CN111468116A - 一种褐煤焦负载纳米钴复合催化剂及其制备方法 - Google Patents

一种褐煤焦负载纳米钴复合催化剂及其制备方法 Download PDF

Info

Publication number
CN111468116A
CN111468116A CN202010375770.XA CN202010375770A CN111468116A CN 111468116 A CN111468116 A CN 111468116A CN 202010375770 A CN202010375770 A CN 202010375770A CN 111468116 A CN111468116 A CN 111468116A
Authority
CN
China
Prior art keywords
cobalt
composite catalyst
brown coal
lignite
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010375770.XA
Other languages
English (en)
Other versions
CN111468116B (zh
Inventor
赵春霞
李锋
陈文�
金伟
祁琰媛
杨爽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wuhan University of Technology WUT
Original Assignee
Wuhan University of Technology WUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Wuhan University of Technology WUT filed Critical Wuhan University of Technology WUT
Priority to CN202010375770.XA priority Critical patent/CN111468116B/zh
Publication of CN111468116A publication Critical patent/CN111468116A/zh
Priority to US17/101,680 priority patent/US11534739B2/en
Application granted granted Critical
Publication of CN111468116B publication Critical patent/CN111468116B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/40Catalysts, in general, characterised by their form or physical properties characterised by dimensions, e.g. grain size
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • B01J37/0027Powdering
    • B01J37/0036Grinding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0203Impregnation the impregnation liquid containing organic compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • B01J37/0207Pretreatment of the support
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0236Drying, e.g. preparing a suspension, adding a soluble salt and drying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/34Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation
    • B01J37/341Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation
    • B01J37/343Irradiation by, or application of, electric, magnetic or wave energy, e.g. ultrasonic waves ; Ionic sputtering; Flame or plasma spraying; Particle radiation making use of electric or magnetic fields, wave energy or particle radiation of ultrasonic wave energy
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Optics & Photonics (AREA)
  • Health & Medical Sciences (AREA)
  • Plasma & Fusion (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Dispersion Chemistry (AREA)

Abstract

本发明提供一种褐煤焦负载纳米钴复合催化剂及其制备方法,该制备方法以褐煤作为载体原料,钴盐作为活性金属前驱体,其中,钴盐中钴∶褐煤投料比为5wt%~15wt%,通过改性浸渍法和高温热解合成褐煤焦负载高分散纳米钴复合催化剂。本发明制备的复合催化剂具有多级孔结构,比表面积高,纳米钴均匀分散在褐煤焦上,颗粒尺寸可控,使得所得催化剂具有优良的低温CO2甲烷化催化活性,而且本发明制备工艺简单,原料廉价易得,非常适合工业化生产和应用。

Description

一种褐煤焦负载纳米钴复合催化剂及其制备方法
技术领域
本发明涉及CO2甲烷化催化剂技术领域,特别涉及一种褐煤焦负载纳米钴复合催化剂及其制备方法。
背景技术
CO2过量排放导致的温室效应是亟待解决的环境问题之一。将CO2捕获、储存及转化是CO2综合治理与利用的重要课题。CO2本身是一种碳源,利用加氢转化的方式可以将CO2转化为多种有用的化工原料和燃料(包括CH4、CO、CH3OH、HCOOH等)。CO2加氢制甲烷是最具前景的CO2转化技术之一,其产物甲烷既可以直接作为燃料加入到天然气网络中,也可当作原料生产其他化工产品。CO2加氢制CH4又被称为CO2甲烷化反应。该反应在热力学上可行,但是由于动力学上的限制,反应十分缓慢。因此想要实现工业化生产必须要提供一定的反应温度和催化剂。
目前常用的CO2甲烷化催化剂为氧化物(如Al2O3、SiO2等)负载型催化剂。其中,负载贵金属Ru和Rh的催化剂具有优异的CO2甲烷化催化活性。例如,Ru/TiO2在近室温下就能表现出催化活性和100%的CH4选择性(Catalysis Letters,1991,11(2):157)。但是这类催化剂价格昂贵,难以实现工业级应用。因此人们转而研究价格相对低廉的过渡族金属(包括Ni、Co等)。相比于贵金属,氧化物负载型Ni或Co催化剂需要更高的反应温度(超过350℃)和反应压力才能达到较佳的CO2转化率和CH4选择性(Catalysis Today,2013,215:201),而这往往会造成催化剂积碳、活性金属烧结、金属载体反应等,从而导致催化剂失活。例如,Srisawad等人发现高温反应时Co能够与Al2O3反应生成CoAl2O4尖晶石,导致催化剂失活(Reaction Kinetics,Mechanisms and Catalysis,2012,107(1):179)。另一方面高温高压的反应条件能源消耗量大,背离节能减排的初衷。因此,低温CO2甲烷化催化剂成为研究趋势。Weatherbee等认为Co比Ni具有更佳的CO2甲烷化催化活性(Journal of Catalysis,1984,87(2):352)。但是相比于Ni基催化剂,钴基催化剂的研究甚少,尤其是低温常压CO2甲烷化催化活性的研究。
此外,研究表明氧化物载体可与活性金属反应并产生难以还原的化合物,导致催化剂难以活化,故而碳材料作为替代载体引起了研究者的关注。例如,Bai等人发现比起Co/SiO2,Co/CNT活化时间更短且活化温度更低,并能够避免与氧化物载体反应形成CoSiO4(Catalysis Communications,2012,22:24)。氮掺杂的碳纳米纤维和还原氧化石墨烯(rGO)也被用作催化剂载体。例如,Roldán等人以氮掺杂的碳纳米纤维作为载体制备了Ru/NCNF复合催化剂。该催化剂的甲烷产率和稳定性与Ru/Al2O3相当(ChemSusChem,2017,10(6):1139)。然而,这类新型碳纳米材料制备成本偏高。
与之相比,褐煤是一类十分廉价的天然碳材料,其储量丰富、具有丰富的孔结构,有望用于制备廉价工业催化剂。曹景沛等以褐煤为碳前驱体,采用离子交换法制备了Ni/C催化剂并用于生物质挥发重整(Fuel,2017,202:345);进而又制备了Ni-Co/AWSL催化剂,用于催化玉米芯挥发物的转化(Energy Conversion and Management,2019,196:1257)。然而,以褐煤作为催化剂载体应用于CO2甲烷化的研究还未见报道。此外,离子交换法是利用褐煤表面含氧基团丰富的特点实现活性金属负载,由于可交换的离子量有限,活性金属负载量往往较低。
发明内容
有鉴于此,本发明旨在提出一种褐煤焦负载纳米钴复合催化剂的制备方法,以解决现有CO2甲烷化催化剂中活性金属与氧化物载体反应易导致催化剂失活以及制备成本高的问题。
为达到上述目的,本发明的技术方案是这样实现的:
一种褐煤焦负载纳米钴复合催化剂的制备方法,其特征在于,包括以下步骤:
1)将原始褐煤块进行破碎、筛分,得到褐煤颗粒;
2)将钴前驱体和所述褐煤颗粒加入到溶剂中混合,然后,浸渍,干燥,得到固体物质A;
3)将所述固体物质A进行高温热解处理,得到褐煤焦负载纳米钴复合催化剂。
可选地,所述步骤2)中将钴前驱体和所述褐煤颗粒加入到溶剂中混合,然后,浸渍,干燥,得到固体物质A,包括:将所述褐煤颗粒加入至溶剂中,超声分散,然后,加入钴前驱体,继续超声分散;将超声分散得到的混合液在一定温度下持续搅拌至溶剂充分挥发后,干燥,得到固体物质A。
可选地,所述将超声分散得到的混合液在一定温度下持续搅拌至溶剂充分挥发,包括:将超声分散得到的混合液在室温下持续搅拌至溶剂充分挥发,或将超声分散得到的混合液先在30℃~60℃水浴条件下搅拌一定时间,然后,在室温下持续搅拌至溶剂充分挥发。
可选地,所述步骤2)中将钴前驱体和所述褐煤颗粒加入到溶剂中混合之前,包括:将所述褐煤颗粒进行酸处理。
可选地,所述酸处理,包括:将所述褐煤颗粒加入至硝酸溶液、或硫酸溶液、或盐酸溶液中,于室温~55℃下水浴搅拌,其中,水浴搅拌时间≥2h。
可选地,所述步骤2)中所述钴前驱体中钴与所述褐煤颗粒的投料比为5wt%~15wt%。
可选地,所述步骤2)中所述钴前驱体为钴盐、钴盐溶液中的一种;所述钴盐为硝酸钴、碳酸钴、醋酸钴中的一种;所述钴盐溶液中的溶质为硝酸钴、碳酸钴、醋酸钴中的一种,所述钴盐溶液中的溶剂为乙醇、水、乙醇和水的混合液中的一种;所述步骤2)中所述溶剂为水、乙醇、乙醇的水溶液中的一种。
可选地,所述步骤3)中将所述固体物质A进行高温热解处理,得到褐煤焦负载纳米钴复合催化剂,包括:将所述固体物质A在惰性气氛下,按照0.5℃~10℃/min的升温速率升温至700℃~900℃,保温1~6h,得到褐煤焦负载纳米钴复合催化剂。
可选地,所述惰性气氛为氩气,或为氮气,或为氩氮混合气。
本发明的第二目的在于提供一种褐煤焦负载纳米钴复合催化剂,该褐煤焦负载纳米钴复合催化剂由上述褐煤焦负载纳米钴复合催化剂的制备方法制得;该褐煤焦负载纳米钴复合催化剂的比表面积为350m2/g~470m2/g,且该褐煤焦负载纳米钴复合催化剂中纳米钴的负载量为9wt%~27wt%,纳米钴的尺寸为1nm~15nm。
相对于现有技术,本发明所述的褐煤焦负载纳米钴复合催化剂的制备方法具有以下优势:
1、本发明采用褐煤为原料,通过改性浸渍法和高温热解法,使褐煤焦负载纳米钴,制得具有多级孔结构的褐煤焦负载纳米钴复合催化剂,当其用作CO2甲烷化催化剂时,可有效解决现有CO2甲烷化催化剂中活性金属与氧化物载体反应易导致催化剂失活的问题,且其比表面积高,活性金属具有纳米级尺寸且分散性好,其中,褐煤焦负载纳米钴催化剂比表面积为350m2/g~470m2/g,褐煤焦负载纳米钴复合催化剂中纳米钴的负载量为9wt%~27wt%,纳米钴的尺寸为1nm~15nm,使其具有优良的低温CO2甲烷化催化活性,符合工业催化中节能环保的需求,有利于CO2甲烷化技术工业化推广,进而可缓解温室效应问题。
2、本发明以来源广泛、价格低廉的褐煤为原料制备褐煤焦负载纳米钴催化剂,大大降低了CO2甲烷化催化剂的制备成本,并实现了褐煤的高附加价值利用,且本发明制备方法简单,非常适合工业化推广应用。
3、本发明采用操作简单,温和可控的改性浸渍法使活性金属前驱体在浸渍过程中通过毛细作用能够进入褐煤的孔道中,同时,具有天然多孔结构的褐煤中纳米级孔道具有限域作用,可抑制活性金属的团聚,与离子交换法相比,本发明的改性浸渍法可获得高负载量金属复合催化剂,并且通过改变投料比可调控钴的负载量,适合规模化推广应用。
附图说明
构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明实施例1的褐煤焦负载纳米钴复合催化剂的XRD图谱;
图2为本发明实施例1的褐煤焦负载纳米钴复合催化剂在HAADF-STEM模式下的TEM暗场像(a)和TEM明场像(b);
图3为本发明实施例1~4的褐煤焦负载纳米钴复合催化剂的氮气吸脱附等温曲线;
图4为本发明实施例1和实施例2的褐煤焦负载纳米钴复合催化剂常压不同温度下的CO2转化率(a)和CH4选择性(b);
图5为本发明实施例2制备的酸洗褐煤和褐煤的FT-IR光谱;
图6为本发明实施例2的褐煤焦负载纳米钴复合催化剂的TEM图像(a)和对应的钴颗粒尺寸分布(b)。
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。
下面将结合附图和实施例来详细说明本发明。
实施例1
一种褐煤焦负载纳米钴复合催化剂,其具体通过以下方法制得:
1)将原始褐煤块进行破碎、筛分,得到褐煤颗粒;
2)称取2g褐煤颗粒分散到100g乙醇中,超声分散处理5min后,加入4.93g的Co(NO3)2乙醇溶液(20wt%),其中,Co(NO3)2乙醇溶液中钴与褐煤颗粒的投料比为10wt%,继续超声分散处理5min;将超声分散得到的混合液转移到搅拌器上,45℃水浴搅拌2h,使大部分乙醇挥发,然后,将水浴温度降至室温,持续搅拌至乙醇完全挥发后,在45℃下真空干燥10h,得到固体物质A;
3)将固体物质A在Ar气氛下700℃高温热解处理2h,得到褐煤焦负载纳米钴复合催化剂。
对本实施例的褐煤焦负载纳米钴复合催化剂进行XRD测试,测试结果如图1所示。
由图1可知,本实施例的褐煤焦负载纳米钴复合催化剂在2θ=44°附近出现一个衍射峰,对应为Co(111)晶面,该衍射峰较弱且宽化,反映出纳米钴颗粒的尺寸小。
对本实施例的褐煤焦负载纳米钴复合催化剂进行透射电子显微镜测试,并进行钴颗粒尺寸统计,测试结果如图2所示。
由图2可见,本实施例的褐煤焦负载纳米钴复合催化剂中纳米钴颗粒在褐煤焦上分散均匀;钴颗粒的尺寸分布范围为3~15nm,钴颗粒平均尺寸为9.3nm。
对本实施例的褐煤焦负载纳米钴复合催化剂进行氮气吸脱附测试,结果如图3所示。
由图3可知,本实施例的褐煤焦负载纳米钴复合催化剂的氮气吸脱附等温曲线表明样品中存在纳米级孔,进行孔径计算及分析发现,样品中同时存在微孔、介孔和大孔;其比表面积为359m2/g,孔容为0.158cm3/g。
对本实施例的褐煤焦负载纳米钴复合催化剂进行催化活性评价:CO2加氢测试在固定反应床上进行,测试压力为常压。常压CO2加氢测试在一个自制的固定床反应器中进行,具体测试方法如下:
取200mg复合催化剂样品,加石英砂混合后加入反应管中;反应前通入50mL/min的10wt%H2在400℃下预还原2h,随后,切换成反应气(H2:CO2=4:1)进行CO2加氢测试,其中,测试过程中反应气流速为25mL/min;反应产物通入气相色谱仪中进行分析,分析结果如图4所示。
由图4可知,本实施例的褐煤焦负载纳米钴复合催化剂在350℃下的CO2转化率为19.1%,CH4选择性为16.7%。
实施例2
一种褐煤焦负载纳米钴复合催化剂,其具体通过以下方法制得:
1)将原始褐煤块进行破碎、筛分,得到褐煤颗粒;
2)称取一定量的褐煤颗粒,加入至2mol/L硝酸溶液中,50℃水浴搅拌2h后,将混合液抽滤,并用去离子水洗涤数次,并将洗涤后得到的固体样品于120℃下烘干,得到酸洗褐煤颗粒;
3)称取2g酸洗褐煤颗粒分散到100g乙醇中,超声分散处理5min后,加入4.93g的Co(NO3)2乙醇溶液(20wt%),其中,Co(NO3)2乙醇溶液中钴与褐煤颗粒的投料比为10wt%,继续超声分散处理5min;将超声分散得到的混合液转移到搅拌器上,45℃水浴搅拌2h,使大部分乙醇挥发,然后,将水浴温度降至室温,持续搅拌至乙醇完全挥发后,在45℃下真空干燥10h,得到固体物质A;
4)将固体物质A在Ar气氛下700℃高温热解处理2h,得到褐煤焦负载纳米钴复合催化剂。
对本实施例的酸洗褐煤颗粒进行FT-IR分析,并将其与未进行酸洗的褐煤颗粒进行对比,测试结果如图5所示。
由图5可知,1710cm-1处出现的吸收峰对应为C=O键的伸缩振动,表明褐煤表面带有含氧官能团,酸洗后表面含氧官能团增加。
对本实施例的褐煤焦负载纳米钴复合催化剂进行氮气吸脱附测试,结果如图3所示。
由图3可知,本实施例的褐煤焦负载纳米钴复合催化剂的氮气吸脱附等温曲线表明样品中存在纳米级孔,进行孔径计算及分析发现,样品中同时存在微孔、介孔和大孔;其比表面积为408m2/g,孔容为0.196cm3/g。
对本实施例的褐煤焦负载纳米钴复合催化剂进行TEM测试以及钴颗粒尺寸统计,测试结果如图6所示。
由图6可知,本实施例的褐煤焦负载纳米钴复合催化剂中钴粒径分布范围为1~9nm,钴颗粒平均尺寸为5.5nm,纳米钴颗粒在褐煤焦上分散均匀。
对本实施例的褐煤焦负载纳米钴复合催化剂进行催化活性评价:CO2加氢测试在固定反应床上进行,测试压力为常压。常压CO2加氢测试在一个自制的固定床反应器中进行,具体测试方法如下:
取200mg复合催化剂样品,加石英砂混合后加入反应管中;反应前通入50mL/min的10wt%H2在400℃下预还原2h,随后,切换成反应气(H2:CO2=4:1)进行CO2加氢测试,其中,测试过程中反应气流速为25mL/min;反应产物通入气相色谱仪中进行分析,分析结果如图4所示。
由图4可知,本实施例的褐煤焦负载纳米钴复合催化剂在350℃下的CO2转化率为28.7%,CH4选择性为85.3%。
实施例3
本实施例与实施例2的区别在于:本实施例的褐煤焦负载纳米钴复合催化剂制备过程中,步骤3)中Co(NO3)2乙醇溶液(20wt%)的加入量为2.47g,此时,Co(NO3)2乙醇溶液中钴与酸洗褐煤颗粒的投料比为5wt%,其他均与实施例2相同。
对本实施例的褐煤焦负载纳米钴复合催化剂进行TEM测试以及钴颗粒尺寸统计。
经测试可知,本实施例的褐煤焦负载纳米钴复合催化剂中钴颗粒平均尺寸为5nm。
对本实施例的褐煤焦负载纳米钴复合催化剂进行O2气氛的TG测试。
由测试结果计算可知,本实施例的褐煤焦负载纳米钴复合催化剂中钴的负载量(钴∶褐煤焦)为9wt%。
对本实施例的褐煤焦负载纳米钴复合催化剂进行氮气吸脱附测试,结果如图3所示。
由图3可知,本实施例的褐煤焦负载纳米钴复合催化剂的氮气吸脱附等温曲线表明样品中存在纳米级孔,进行孔径计算及分析发现,样品中同时存在微孔、介孔和大孔;其比表面积为461m2/g,孔容为0.230cm3/g。
实施例4
本实施例与实施例2的区别在于:本实施例的褐煤焦负载纳米钴复合催化剂制备过程中,步骤3)中Co(NO3)2乙醇溶液(20wt%)的加入量为7.41g,此时,Co(NO3)2乙醇溶液中钴与酸洗褐煤颗粒的投料比为15wt%,其他均与实施例2相同。
对本实施例的褐煤焦负载纳米钴复合催化剂进行TEM测试以及钴颗粒尺寸统计。
经测试可知,本实施例的褐煤焦负载纳米钴复合催化剂中钴颗粒平均尺寸为6nm。
对本实施例的褐煤焦负载纳米钴复合催化剂进行O2气氛的TG测试。
由测试结果计算可知,本实施例的褐煤焦负载纳米钴复合催化剂中钴的负载量(钴∶褐煤焦)为27wt%。
对本实施例的褐煤焦负载纳米钴复合催化剂进行氮气吸脱附测试,结果如图3所示。
由图3可知,本实施例的褐煤焦负载纳米钴复合催化剂的氮气吸脱附等温曲线表明样品中存在纳米级孔,进行孔径计算及分析发现,样品中同时存在微孔、介孔和大孔;其比表面积为380m2/g,孔容为0.175cm3/g。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种褐煤焦负载纳米钴复合催化剂的制备方法,其特征在于,包括以下步骤:
1)将原始褐煤块进行破碎、筛分,得到褐煤颗粒;
2)将钴前驱体和所述褐煤颗粒加入到溶剂中混合,然后,浸渍,干燥,得到固体物质A;
3)将所述固体物质A进行高温热解处理,得到褐煤焦负载纳米钴复合催化剂。
2.根据权利要求1所述的褐煤焦负载纳米钴复合催化剂的制备方法,其特征在于,所述步骤2)中将钴前驱体和所述褐煤颗粒加入到溶剂中混合,然后,浸渍,干燥,得到固体物质A,包括:将所述褐煤颗粒加入至溶剂中,超声分散,然后,加入钴前驱体,继续超声分散;将超声分散得到的混合液在一定温度下持续搅拌至溶剂充分挥发后,干燥,得到固体物质A。
3.根据权利要求2所述的褐煤焦负载纳米钴复合催化剂的制备方法,其特征在于,所述将超声分散得到的混合液在一定温度下持续搅拌至溶剂充分挥发,包括:将超声分散得到的混合液在室温下持续搅拌至溶剂充分挥发,或将超声分散得到的混合液先在30℃~60℃水浴条件下搅拌一定时间,然后,在室温下持续搅拌至溶剂充分挥发。
4.根据权利要求1或2或3所述的褐煤焦负载纳米钴复合催化剂的制备方法,其特征在于,所述步骤2)中将钴前驱体和所述褐煤颗粒加入到溶剂中混合之前,包括:将所述褐煤颗粒进行酸处理。
5.根据权利要求4所述的褐煤焦负载纳米钴复合催化剂的制备方法,其特征在于,所述酸处理,包括:将所述褐煤颗粒加入至硝酸溶液、或硫酸溶液、或盐酸溶液中,于室温~55℃下水浴搅拌,其中,水浴搅拌时间≥2h。
6.根据权利要求1所述的褐煤焦负载纳米钴复合催化剂的制备方法,其特征在于,所述步骤2)中所述钴前驱体中钴与所述褐煤颗粒的投料比为5wt%~15wt%。
7.根据权利要求1所述的褐煤焦负载纳米钴复合催化剂的制备方法,其特征在于,所述步骤2)中所述钴前驱体为钴盐、钴盐溶液中的一种;所述钴盐为硝酸钴、碳酸钴、醋酸钴中的一种;所述钴盐溶液中的溶质为硝酸钴、碳酸钴、醋酸钴中的一种,所述钴盐溶液中的溶剂为乙醇、水、乙醇和水的混合液中的一种;所述步骤2)中所述溶剂为水、乙醇、乙醇的水溶液中的一种。
8.根据权利要求1所述的褐煤焦负载纳米钴复合催化剂的制备方法,其特征在于,所述步骤3)中将所述固体物质A进行高温热解处理,得到褐煤焦负载纳米钴复合催化剂,包括:将所述固体物质A在惰性气氛下,按照0.5℃~10℃/min的升温速率升温至700℃~900℃,保温1~6h,得到褐煤焦负载纳米钴复合催化剂。
9.根据权利要求8所述的褐煤焦负载纳米钴复合催化剂的制备方法,其特征在于,所述惰性气氛为氩气,或为氮气,或为氩氮混合气。
10.一种褐煤焦负载纳米钴复合催化剂,其特征在于,由权利要求1至9任一项所述的褐煤焦负载纳米钴复合催化剂的制备方法制得;所述褐煤焦负载纳米钴复合催化剂的比表面积为350m2/g~470m2/g,且所述褐煤焦负载纳米钴复合催化剂中纳米钴的负载量为9wt%~27wt%,纳米钴的尺寸为1nm~15nm。
CN202010375770.XA 2020-05-07 2020-05-07 一种褐煤焦负载纳米钴复合催化剂及其制备方法 Active CN111468116B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202010375770.XA CN111468116B (zh) 2020-05-07 2020-05-07 一种褐煤焦负载纳米钴复合催化剂及其制备方法
US17/101,680 US11534739B2 (en) 2020-05-07 2020-11-23 Lignite char supported nano-cobalt composite catalyst and preparation method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010375770.XA CN111468116B (zh) 2020-05-07 2020-05-07 一种褐煤焦负载纳米钴复合催化剂及其制备方法

Publications (2)

Publication Number Publication Date
CN111468116A true CN111468116A (zh) 2020-07-31
CN111468116B CN111468116B (zh) 2021-05-18

Family

ID=71762043

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010375770.XA Active CN111468116B (zh) 2020-05-07 2020-05-07 一种褐煤焦负载纳米钴复合催化剂及其制备方法

Country Status (2)

Country Link
US (1) US11534739B2 (zh)
CN (1) CN111468116B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113181920A (zh) * 2021-04-28 2021-07-30 中国矿业大学 一种高分散Co/C催化剂在低温催化焦油水蒸气重整中的应用
CN113244923A (zh) * 2021-05-21 2021-08-13 西北大学 一种利用煤或生物质制备二氧化碳甲烷化反应催化剂的方法及应用
CN115888720A (zh) * 2022-11-22 2023-04-04 安徽工业大学 一种褐煤为载体的Ni/C催化剂及其制备方法和应用

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114497564A (zh) * 2021-12-30 2022-05-13 西安理工大学 锂硫电池催化材料硒化钴/硒化镍异质结的制备方法
CN116237051A (zh) * 2023-03-22 2023-06-09 中国矿业大学 一种高分散型纳米Co-Ni合金催化剂的制备方法及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102773077A (zh) * 2012-08-17 2012-11-14 太原理工大学 以褐煤为原料制备中温脱硫吸附剂的方法
CN103566936A (zh) * 2013-11-11 2014-02-12 山西潞安矿业(集团)有限责任公司 一种甲烷二氧化碳重整制合成气催化剂的制备方法
CN107138132A (zh) * 2017-06-06 2017-09-08 辽宁科技大学 制备半焦负载多元纳米金属氧化物脱硫脱硝吸附剂的方法
WO2019049983A1 (ja) * 2017-09-07 2019-03-14 国立研究開発法人宇宙航空研究開発機構 二酸化炭素の水素還元用触媒とその製造方法、二酸化炭素の水素還元方法および二酸化炭素の水素還元装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102773077A (zh) * 2012-08-17 2012-11-14 太原理工大学 以褐煤为原料制备中温脱硫吸附剂的方法
CN103566936A (zh) * 2013-11-11 2014-02-12 山西潞安矿业(集团)有限责任公司 一种甲烷二氧化碳重整制合成气催化剂的制备方法
CN107138132A (zh) * 2017-06-06 2017-09-08 辽宁科技大学 制备半焦负载多元纳米金属氧化物脱硫脱硝吸附剂的方法
WO2019049983A1 (ja) * 2017-09-07 2019-03-14 国立研究開発法人宇宙航空研究開発機構 二酸化炭素の水素還元用触媒とその製造方法、二酸化炭素の水素還元方法および二酸化炭素の水素還元装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIE REN等: "Preparation of high-dispersion Ni/C catalyst using modified lignite as carbon precursor for catalytic reforming of biomass volatiles", 《FUEL》 *
王兴栋等: "半焦基催化剂裂解煤热解产物提高油气品质", 《化工学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113181920A (zh) * 2021-04-28 2021-07-30 中国矿业大学 一种高分散Co/C催化剂在低温催化焦油水蒸气重整中的应用
CN113244923A (zh) * 2021-05-21 2021-08-13 西北大学 一种利用煤或生物质制备二氧化碳甲烷化反应催化剂的方法及应用
CN115888720A (zh) * 2022-11-22 2023-04-04 安徽工业大学 一种褐煤为载体的Ni/C催化剂及其制备方法和应用

Also Published As

Publication number Publication date
US20210346872A1 (en) 2021-11-11
US11534739B2 (en) 2022-12-27
CN111468116B (zh) 2021-05-18

Similar Documents

Publication Publication Date Title
CN111468116B (zh) 一种褐煤焦负载纳米钴复合催化剂及其制备方法
CN109305875B (zh) 一种环烷烃类化合物的合成方法
Yin et al. Nano Ru/CNTs: a highly active and stable catalyst for the generation of COx-free hydrogen in ammonia decomposition
Ji et al. Green processing of plant biomass into mesoporous carbon as catalyst support
KR101408045B1 (ko) 메조포러스 탄소, 그 제조방법 및 이를 이용한 연료전지
WO2020115758A1 (en) Fe/Fe3C ENCAPSULATED N-CNT ELECTRODE FOR ELECTROCHEMICAL APPLICATIONS AND METHOD OF PREPARATION THEREOF
CN114768859B (zh) 适用于甲烷干重整的镍硅催化剂及其制备方法
Zheng et al. High-loaded sub-6 nm Cu catalyst with superior hydrothermal-stability and efficiency for aqueous phase reforming of methanol to hydrogen
Tri et al. High activity and stability of nano‐nickel catalyst based on LaNiO3 perovskite for methane bireforming
CN113351204A (zh) 石墨烯复合材料氨氢转化催化剂及制备方法
CN107029752A (zh) 一种铂/石墨烯‑钙钛矿‑泡沫镍催化剂的制备方法
CN115770603A (zh) 一种氮掺杂碳包覆铜催化剂及其制备方法和应用
CN114377691B (zh) 一种甜甜圈状空心多孔Pt-Ni纳米粒子负载氧化钛材料及其制备方法
CN113751007B (zh) 碳包覆氧化镍的催化剂及其制备方法和应用
CN113750991B (zh) 碳包覆氧化镍的催化剂及其制备方法和应用
CN113751005B (zh) 碳包覆过渡金属氧化物的催化剂及其制备方法和应用
CN112705234B (zh) 氧掺杂碳基碳化镍纳米复合材料及其制备方法和应用
CN109678157B (zh) 一种高催化活性纳米碳化钨的制备方法
CN114425339A (zh) 碳基六方密堆积相钴的纳米复合材料及其制备方法和应用
CN116899603B (zh) 一种Ni-MoC/NC材料及其制备方法与应用
CN112705239B (zh) 碳化镍纳米复合材料及其制备方法和应用
CN112871160B (zh) 一种三维多孔碳负载的Rh基催化剂的制备方法及其产品与应用
CN114988411B (zh) 一种具有高比表面积的纯相w2c纳米材料及其制备方法和应用
CN115069267B (zh) 一种钙钛矿基甲酸制氢催化剂及其制备方法与应用
CN115301271B (zh) 一种铜钴合金催化剂及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant