核壳结构纳米集成锥形光纤放大器,其特征在于:在沉积PbS/PbSe核壳结构之前利用原子层沉积技术在锥形光纤表面修饰惰性末端基团,形成针孔状的成核位点, 所述惰性末端基团为十八烷基三氯硅烷。
6.根据权利要求3-5任一项所述的PbS/PbSe核壳结构纳米集成锥形光纤放大器,其特征在于,所述PbS/PbSe核壳结构纳米薄膜利用原子层沉积技术沉积纳米厚度的PbS内核(2-2)和PbSe外壳(2-3)。
7.根据权利要求6所述的PbS/PbSe核壳结构纳米集成锥形光纤放大器,其特征在于,所述的沉积PbS纳米材料所用Pb源的气相前驱体为:双(2,2,6,6-四甲基-3,5-庚二酮酸)铅,Bis(2,2,6,6-tetramethyl-3,5-heptanedionato)lead(II),Pb(TMHD)2;所用S的前驱体材料为H2S与N2的混合物。
8.根据权利要求6所述的PbS/PbSe核壳结构纳米集成锥形光纤放大器,其特征在于,所述的沉积PbSe纳米材料所用Pb源的气相前驱体为:双(2,2,6,6-四甲基-3,5-庚二酮酸)铅,Bis(2,2,6,6-tetramethyl-3,5-heptanedionato)lead(II),Pb(TMHD)2;所用Se源的气相前驱体为 (trimethylsilyl) selenide ((Me3Si)2Se)。
9.根据权利要求6所述的PbS/PbSe核壳结构纳米集成锥形光纤放大器,其特征在于制作步骤如下:
采用熔融拉锥技术制备单模熔锥光纤(1),并进行表面活性处理;
利用原子层沉积法在单模熔锥光纤表面沉积含有惰性末端基团的材料,并将沉积时间控制在饱和时间以内;
利用原子层沉积法沉积PbS纳米材料;
利用原子层沉积法沉积PbSe纳米材料。
10.根据权利要求9所述的PbS/PbSe核壳结构纳米集成锥形光纤放大器,其特征在于:通过重复惰性末端基团、Pbs和PbSe的沉积循环周期来控制纳米薄膜的厚度、掺杂粒子的分布情况、发光效率和发光谱宽,制得锥形光纤放大器。
CN202010279847.3A 2020-04-10 2020-04-10 一种PbS/PbSe核壳结构纳米薄膜及集成锥形光纤放大器 Pending CN111471979A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010279847.3A CN111471979A (zh) 2020-04-10 2020-04-10 一种PbS/PbSe核壳结构纳米薄膜及集成锥形光纤放大器

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010279847.3A CN111471979A (zh) 2020-04-10 2020-04-10 一种PbS/PbSe核壳结构纳米薄膜及集成锥形光纤放大器

Publications (1)

Publication Number Publication Date
CN111471979A true CN111471979A (zh) 2020-07-31

Family

ID=71751529

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010279847.3A Pending CN111471979A (zh) 2020-04-10 2020-04-10 一种PbS/PbSe核壳结构纳米薄膜及集成锥形光纤放大器

Country Status (1)

Country Link
CN (1) CN111471979A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113325517A (zh) * 2021-08-03 2021-08-31 中国工程物理研究院激光聚变研究中心 光纤端帽及光纤激光器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030066998A1 (en) * 2001-08-02 2003-04-10 Lee Howard Wing Hoon Quantum dots of Group IV semiconductor materials
US20080274282A1 (en) * 2007-02-14 2008-11-06 Bent Stacey F Fabrication method of size-controlled, spatially distributed nanostructures by atomic layer deposition
CN102096272A (zh) * 2010-12-31 2011-06-15 上海大学 渐逝波激发半导体量子点光纤放大器及其制备方法
CN104174860A (zh) * 2014-08-14 2014-12-03 华中科技大学 一种核壳结构合金纳米颗粒的制备方法
CN105467510A (zh) * 2015-12-16 2016-04-06 上海大学 一种纳米半导体PbS掺杂石英放大光纤及其制备方法
US20170218264A1 (en) * 2014-10-13 2017-08-03 Los Alamos National Security, Llc Luminescent solar concentrators comprising semiconductor nanocrystals

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030066998A1 (en) * 2001-08-02 2003-04-10 Lee Howard Wing Hoon Quantum dots of Group IV semiconductor materials
US20080274282A1 (en) * 2007-02-14 2008-11-06 Bent Stacey F Fabrication method of size-controlled, spatially distributed nanostructures by atomic layer deposition
CN102096272A (zh) * 2010-12-31 2011-06-15 上海大学 渐逝波激发半导体量子点光纤放大器及其制备方法
CN104174860A (zh) * 2014-08-14 2014-12-03 华中科技大学 一种核壳结构合金纳米颗粒的制备方法
US20170218264A1 (en) * 2014-10-13 2017-08-03 Los Alamos National Security, Llc Luminescent solar concentrators comprising semiconductor nanocrystals
CN105467510A (zh) * 2015-12-16 2016-04-06 上海大学 一种纳米半导体PbS掺杂石英放大光纤及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
王廷尧编著: "《量子通信技术与应用远景展望》", 28 February 2013, 国防工业出版社, pages: 180 - 181 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113325517A (zh) * 2021-08-03 2021-08-31 中国工程物理研究院激光聚变研究中心 光纤端帽及光纤激光器

Similar Documents

Publication Publication Date Title
Ozaki et al. Silicon nanowhiskers grown on a hydrogen-terminated silicon {111} surface
KR101395454B1 (ko) 그레이디드 굴절률을 갖는 광학 필름 및 이의 제조방법
CN111471979A (zh) 一种PbS/PbSe核壳结构纳米薄膜及集成锥形光纤放大器
KR20140118263A (ko) 나노 로드 및 이의 제조 방법
CN113264520B (zh) 一种基于石墨烯-氮化硼横向异质结的双曲超表面及其制备方法和应用
US20100006820A1 (en) Silica nanowire comprising silicon nanodots and method of preparing the same
CN109786494B (zh) 一种微腔结构紫外探测器及其制备方法
He et al. Vertically well-aligned ZnO nanowires generated with self-assembling polymers
CN110767811A (zh) 一种甲胺铅碘钙钛矿单晶纳米线的光电探测器及制备方法
He et al. Polymer-assisted complexing controlled orientation growth of ZnO nanorods
CN111308829A (zh) 一种PbS/SiO2共掺纳米集成锥形光纤放大器及其制备方法
Ali et al. Investigation the absorption efficiency of GaAs/InGaAs nanowire solar cells
JPWO2007145089A1 (ja) 3層型半導体粒子
CN113838980A (zh) 一种多面体CsPbBr3@CsPbX3核壳钙钛矿异质结及其制备方法
Nithyaja et al. Studies on CdS nanoparticles prepared in DNA and bovine serum albumin based biotemplates
KR20220098208A (ko) 나노와이어 네트워크
CN104560029A (zh) 一种强紫外光致发光的ZnO有序纳米柱的制备方法
CN113402161A (zh) 一种超宽带荧光量子点掺杂石英放大光纤及其制备方法
CN108485647B (zh) 一种荧光量子点/氧化物复合材料的制备方法及其产品和用途
CN110684964B (zh) 基于等离子体原子层沉积的包覆纳米晶薄膜的方法及产品
CN112742687B (zh) 一种有序排布的硫化铅量子点的可控制备方法
KR101110364B1 (ko) 금속 나노 입자를 이용한 염료감응형 태양전지의 전극 및 그 제조방법
Liu et al. Enhanced photoluminescence of multilayer Ge quantum dots on Si (001) substrates by increased overgrowth temperature
CN111313215A (zh) 基于金属纳米核壳结构-金属薄膜等离子体复合结构的有机固体激光器及制备方法
Dong et al. Effect of tapered fiber structure on the PbS Nanomaterials optical fiber amplifier excited by evanescent wave

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination