CN111463260B - Vertical high electron mobility field effect transistor and preparation method thereof - Google Patents
Vertical high electron mobility field effect transistor and preparation method thereof Download PDFInfo
- Publication number
- CN111463260B CN111463260B CN202010162428.1A CN202010162428A CN111463260B CN 111463260 B CN111463260 B CN 111463260B CN 202010162428 A CN202010162428 A CN 202010162428A CN 111463260 B CN111463260 B CN 111463260B
- Authority
- CN
- China
- Prior art keywords
- layer
- forming
- current blocking
- substrate
- field effect
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000002360 preparation method Methods 0.000 title abstract description 5
- 238000002353 field-effect transistor method Methods 0.000 title 1
- 230000004888 barrier function Effects 0.000 claims abstract description 141
- 230000005669 field effect Effects 0.000 claims abstract description 130
- 230000000903 blocking effect Effects 0.000 claims abstract description 102
- 230000005533 two-dimensional electron gas Effects 0.000 claims abstract description 102
- 239000004065 semiconductor Substances 0.000 claims abstract description 83
- 239000000758 substrate Substances 0.000 claims abstract description 81
- 238000002161 passivation Methods 0.000 claims abstract description 72
- 239000000463 material Substances 0.000 claims description 98
- 238000000034 method Methods 0.000 claims description 78
- 229910002601 GaN Inorganic materials 0.000 claims description 68
- JMASRVWKEDWRBT-UHFFFAOYSA-N Gallium nitride Chemical compound [Ga]#N JMASRVWKEDWRBT-UHFFFAOYSA-N 0.000 claims description 63
- 230000008569 process Effects 0.000 claims description 35
- 239000013078 crystal Substances 0.000 claims description 34
- 238000005530 etching Methods 0.000 claims description 21
- 230000006911 nucleation Effects 0.000 claims description 20
- 238000010899 nucleation Methods 0.000 claims description 20
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 claims description 18
- 238000001312 dry etching Methods 0.000 claims description 17
- 238000009792 diffusion process Methods 0.000 claims description 15
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 12
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 9
- 229910052737 gold Inorganic materials 0.000 claims description 9
- 239000010931 gold Substances 0.000 claims description 9
- 238000005468 ion implantation Methods 0.000 claims description 9
- 150000002500 ions Chemical class 0.000 claims description 9
- 229910052759 nickel Inorganic materials 0.000 claims description 9
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Chemical compound [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 claims description 8
- 229910052782 aluminium Inorganic materials 0.000 claims description 7
- 229910052581 Si3N4 Inorganic materials 0.000 claims description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 claims description 6
- 235000012239 silicon dioxide Nutrition 0.000 claims description 6
- 239000000377 silicon dioxide Substances 0.000 claims description 6
- HQVNEWCFYHHQES-UHFFFAOYSA-N silicon nitride Chemical compound N12[Si]34N5[Si]62N3[Si]51N64 HQVNEWCFYHHQES-UHFFFAOYSA-N 0.000 claims description 6
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 5
- 229910052738 indium Inorganic materials 0.000 claims description 5
- APFVFJFRJDLVQX-UHFFFAOYSA-N indium atom Chemical compound [In] APFVFJFRJDLVQX-UHFFFAOYSA-N 0.000 claims description 5
- 229910052715 tantalum Inorganic materials 0.000 claims description 5
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 claims description 5
- 229910052719 titanium Inorganic materials 0.000 claims description 5
- 239000010936 titanium Substances 0.000 claims description 5
- JBRZTFJDHDCESZ-UHFFFAOYSA-N AsGa Chemical compound [As]#[Ga] JBRZTFJDHDCESZ-UHFFFAOYSA-N 0.000 claims description 4
- 229910001218 Gallium arsenide Inorganic materials 0.000 claims description 4
- GPXJNWSHGFTCBW-UHFFFAOYSA-N Indium phosphide Chemical compound [In]#P GPXJNWSHGFTCBW-UHFFFAOYSA-N 0.000 claims description 4
- RNQKDQAVIXDKAG-UHFFFAOYSA-N aluminum gallium Chemical compound [Al].[Ga] RNQKDQAVIXDKAG-UHFFFAOYSA-N 0.000 claims description 4
- 229910003460 diamond Inorganic materials 0.000 claims description 4
- 239000010432 diamond Substances 0.000 claims description 4
- 229910052732 germanium Inorganic materials 0.000 claims description 4
- GNPVGFCGXDBREM-UHFFFAOYSA-N germanium atom Chemical compound [Ge] GNPVGFCGXDBREM-UHFFFAOYSA-N 0.000 claims description 4
- 238000004519 manufacturing process Methods 0.000 claims description 4
- 229910052763 palladium Inorganic materials 0.000 claims description 4
- 229910052697 platinum Inorganic materials 0.000 claims description 4
- 229910052594 sapphire Inorganic materials 0.000 claims description 4
- 239000010980 sapphire Substances 0.000 claims description 4
- 229910052710 silicon Inorganic materials 0.000 claims description 4
- 239000010703 silicon Substances 0.000 claims description 4
- HBMJWWWQQXIZIP-UHFFFAOYSA-N silicon carbide Chemical compound [Si+]#[C-] HBMJWWWQQXIZIP-UHFFFAOYSA-N 0.000 claims description 4
- 229910010271 silicon carbide Inorganic materials 0.000 claims description 4
- AJGDITRVXRPLBY-UHFFFAOYSA-N aluminum indium Chemical compound [Al].[In] AJGDITRVXRPLBY-UHFFFAOYSA-N 0.000 claims description 3
- 238000000137 annealing Methods 0.000 claims description 3
- 238000000151 deposition Methods 0.000 claims description 3
- 238000011065 in-situ storage Methods 0.000 claims description 3
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 claims description 2
- 230000000994 depressogenic effect Effects 0.000 claims 4
- 229910002704 AlGaN Inorganic materials 0.000 description 8
- 230000015556 catabolic process Effects 0.000 description 8
- 238000005516 engineering process Methods 0.000 description 8
- 239000007789 gas Substances 0.000 description 7
- 238000001020 plasma etching Methods 0.000 description 6
- 238000005036 potential barrier Methods 0.000 description 5
- 238000001994 activation Methods 0.000 description 4
- 230000005684 electric field Effects 0.000 description 4
- 238000009616 inductively coupled plasma Methods 0.000 description 4
- 230000003071 parasitic effect Effects 0.000 description 4
- 230000010287 polarization Effects 0.000 description 4
- 230000009286 beneficial effect Effects 0.000 description 3
- 238000005566 electron beam evaporation Methods 0.000 description 3
- 238000001755 magnetron sputter deposition Methods 0.000 description 3
- 239000007769 metal material Substances 0.000 description 3
- 238000005229 chemical vapour deposition Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000002349 favourable effect Effects 0.000 description 2
- 238000010884 ion-beam technique Methods 0.000 description 2
- 150000002902 organometallic compounds Chemical class 0.000 description 2
- 238000000623 plasma-assisted chemical vapour deposition Methods 0.000 description 2
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical compound [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- IWBUYGUPYWKAMK-UHFFFAOYSA-N [AlH3].[N] Chemical compound [AlH3].[N] IWBUYGUPYWKAMK-UHFFFAOYSA-N 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000000779 depleting effect Effects 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000000206 photolithography Methods 0.000 description 1
- 238000009832 plasma treatment Methods 0.000 description 1
- 230000002028 premature Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/40—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels
- H10D30/47—FETs having zero-dimensional [0D], one-dimensional [1D] or two-dimensional [2D] charge carrier gas channels having 2D charge carrier gas channels, e.g. nanoribbon FETs or high electron mobility transistors [HEMT]
- H10D30/471—High electron mobility transistors [HEMT] or high hole mobility transistors [HHMT]
- H10D30/477—Vertical HEMTs or vertical HHMTs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D30/00—Field-effect transistors [FET]
- H10D30/01—Manufacture or treatment
- H10D30/015—Manufacture or treatment of FETs having heterojunction interface channels or heterojunction gate electrodes, e.g. HEMT
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/102—Constructional design considerations for preventing surface leakage or controlling electric field concentration
- H10D62/103—Constructional design considerations for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse-biased devices
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/124—Shapes, relative sizes or dispositions of the regions of semiconductor bodies or of junctions between the regions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/10—Shapes, relative sizes or dispositions of the regions of the semiconductor bodies; Shapes of the semiconductor bodies
- H10D62/17—Semiconductor regions connected to electrodes not carrying current to be rectified, amplified or switched, e.g. channel regions
- H10D62/213—Channel regions of field-effect devices
- H10D62/221—Channel regions of field-effect devices of FETs
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10D—INORGANIC ELECTRIC SEMICONDUCTOR DEVICES
- H10D62/00—Semiconductor bodies, or regions thereof, of devices having potential barriers
- H10D62/80—Semiconductor bodies, or regions thereof, of devices having potential barriers characterised by the materials
- H10D62/82—Heterojunctions
- H10D62/824—Heterojunctions comprising only Group III-V materials heterojunctions, e.g. GaN/AlGaN heterojunctions
Landscapes
- Junction Field-Effect Transistors (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
Abstract
本发明公开了垂直型高电子迁移率场效应晶体管及其制备方法。本发明提出了一种垂直型高电子迁移率场效应晶体管,包括:衬底;设置在衬底一侧的电流阻挡层,电流阻挡层中具有导电通孔;设置在电流阻挡层远离衬底一侧的沟道层;设置在沟道层远离电流阻挡层一侧的势垒层,势垒层和沟道层相接触的界面处形成有第一二维电子气,第一二维电子气形成在沟道层一侧,势垒层中具有凹槽,凹槽底部和沟道层之间距离不大于5nm;设置在势垒层远离沟道层一侧的钝化层;设置在凹槽中的半导体层,半导体层和沟道层的界面处形成有第二二维电子气,第二二维电子气形成在半导体层一侧。由此,可以简便地实现垂直型高电子迁移率场效应晶体管的常关特性。
The invention discloses a vertical type high electron mobility field effect transistor and a preparation method thereof. The present invention provides a vertical high electron mobility field effect transistor, comprising: a substrate; a current blocking layer disposed on one side of the substrate, the current blocking layer having conductive through holes; The channel layer on the side of the channel layer; the barrier layer arranged on the side of the channel layer away from the current blocking layer, a first two-dimensional electron gas is formed at the interface where the barrier layer and the channel layer are in contact, and the first two-dimensional electron gas is formed On the side of the channel layer, the barrier layer has a groove, and the distance between the bottom of the groove and the channel layer is not more than 5 nm; the passivation layer is arranged on the side of the barrier layer away from the channel layer; it is arranged in the groove A second two-dimensional electron gas is formed at the interface between the semiconductor layer and the channel layer, and the second two-dimensional electron gas is formed on one side of the semiconductor layer. Thereby, normally-off characteristics of the vertical type high electron mobility field effect transistor can be easily realized.
Description
技术领域technical field
本发明涉及半导体领域,具体地,涉及一种垂直型高电子迁移率场效应晶体管及其制备方法。The present invention relates to the field of semiconductors, in particular to a vertical high electron mobility field effect transistor and a preparation method thereof.
背景技术Background technique
随着科技水平的提高,以氮化镓(GaN)为代表的第三代半导体材料,因其禁带宽度大、临界击穿场强高、电子饱和漂移速率高和热导率高等优势,被广泛应用于制备高频、高温、大功率的电力电子器件,并被应用于移动通信、雷达基站和航空航天等高科技领域。例如,氮化镓(GaN)基的高电子迁移率场效应晶体管(HEMT)器件,由于AlGaN/GaN异质结会在异质结界面处形成浓度较高的二维电子气,使得氮化镓(GaN)基的高电子迁移率场效应晶体管(HEMT)器件具有反向阻断电压高、正向导通电阻低、工作频率高等特性,在大电流、低功耗、高压开关器件方面具有广泛应用。对于AlGaN/GaN器件而言,增强型(常关型)特性的高电子迁移率场效应晶体管(HEMT)器件比耗尽型(常开型)特性的高电子迁移率场效应晶体管(HEMT)器件的应用范围更广。With the improvement of scientific and technological level, the third-generation semiconductor materials represented by gallium nitride (GaN) are widely used due to their advantages of large band gap, high critical breakdown field strength, high electron saturation drift rate and high thermal conductivity. It is widely used in the preparation of high-frequency, high-temperature, high-power power electronic devices, and is used in high-tech fields such as mobile communications, radar base stations, and aerospace. For example, gallium nitride (GaN)-based high electron mobility field effect transistor (HEMT) devices, due to the AlGaN/GaN heterojunction will form a higher concentration of two-dimensional electron gas at the heterojunction interface, making GaN (GaN)-based high electron mobility field effect transistor (HEMT) devices have the characteristics of high reverse blocking voltage, low forward conduction resistance, and high operating frequency, and are widely used in high current, low power consumption, and high voltage switching devices. . For AlGaN/GaN devices, the enhancement mode (normally off) characteristic of the high electron mobility field effect transistor (HEMT) device is more than the depletion mode (normally on) characteristic of the high electron mobility field effect transistor (HEMT) device. wider range of applications.
然而,目前的垂直型高电子迁移率场效应晶体管及其制作方法仍有待改进。However, the current vertical high electron mobility field effect transistors and their fabrication methods still need to be improved.
发明内容SUMMARY OF THE INVENTION
本发明是基于发明人对于以下事实和问题的发现和认识作出的:The present invention is made based on the inventors' findings and understanding of the following facts and problems:
目前的氮化镓(GaN)基高电子迁移率场效应晶体管(HEMT)器件主要为横向器件,在截止状态下,从源极注入的电子可以经过氮化镓(GaN)缓冲层到达漏极,形成漏电通道,过大的缓冲层泄露电流会导致器件提前击穿,无法充分发挥氮化镓(GaN)材料的高耐压优势,从而限制氮化镓(GaN)基高电子迁移率场效应晶体管(HEMT)器件在高压方面的应用,并且,横向氮化镓(GaN)基高电子迁移率场效应晶体管(HEMT)器件主要依靠栅极与漏极之间的有源区来承受耐压,要获得大的击穿电压,需设计很大的栅极与漏极间距,从而会增大芯片面积,不利于便携化、小型化的发展趋势。与横向氮化镓(GaN)基高电子迁移率场效应晶体管(HEMT)器件相比,垂直型氮化镓(GaN)基高电子迁移率场效应晶体管(HEMT)器件存在以下优势:器件耐压不再受横向尺寸的限制,器件主要通过栅极和漏极之间的纵向间距来承受耐压,器件横向尺寸可以设计的非常小,可以节省芯片面积;同时p型GaN电流阻挡层与n型GaN缓冲层之间形成的p-n结可以有效阻挡从源极注入的电子,从而抑制器件缓冲层泄露电流。此外,氮化镓(GaN)基高电子迁移率场效应晶体管(HEMT)器件中,虽然高的载流子浓度和电子迁移率虽然有助于提供非常低的串联电阻,但也使其表现出常开器件的特性,在实际电路应用中需要引入负压源使器件关断,存在安全隐患,同时增加电路的复杂性和成本。The current gallium nitride (GaN)-based high electron mobility field effect transistor (HEMT) devices are mainly lateral devices. In the off state, electrons injected from the source can pass through the gallium nitride (GaN) buffer layer to reach the drain. A leakage channel is formed. Excessive leakage current of the buffer layer will lead to premature breakdown of the device, which cannot give full play to the high withstand voltage advantages of gallium nitride (GaN) materials, thus limiting the high electron mobility field effect transistors based on gallium nitride (GaN) (HEMT) devices are used in high voltage applications, and lateral gallium nitride (GaN)-based high electron mobility field effect transistor (HEMT) devices mainly rely on the active region between the gate and drain to withstand the voltage. To obtain a large breakdown voltage, it is necessary to design a large gate-drain distance, which increases the chip area and is not conducive to the development trend of portability and miniaturization. Compared with lateral gallium nitride (GaN) based high electron mobility field effect transistor (HEMT) devices, vertical gallium nitride (GaN) based high electron mobility field effect transistor (HEMT) devices have the following advantages: No longer limited by the lateral size, the device mainly withstands the voltage through the vertical spacing between the gate and the drain. The lateral size of the device can be designed to be very small, which can save the chip area; at the same time, the p-type GaN current blocking layer and the n-type The p-n junction formed between the GaN buffer layers can effectively block electrons injected from the source, thereby suppressing the device buffer layer leakage current. In addition, gallium nitride (GaN)-based high electron mobility field effect transistor (HEMT) devices, while high carrier concentration and electron mobility, while helping to provide very low series resistance, also make them exhibit Due to the characteristics of normally-on devices, a negative pressure source needs to be introduced to turn off the device in practical circuit applications, which poses a safety hazard and increases the complexity and cost of the circuit.
对于横向器件来说,目前可以实现增强型(常关型)特性的高电子迁移率场效应晶体管(HEMT)的技术手段主要包括:(1)p-GaN栅极结构;(2)氟离子注入技术;(3)栅极凹槽刻蚀技术;(4)级联模式。然而:技术手段(1)中,在AlGaN/GaN异质结材料与栅极之间插入p型GaN层,通过p型GaN层拉高AlGaN势垒层的能带,从而耗尽二维电子气(2DEG),实现增强型高电子迁移率场效应晶体管(HEMT),但是受目前制成工艺所限,GaN中p型掺杂的激活率较低,无法完全耗尽沟道中的二维电子气(2DEG),导致器件的阈值电压不够高;技术手段(2)中,利用CF4等离子体对栅极下方AlGaN势垒层进行处理,进入AlGaN势垒层的F会俘获电子形成负电性的F离子,对沟道中的二维电子气(2DEG)产生耗尽作用,实现增强型的高电子迁移率场效应晶体管(HEMT),但是在AlGaN势垒层注入F离子,一方面会对AlGaN势垒层造成材料损伤,另一方面较薄的势垒层使得F离子的分布难以控制,且其距离沟道中二维电子气(2DEG)很近,会减小沟道中的电子浓度和迁移率;技术手段(3)中,利用槽栅结构实现增强型高电子迁移率场效应晶体管(HEMT),凹槽刻蚀能够有效的耗尽栅极下方区域的二维电子气(2DEG),提高阈值电压,但是凹槽刻蚀需要精确的控制刻蚀深度,以及需要降低等离子体处理引起的刻蚀损伤,工艺要求严格;技术手段(4)中,采用级联结构可以制备增强型的高电子迁移率场效应晶体管(HEMT)。然而采用级联结构实现增强型高电子迁移率场效应晶体管(HEMT)的拓扑结构复杂,需要三种器件,且受限于当前的技术,无法实现这三种器件在工艺层面上的片上集成,因此需要借助基板和金属导线对它们进行互连,会增加产品成本,并且会引入额外的内部寄生参数。同样的,对于垂直器件来说,其同样存在前述的这些缺陷。For lateral devices, the current technical means for realizing enhancement-mode (normally-off) high electron mobility field effect transistors (HEMTs) mainly include: (1) p-GaN gate structure; (2) fluorine ion implantation technology; (3) gate groove etching technology; (4) cascade mode. However, in technical means (1), a p-type GaN layer is inserted between the AlGaN/GaN heterojunction material and the gate, and the energy band of the AlGaN barrier layer is raised through the p-type GaN layer, thereby depleting the two-dimensional electron gas (2DEG), to realize enhancement mode high electron mobility field effect transistor (HEMT), but limited by the current fabrication process, the activation rate of p-type doping in GaN is low, and the two-dimensional electron gas in the channel cannot be completely depleted (2DEG), resulting in a low threshold voltage of the device; in technical means ( 2 ), the AlGaN barrier layer under the gate is treated with CF plasma, and the F entering the AlGaN barrier layer will capture electrons to form negatively charged F ions, deplete the two-dimensional electron gas (2DEG) in the channel, and realize an enhancement-type high electron mobility field effect transistor (HEMT), but implanting F ions into the AlGaN barrier layer will affect the AlGaN barrier on the one hand. On the other hand, the thin barrier layer makes the distribution of F ions difficult to control, and it is very close to the two-dimensional electron gas (2DEG) in the channel, which will reduce the electron concentration and mobility in the channel; technology In means (3), an enhancement mode high electron mobility field effect transistor (HEMT) is realized by using a trench gate structure, and the trench etching can effectively deplete the two-dimensional electron gas (2DEG) in the region under the gate, and improve the threshold voltage, However, groove etching requires precise control of the etching depth and reduction of etching damage caused by plasma treatment, and the process requirements are strict; in technical means (4), the cascade structure can be used to prepare an enhanced high electron mobility field effect transistor (HEMT). However, the topology of the enhancement-mode high electron mobility field effect transistor (HEMT) realized by the cascade structure is complex, requiring three devices, and limited by the current technology, the on-chip integration of these three devices at the process level cannot be realized. Therefore, they need to be interconnected by means of substrates and metal wires, which increases product cost and introduces additional internal parasitics. Likewise, for vertical devices, the aforementioned drawbacks also exist.
因此,如果能提出一种新的垂直型高电子迁移率场效应晶体管及其制备方法,可以简便地完全阻断2DEG的导电沟道,不会对势垒层等造成损伤,操作简便,生产成本低,并且击穿电压较高,耐压性能较好,将能在很大程度上解决上述问题。Therefore, if a new vertical high electron mobility field effect transistor and its preparation method can be proposed, the conductive channel of the 2DEG can be easily and completely blocked, without causing damage to the barrier layer, etc., the operation is simple, and the production cost is Low, and high breakdown voltage, better withstand voltage performance, will be able to solve the above problems to a large extent.
有鉴于此,在本发明的一个方面,本发明提出了一种垂直型高电子迁移率场效应晶体管。根据本发明的实施例,该垂直型高电子迁移率场效应晶体管包括:衬底;电流阻挡层,所述电流阻挡层设置在所述衬底的一侧,所述电流阻挡层中具有导电通孔;沟道层,所述沟道层设置在所述电流阻挡层远离所述衬底的一侧;势垒层,所述势垒层设置在所述沟道层远离所述电流阻挡层的一侧,所述势垒层和所述沟道层相接触的界面处形成有第一二维电子气,所述第一二维电子气形成在所述沟道层一侧,所述势垒层中具有凹槽,所述凹槽的底部和所述沟道层之间的距离不大于5nm;钝化层,所述钝化层设置在所述势垒层远离所述沟道层的一侧,且所述钝化层覆盖所述势垒层的朝向所述凹槽内部的侧壁,所述钝化层不覆盖所述凹槽的底部;半导体层,所述半导体层设置在所述凹槽中,所述半导体层和所述沟道层的界面处形成有第二二维电子气,所述第二二维电子气形成在所述半导体层一侧。由此,该垂直型高电子迁移率场效应晶体管中,第一二维电子气经过导电通孔所形成的导电沟道可以被钝化层以及第二二维电子气阻断,可以较简便地实现常关特性,该垂直型高电子迁移率场效应晶体管的使用性能较好,击穿电压较高,耐压性能较好,可靠性和稳定性较高,并且该垂直型高电子迁移率场效应晶体管还具有以下优点的至少之一:(1)无需利用掺杂激活工艺,即可完全阻断二维电子气的沟道层,并且有利于提高器件的阈值电压;(2)刻蚀凹槽的精度要求较低,可以降低工艺难度;(3)无需利用离子注入工艺,即可耗尽导电沟道中的二维电子气,实现关断,可以避免离子注入对势垒层带来的损伤;(4)无需采用级联模式,可以在单个芯片上实现器件的常关特性,可以降低成本,避免引入额外的寄生参数等。In view of this, in one aspect of the present invention, the present invention provides a vertical type high electron mobility field effect transistor. According to an embodiment of the present invention, the vertical type high electron mobility field effect transistor comprises: a substrate; a current blocking layer, the current blocking layer is disposed on one side of the substrate, and the current blocking layer has a conductive a hole; a channel layer, the channel layer is provided on the side of the current blocking layer away from the substrate; a potential barrier layer, the potential barrier layer is provided on the side of the channel layer away from the current blocking layer On one side, a first two-dimensional electron gas is formed at the interface between the barrier layer and the channel layer, and the first two-dimensional electron gas is formed on one side of the channel layer, and the potential barrier There is a groove in the layer, and the distance between the bottom of the groove and the channel layer is not more than 5nm; a passivation layer, the passivation layer is arranged on a part of the barrier layer away from the channel layer. side, and the passivation layer covers the sidewall of the barrier layer facing the inside of the groove, the passivation layer does not cover the bottom of the groove; a semiconductor layer, the semiconductor layer is disposed on the groove In the groove, a second two-dimensional electron gas is formed at the interface between the semiconductor layer and the channel layer, and the second two-dimensional electron gas is formed on one side of the semiconductor layer. Therefore, in the vertical high electron mobility field effect transistor, the conductive channel formed by the first two-dimensional electron gas passing through the conductive through hole can be blocked by the passivation layer and the second two-dimensional electron gas, which can easily To achieve normally-off characteristics, the vertical high electron mobility field effect transistor has better performance, higher breakdown voltage, better withstand voltage performance, higher reliability and stability, and the vertical high electron mobility field effect transistor. The effect transistor also has at least one of the following advantages: (1) the channel layer of the two-dimensional electron gas can be completely blocked without using a doping activation process, and it is beneficial to improve the threshold voltage of the device; (2) etching recessed The precision requirements of the groove are low, which can reduce the difficulty of the process; (3) the two-dimensional electron gas in the conductive channel can be depleted without using the ion implantation process, and the shutdown can be realized, which can avoid the damage to the barrier layer caused by the ion implantation. ; (4) There is no need to use the cascade mode, the normally-off characteristic of the device can be realized on a single chip, the cost can be reduced, and the introduction of additional parasitic parameters can be avoided.
根据本发明的实施例,所述势垒层的禁带宽度大于所述沟道层的禁带宽度,所述半导体层的禁带宽度小于所述沟道层的禁带宽度。由此,势垒层与沟道层之间可以形成异质结结构,异质结界面处可以生成第一二维电子气,第一二维电子气可以形成在靠近沟道层一侧,半导体层与沟道层之间可以形成异质结结构,异质结界面处可以生成第二二维电子气,第二二维电子气可以形成在靠近半导体层一侧,可以较好的实现垂直型高电子迁移率场效应晶体管器件的常关特性,垂直型高电子迁移率场效应晶体管器件的可靠性和稳定性较高,使用性能较好。According to an embodiment of the present invention, the forbidden band width of the barrier layer is larger than the forbidden band width of the channel layer, and the forbidden band width of the semiconductor layer is smaller than the forbidden band width of the channel layer. Therefore, a heterojunction structure can be formed between the barrier layer and the channel layer, the first two-dimensional electron gas can be generated at the interface of the heterojunction, and the first two-dimensional electron gas can be formed on the side close to the channel layer. A heterojunction structure can be formed between the layer and the channel layer, a second two-dimensional electron gas can be generated at the interface of the heterojunction, and the second two-dimensional electron gas can be formed on the side close to the semiconductor layer, which can better realize the vertical type. The normally-off characteristics of the high electron mobility field effect transistor device and the vertical high electron mobility field effect transistor device have high reliability and stability, and have better performance.
根据本发明的实施例,形成所述势垒层的材料包括AlmGa(1-m)N晶体,其中,0.15≤m≤0.80,所述势垒层的厚度不小于30nm。由此,上述材料形成的势垒层可以与沟道层之间形成异质结结构,异质结界面处可以生成浓度较高的第一二维电子气,并且,势垒层的厚度在上述范围时,可以具有较好的性能,可以进一步提高垂直型高电子迁移率场效应晶体管器件的使用性能。According to an embodiment of the present invention, the material for forming the barrier layer includes Al mGa (1-m) N crystal, wherein 0.15≤m≤0.80, and the thickness of the barrier layer is not less than 30 nm. Therefore, a heterojunction structure can be formed between the barrier layer formed of the above-mentioned material and the channel layer, the first two-dimensional electron gas with higher concentration can be generated at the interface of the heterojunction, and the thickness of the barrier layer is the above In the range, it can have better performance, and can further improve the performance of the vertical type high electron mobility field effect transistor device.
根据本发明的实施例,形成所述半导体层的材料包括InnGa(1-n)N晶体,其中,0<n≤0.45,所述半导体层的厚度不小于30nm。由此,该材料形成的半导体层可以和沟道层之间形成异质结结构,在异质结界面处可以生成浓度较高的第二二维电子气,可以进一步提高垂直型高电子迁移率场效应晶体管器件的使用性能。并且,半导体层的厚度在上述范围时,可以具有较好的性能,可以进一步提高垂直型高电子迁移率场效应晶体管器件的使用性能。According to an embodiment of the present invention, the material for forming the semiconductor layer includes InnGa (1-n) N crystal, wherein 0<n≦0.45, and the thickness of the semiconductor layer is not less than 30 nm. Therefore, the semiconductor layer formed of this material can form a heterojunction structure with the channel layer, and a second two-dimensional electron gas with a higher concentration can be generated at the interface of the heterojunction, which can further improve the vertical high electron mobility. Field effect transistor device performance. Moreover, when the thickness of the semiconductor layer is in the above range, it can have better performance, and can further improve the performance of the vertical type high electron mobility field effect transistor device.
根据本发明的实施例,所述电流阻挡层的厚度为h,10nm≤h<1000nm。由此,电流阻挡层的厚度在上述范围时,可以较好的抑制该垂直型高电子迁移率场效应晶体管的电流泄漏,可以进一步提高垂直型高电子迁移率场效应晶体管器件的使用性能。According to an embodiment of the present invention, the thickness of the current blocking layer is h, and 10 nm≦h<1000 nm. Therefore, when the thickness of the current blocking layer is in the above range, the current leakage of the vertical high electron mobility field effect transistor can be better suppressed, and the performance of the vertical high electron mobility field effect transistor device can be further improved.
根据本发明的实施例,所述垂直型高电子迁移率场效应晶体管进一步包括:成核层,所述成核层设置在所述衬底的一侧;缓冲层,所述缓冲层设置在所述成核层远离所述衬底的一侧,所述电流阻挡层形成在所述缓冲层中;防扩散层,所述防扩散层设置在所述缓冲层远离所述成核层的一侧;所述沟道层设置在所述防扩散层远离所述缓冲层的一侧;栅极,所述栅极设置在所述半导体层远离所述沟道层的一侧,所述凹槽在所述衬底上的正投影不大于所述栅极在所述衬底上的正投影,所述栅极在所述衬底上的正投影不小于所述导电通孔在所述衬底上的正投影;源极,所述源极设置在所述势垒层远离所述沟道层的一侧,所述源极和所述势垒层相接触;漏极,所述漏极设置在所述衬底远离所述成核层的一侧。由此,成核层可以使衬底材料与缓冲层相匹配,缓冲层可以抑制垂直型高电子迁移率场效应晶体管器件的电流泄漏,防扩散层可以较好的防止电流阻挡层中的离子在后续工艺中扩散进入沟道层中从而降低沟道层二维电子气的迁移率,可以提高垂直型高电子迁移率场效应晶体管器件的使用性能,栅极可以与半导体层形成较好的肖特基接触,源极可以直接与势垒层接触形成较好的欧姆接触,漏极制作在衬底下方,可以使器件整个表面都处于低电场状态,可以有效避免电场在栅极边缘的集中,器件的耐压性能不受横向尺寸的限制,器件主要通过栅极与漏极之间的纵向间距来承受耐压,器件的横向尺寸可以设计的较小,可以有效节省芯片的面积,可以进一步提高垂直型高电子迁移率场效应晶体管器件的使用性能。According to an embodiment of the present invention, the vertical type high electron mobility field effect transistor further comprises: a nucleation layer, the nucleation layer is provided on one side of the substrate; a buffer layer, the buffer layer is provided on the a side of the nucleation layer away from the substrate, the current blocking layer is formed in the buffer layer; an anti-diffusion layer, the anti-diffusion layer is arranged on the side of the buffer layer away from the nucleation layer ; the channel layer is arranged on the side of the anti-diffusion layer away from the buffer layer; the gate is arranged on the side of the semiconductor layer away from the channel layer, and the groove is located on the side of the semiconductor layer away from the channel layer. The orthographic projection of the gate on the substrate is not greater than the orthographic projection of the gate on the substrate, and the orthographic projection of the gate on the substrate is not less than that of the conductive via on the substrate The orthographic projection of ; the source electrode, the source electrode is arranged on the side of the barrier layer away from the channel layer, the source electrode is in contact with the barrier layer; the drain electrode, the drain electrode is arranged on the side of the barrier layer away from the channel layer The side of the substrate remote from the nucleation layer. Therefore, the nucleation layer can match the substrate material with the buffer layer, the buffer layer can suppress the current leakage of the vertical high electron mobility field effect transistor device, and the anti-diffusion layer can better prevent the ions in the current blocking layer from In the subsequent process, it diffuses into the channel layer to reduce the mobility of the two-dimensional electron gas in the channel layer, which can improve the performance of the vertical high electron mobility field effect transistor device, and the gate can form a better Schottky with the semiconductor layer. The base contact, the source can be directly contacted with the barrier layer to form a good ohmic contact, and the drain is made under the substrate, which can make the entire surface of the device in a low electric field state, which can effectively avoid the concentration of the electric field on the edge of the gate. The withstand voltage performance is not limited by the lateral size. The device mainly withstands the withstand voltage through the vertical spacing between the gate and the drain. The lateral size of the device can be designed to be smaller, which can effectively save the area of the chip and further improve the vertical performance of high electron mobility field effect transistor devices.
根据本发明的实施例,形成所述衬底的材料包括氮化镓、铝镓氮、铟镓氮、铝铟镓氮、磷化铟、砷化镓、碳化硅、金刚石、蓝宝石、锗、硅中的一种或多种;形成所述缓冲层的材料包括n型氮化镓晶体、非故意掺杂的氮化镓晶体中的一种或多种;形成所述防扩散层的材料包括氮化铝;形成所述电流阻挡层的材料包括p型氮化镓;形成所述沟道层的材料包括非故意掺杂的氮化镓晶体;形成所述钝化层的材料包括二氧化硅、氮化硅中的一种或多种;形成所述源极和所述漏极的材料包括钛、铝、镍、金、钽中的一种或多种;形成所述栅极的材料包括镍、金、钯、铂中的一种或多种。由此,可以进一步提高垂直型高电子迁移率场效应晶体管器件的使用性能。According to an embodiment of the present invention, the material for forming the substrate includes gallium nitride, aluminum gallium nitride, indium gallium nitride, aluminum indium gallium nitride, indium phosphide, gallium arsenide, silicon carbide, diamond, sapphire, germanium, silicon One or more of; the material for forming the buffer layer includes one or more of n-type gallium nitride crystal and unintentionally doped gallium nitride crystal; the material for forming the anti-diffusion layer includes nitrogen aluminum; the material for forming the current blocking layer includes p-type gallium nitride; the material for forming the channel layer includes unintentionally doped gallium nitride crystal; the material for forming the passivation layer includes silicon dioxide, One or more of silicon nitride; the material for forming the source electrode and the drain electrode includes one or more of titanium, aluminum, nickel, gold, and tantalum; the material for forming the gate electrode includes nickel , one or more of gold, palladium and platinum. Thereby, the use performance of the vertical type high electron mobility field effect transistor device can be further improved.
在本发明的另一方面,本发明提出了一种制备前面任一项所述的垂直型高电子迁移率场效应晶体管的方法。根据本发明的实施例,该方法包括:提供衬底;在所述衬底的一侧形成电流阻挡层,所述电流阻挡层中具有导电通孔;在所述电流阻挡层远离所述衬底的一侧形成沟道层;在所述沟道层远离所述电流阻挡层的一侧形成势垒层,所述势垒层和所述沟道层相接触的界面处形成有第一二维电子气,所述第一二维电子气形成在所述沟道层一侧,在所述势垒层中形成凹槽,所述凹槽的底部和所述沟道层之间的距离不大于5nm;在所述势垒层远离所述沟道层的一侧形成钝化层,所述钝化层覆盖所述势垒层的朝向所述凹槽内部的侧壁,所述钝化层不覆盖所述凹槽的底部;在所述凹槽中形成半导体层,所述半导体层和所述沟道层的界面处形成有第二二维电子气,所述第二二维电子气形成在所述半导体层一侧。由此,该方法中,经过导电通孔的第一二维电子气所形成的导电沟道可以被钝化层以及第二二维电子气阻断,可以简便地制备出具有常关特性的垂直型高电子迁移率场效应晶体管,该方法制备的垂直型高电子迁移率场效应晶体管器件的使用性能较好,击穿电压较高,耐压性能较好,可靠性和稳定性较高,并且,利用该方法制备垂直型高电子迁移率场效应晶体管还具有以下优点的至少之一:(1)无需利用掺杂激活工艺,即可完全阻断二维电子气的沟道层,并且有利于提高器件的阈值电压;(2)刻蚀凹槽的精度要求较低,可以降低工艺难度;(3)无需利用离子注入工艺,即可耗尽导电沟道中的二维电子气,实现关断,可以避免离子注入对势垒层带来的损伤;(4)无需采用级联模式,可以在单个芯片上实现器件的常关特性,可以降低成本,避免引入额外的寄生参数等。In another aspect of the present invention, the present invention provides a method for fabricating any one of the foregoing vertical high electron mobility field effect transistors. According to an embodiment of the present invention, the method includes: providing a substrate; forming a current blocking layer on one side of the substrate, the current blocking layer having conductive vias therein; and making the current blocking layer away from the substrate A channel layer is formed on one side of the channel layer; a barrier layer is formed on the side of the channel layer away from the current blocking layer, and a first two-dimensional layer is formed at the interface where the barrier layer and the channel layer are in contact. electron gas, the first two-dimensional electron gas is formed on one side of the channel layer, a groove is formed in the barrier layer, and the distance between the bottom of the groove and the channel layer is not greater than 5 nm; a passivation layer is formed on the side of the barrier layer away from the channel layer, the passivation layer covers the sidewall of the barrier layer facing the inside of the groove, and the passivation layer does not covering the bottom of the groove; a semiconductor layer is formed in the groove, a second two-dimensional electron gas is formed at the interface of the semiconductor layer and the channel layer, and the second two-dimensional electron gas is formed at one side of the semiconductor layer. Therefore, in this method, the conductive channel formed by the first two-dimensional electron gas passing through the conductive through hole can be blocked by the passivation layer and the second two-dimensional electron gas, and the vertical vertical electron gas with normally-off characteristics can be easily prepared. The vertical high electron mobility field effect transistor prepared by the method has better performance, higher breakdown voltage, better withstand voltage performance, higher reliability and stability, and , using this method to prepare a vertical high electron mobility field effect transistor also has at least one of the following advantages: (1) The channel layer of the two-dimensional electron gas can be completely blocked without using a doping activation process, and it is beneficial to Improve the threshold voltage of the device; (2) The precision requirements of the etching groove are low, which can reduce the difficulty of the process; (3) The two-dimensional electron gas in the conductive channel can be depleted without using an ion implantation process to achieve shutdown, The damage to the barrier layer caused by ion implantation can be avoided; (4) the normally-off characteristic of the device can be realized on a single chip without adopting the cascade mode, which can reduce the cost and avoid the introduction of additional parasitic parameters.
根据本发明的实施例,形成所述势垒层进一步包括:在所述沟道层远离所述电流阻挡层的一侧生长AlmGa(1-m)N晶体材料,其中,0.15≤m≤0.80,以便形成势垒层预制体;在所述势垒层预制体远离所述沟道层的一侧的部分表面设置第一掩膜;对未被所述第一掩膜覆盖的所述势垒层预制体进行第一干法刻蚀处理,以便形成所述凹槽,其中,所述第一干法刻蚀处理的刻蚀深度和所述势垒层预制体的厚度之差不大于5nm;去除所述第一掩膜,形成所述势垒层。由此,可以较简便的形成势垒层,有利于制备出性能较好的垂直型高电子迁移率场效应晶体管器件。According to an embodiment of the present invention, forming the barrier layer further includes: growing an AlmGa (1-m) N crystal material on a side of the channel layer away from the current blocking layer, wherein 0.15≤m≤ 0.80 to form a barrier layer preform; set a first mask on a part of the surface of the barrier layer preform on the side away from the channel layer; for the potential barrier not covered by the first mask The barrier layer preform is subjected to a first dry etching process to form the groove, wherein the difference between the etching depth of the first dry etching process and the thickness of the barrier layer preform is not greater than 5nm ; Remove the first mask to form the barrier layer. Therefore, the barrier layer can be easily formed, which is favorable for preparing a vertical type high electron mobility field effect transistor device with better performance.
根据本发明的实施例,形成所述钝化层进一步包括:在所述势垒层远离所述沟道层的一侧沉积钝化层材料,以便形成钝化层预制体;在所述钝化层预制体的表面设置第二掩膜,所述第二掩膜覆盖除所述凹槽的底部之外的区域;对未被所述第二掩膜覆盖的所述钝化层预制体进行第二干法刻蚀处理,以便形成所述钝化层,所述钝化层覆盖所述势垒层远离所述沟道层一侧的表面,并覆盖所述势垒层的朝向所述凹槽内部的侧壁;去除所述第二掩膜。由此,可以较简便的生成钝化层,可以进一步提高制备的垂直型高电子迁移率场效应晶体管器件的使用性能。According to an embodiment of the present invention, forming the passivation layer further includes: depositing a passivation layer material on a side of the barrier layer away from the channel layer, so as to form a passivation layer preform; A second mask is arranged on the surface of the layer preform, and the second mask covers the area except the bottom of the groove; the passivation layer preform not covered by the second mask is subjected to the first mask Two dry etching processes are performed to form the passivation layer, the passivation layer covering the surface of the barrier layer on the side away from the channel layer and covering the groove facing the barrier layer inner sidewalls; removing the second mask. Therefore, the passivation layer can be easily generated, and the use performance of the prepared vertical high electron mobility field effect transistor device can be further improved.
根据本发明的实施例,形成所述电流阻挡层之前,所述方法进一步包括:在所述衬底的一侧形成缓冲层,形成所述缓冲层的材料包括:n型氮化镓晶体、非故意掺杂的氮化镓晶体中的一种或多种;形成所述电流阻挡层进一步包括:通过离子注入工艺在所述缓冲层的远离所述衬底一侧的部分表面注入Mg2+、Al3+中的至少一种,并通过退火工艺,在所述缓冲层的远离所述衬底的一侧形成电流阻挡层,所述电流阻挡层中具有未注入离子的导电通孔,形成所述电流阻挡层的材料包括p型氮化镓。由此,可以较简便的在缓冲层中形成电流阻挡层,进一步提高垂直型高电子迁移率场效应晶体管器件的使用性能。According to an embodiment of the present invention, before forming the current blocking layer, the method further includes: forming a buffer layer on one side of the substrate, and a material for forming the buffer layer includes: n-type gallium nitride crystal, non- One or more of intentionally doped gallium nitride crystals; forming the current blocking layer further comprises: implanting Mg 2+ , At least one of Al 3+ , and through an annealing process, a current blocking layer is formed on the side of the buffer layer away from the substrate, and the current blocking layer has conductive through holes without ions implanted, forming all the The material of the current blocking layer includes p-type gallium nitride. Therefore, the current blocking layer can be easily formed in the buffer layer, and the performance of the vertical high electron mobility field effect transistor device can be further improved.
根据本发明的实施例,形成所述电流阻挡层之前,所述方法进一步包括:在所述衬底的一侧形成缓冲层,形成所述缓冲层的材料包括:n型氮化镓晶体、非故意掺杂的氮化镓晶体中的一种或多种;形成所述电流阻挡层进一步包括:在所述缓冲层远离所述衬底的一侧原位生长p型氮化镓层,并通过干法刻蚀处理,在所述p型氮化镓层中形成所述导电通孔,形成所述电流阻挡层。由此,可以较简便的在缓冲层一侧形成电流阻挡层,进一步提高垂直型高电子迁移率场效应晶体管器件的使用性能。According to an embodiment of the present invention, before forming the current blocking layer, the method further includes: forming a buffer layer on one side of the substrate, and a material for forming the buffer layer includes: n-type gallium nitride crystal, non- one or more of intentionally doped gallium nitride crystals; forming the current blocking layer further comprises: growing a p-type gallium nitride layer in situ on a side of the buffer layer away from the substrate, and passing In the dry etching process, the conductive through hole is formed in the p-type gallium nitride layer, and the current blocking layer is formed. Therefore, the current blocking layer can be easily formed on the side of the buffer layer, thereby further improving the performance of the vertical type high electron mobility field effect transistor device.
根据本发明的实施例,形成所述电流阻挡层之前,所述方法进一步包括:在所述衬底的一侧形成缓冲层,形成所述缓冲层的材料包括:n型氮化镓晶体、非故意掺杂的氮化镓晶体中的一种或多种;对所述缓冲层的部分区域进行干法刻蚀处理,以便形成刻蚀后的第一凹陷部和第二凹陷部,以及未被刻蚀的所述导电通孔,所述导电通孔位于所述第一凹陷部和所述第二凹陷部之间;在所述第一凹陷部和所述第二凹陷部中二次外延生长p型氮化镓层,以便形成具有所述导电通孔的所述电流阻挡层。由此,可以较简便的在缓冲层中形成电流阻挡层,进一步提高垂直型高电子迁移率场效应晶体管器件的使用性能。According to an embodiment of the present invention, before forming the current blocking layer, the method further includes: forming a buffer layer on one side of the substrate, and a material for forming the buffer layer includes: n-type gallium nitride crystal, non- One or more of intentionally doped gallium nitride crystals; dry etching is performed on part of the buffer layer, so as to form the etched first and second recesses, and The etched conductive via, the conductive via is located between the first recessed portion and the second recessed portion; secondary epitaxial growth is performed in the first recessed portion and the second recessed portion p-type gallium nitride layer so as to form the current blocking layer with the conductive via. Therefore, the current blocking layer can be easily formed in the buffer layer, and the performance of the vertical high electron mobility field effect transistor device can be further improved.
附图说明Description of drawings
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:The above and/or additional aspects and advantages of the present invention will become apparent and readily understood from the following description of embodiments taken in conjunction with the accompanying drawings, wherein:
图1显示了根据本发明一个实施例的垂直型高电子迁移率场效应晶体管的结构示意图;FIG. 1 shows a schematic structural diagram of a vertical high electron mobility field effect transistor according to an embodiment of the present invention;
图2显示了根据本发明另一个实施例的垂直型高电子迁移率场效应晶体管的结构示意图;FIG. 2 shows a schematic structural diagram of a vertical high electron mobility field effect transistor according to another embodiment of the present invention;
图3显示了根据本发明一个实施例的制备垂直型高电子迁移率场效应晶体管的方法流程图;3 shows a flow chart of a method for fabricating a vertical high electron mobility field effect transistor according to an embodiment of the present invention;
图4显示了根据本发明另一个实施例的制备垂直型高电子迁移率场效应晶体管的方法流程图;FIG. 4 shows a flowchart of a method for fabricating a vertical high electron mobility field effect transistor according to another embodiment of the present invention;
图5显示了根据本发明又一个实施例的制备垂直型高电子迁移率场效应晶体管的方法流程图;5 shows a flow chart of a method for fabricating a vertical high electron mobility field effect transistor according to yet another embodiment of the present invention;
图6显示了根据本发明又一个实施例的制备垂直型高电子迁移率场效应晶体管的方法流程图;6 shows a flowchart of a method for fabricating a vertical high electron mobility field effect transistor according to yet another embodiment of the present invention;
图7显示了根据本发明又一个实施例的制备垂直型高电子迁移率场效应晶体管的方法流程图;7 shows a flowchart of a method for fabricating a vertical high electron mobility field effect transistor according to yet another embodiment of the present invention;
图8显示了根据本发明又一个实施例的制备垂直型高电子迁移率场效应晶体管的方法流程图;以及FIG. 8 shows a flowchart of a method for fabricating a vertical high electron mobility field effect transistor according to yet another embodiment of the present invention; and
图9显示了根据本发明又一个实施例的制备垂直型高电子迁移率场效应晶体管的方法流程图。FIG. 9 shows a flowchart of a method for fabricating a vertical high electron mobility field effect transistor according to yet another embodiment of the present invention.
附图标记说明:Description of reference numbers:
100:衬底;110:成核层;120:缓冲层;121:第一凹陷部;122:第二凹陷部;200:电流阻挡层;201:导电通孔;210:防扩散层;222:p型氮化镓层;300:沟道层;310:第一二维电子气;320:第二二维电子气;400:势垒层;401:凹槽;500:钝化层;600:半导体层;700:栅极;800:源极;900:漏极;1000:垂直型高电子迁移率场效应晶体管。100: substrate; 110: nucleation layer; 120: buffer layer; 121: first recess; 122: second recess; 200: current blocking layer; 201: conductive via; 210: anti-diffusion layer; 222: p-type gallium nitride layer; 300: channel layer; 310: first two-dimensional electron gas; 320: second two-dimensional electron gas; 400: barrier layer; 401: groove; 500: passivation layer; 600: semiconductor layer; 700: gate electrode; 800: source electrode; 900: drain electrode; 1000: vertical type high electron mobility field effect transistor.
具体实施方式Detailed ways
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本发明,而不能理解为对本发明的限制。The following describes in detail the embodiments of the present invention, examples of which are illustrated in the accompanying drawings, wherein the same or similar reference numerals refer to the same or similar elements or elements having the same or similar functions throughout. The embodiments described below with reference to the accompanying drawings are exemplary, only used to explain the present invention, and should not be construed as a limitation of the present invention.
在本发明的一个方面,本发明提出了一种垂直型高电子迁移率场效应晶体管。根据本发明的实施例,参考图1,该垂直型高电子迁移率场效应晶体管1000可以包括:衬底100、电流阻挡层200、沟道层300、势垒层400、钝化层500以及半导体层600。其中,电流阻挡层200设置在衬底100的一侧,电流阻挡层200中具有导电通孔201;沟道层300设置在电流阻挡层200远离衬底100的一侧;势垒层400设置在沟道层300远离电流阻挡层200的一侧,势垒层400和沟道层300相接触的界面处形成有第一二维电子气310,第一二维电子气310形成在沟道层300一侧,势垒层400中具有凹槽(图中未标出),凹槽的底部和沟道层300之间的距离不大于5nm,即凹槽的深度f和势垒层300的厚度d之差不大于5nm(例如参考图1中所示出的,凹槽的底部和沟道层300之间的距离为0,即凹槽的深度f和势垒层400的厚度d相等);钝化层500设置在势垒层400远离沟道层300的一侧,且钝化层500覆盖势垒层400的朝向凹槽内部的侧壁,钝化层500不覆盖凹槽的底部;半导体层600设置在凹槽中,半导体层600和沟道层300的界面处形成有第二二维电子气320,第二二维电子气320形成在半导体层600一侧。由此,第一二维电子气310经过导电通孔201所形成的导电沟道可以被钝化层500以及第二二维电子气320阻断,可以较简便地实现该垂直型高电子迁移率场效应晶体管1000器件的常关特性,该垂直型高电子迁移率场效应晶体管1000器件的耐压性能较好,该垂直型高电子迁移率场效应晶体管1000器件的使用性能较好,并且该垂直型高电子迁移率场效应晶体管1000器件还具有以下优点的至少之一:(1)无需利用掺杂激活工艺,即可完全阻断二维电子气的沟道层,并且有利于提高器件的阈值电压;(2)刻蚀凹槽的精度要求较低,可以降低工艺难度;(3)无需利用离子注入工艺,即可耗尽导电沟道中的二维电子气,实现关断,可以避免离子注入对势垒层带来的损伤;(4)无需采用级联模式,可以在单个芯片上实现器件的常关特性,可以降低成本,避免引入额外的寄生参数等。In one aspect of the present invention, the present invention provides a vertical type high electron mobility field effect transistor. According to an embodiment of the present invention, referring to FIG. 1 , the vertical high electron mobility
根据本发明的实施例,势垒层400、沟道层300和半导体层600的材料不受特别限制,只要势垒层400的禁带宽度大于沟道层300的禁带宽度,半导体层6000的禁带宽度小于沟道层300的禁带宽度即可。由此,势垒层400与沟道层300之间可以形成异质结结构,异质结界面处可以生成第一二维电子气310,第一二维电子气310可以形成在靠近沟道层300一侧,半导体层600与沟道层300之间可以形成异质结结构,异质结界面处可以生成第二二维电子气320,第二二维电子气320可以形成在靠近半导体层600一侧,可以较好的实现垂直型高电子迁移率场效应晶体管器件1000的常关特性,垂直型高电子迁移率场效应晶体管器件1000的耐压性能较好,可靠性和稳定性较高,使用性能较好。According to the embodiment of the present invention, the materials of the
根据本发明的实施例,形成衬底100的材料不受特别限制,本领域技术人员可以根据实际情况进行选择。例如,根据本发明的实施例,形成衬底100的材料可以包括氮化镓、铝镓氮、铟镓氮、铝铟镓氮、磷化铟、砷化镓、碳化硅、金刚石、蓝宝石、锗、硅中的一种或多种。由此,该材料形成的衬底100可以具有较好的使用性能。According to the embodiment of the present invention, the material for forming the
根据本发明的实施例,形成电流阻挡层200的材料不受特别限制,本领域技术人员可以根据需要进行选择。例如,形成电流阻挡层200的材料可以包括p型氮化镓。由此,电流阻挡层200由该材料形成时,可以较好的抑制该垂直型高电子迁移率场效应晶体管1000的电流泄漏,提高垂直型高电子迁移率场效应晶体管1000器件的使用性能。根据本发明的实施例,电流阻挡层200的厚度可以为h,具体的,10nm≤h<1000nm,例如,可以为20nm,可以为50nm,可以为100nm,可以为200nm,可以为300nm,可以为500nm,可以为600nm,可以为700nm,可以为800nm,可以为900nm等。由此,电流阻挡层200的厚度在上述范围内时,可以进一步抑制该垂直型高电子迁移率场效应晶体管1000的电流泄漏,提高垂直型高电子迁移率场效应晶体管1000器件的使用性能。According to the embodiment of the present invention, the material for forming the
具体的,形成沟道层300的材料不受特别限制,本领域技术人员可以根据需要进行选择。例如,形成沟道层300的材料可以包括非故意掺杂的氮化镓晶体。由此,沟道层300由该材料形成时,可以使该垂直型高电子迁移率场效应晶体管1000器件的耐压性能提高,可以在较高的温度下工作,并且,该材料形成的沟道层300可以与后续形成的势垒层400之间较好地形成异质结结构,异质结界面处可以生成具有较高电子浓度和电子迁移率的二维电子气,导通电阻较低,可以进一步提高垂直型高电子迁移率场效应晶体管1000器件的使用性能。Specifically, the material for forming the
根据本发明的实施例,参考图2,垂直型高电子迁移率场效应晶体管1000还可以进一步包括:成核层110、缓冲层120以及防扩散层210,其中,成核层110设置在衬底100的一侧,缓冲层120设置在成核层110远离衬底100的一侧,电流阻挡层200形成在缓冲层120中,防扩散层210设置在缓冲层120远离成核层110的一侧,沟道层300设置在防扩散层210远离缓冲层120的一侧。由此,成核层110可以使衬底100材料与缓冲层120相匹配,防扩散层210可以较好的防止电流阻挡层中的离子在后续工艺中扩散进入沟道层中从而降低沟道层二维电子气的迁移率。根据本发明的实施例,形成缓冲层120的材料可以包括n型氮化镓晶体、非故意掺杂的氮化镓晶体中的一种或多种。由此,该材料形成的缓冲层120可以抑制该垂直型高电子迁移率场效应晶体管1000的电流泄漏,提高垂直型高电子迁移率场效应晶体管1000器件的使用性能。具体的,形成防扩散层210的材料可以包括氮化铝。由此,该材料形成的防扩散层210可以较好的防止电流阻挡层中的离子在后续工艺中扩散进入沟道层中从而降低沟道层二维电子气的迁移率。According to an embodiment of the present invention, referring to FIG. 2 , the vertical high electron mobility
根据本发明的实施例,势垒层400的禁带宽度可以大于沟道层300的禁带宽度。由此,势垒层400与沟道层300之间可以形成异质结结构,在异质结界面处可以形成浓度较高的第一二维电子气310,并且第一二维电子气310可以形成在靠近禁带宽度较小的沟道层300一侧,可以进一步提高垂直型高电子迁移率场效应晶体管1000器件的使用性能。According to an embodiment of the present invention, the forbidden band width of the
根据本发明的实施例,形成势垒层400的材料不受特别限制,本领域技术人员可以根据需要进行选择。具体的,形成势垒层400的材料可以包括AlmGa(1-m)N晶体,其中,0.15≤m≤0.80,具体的,m可以为0.2,可以为0.3,可以为0.4,可以为0.5,可以为0.6,可以为0.7等。由此,由该材料形成的势垒层400与沟道层300之间可以形成异质结结构,在异质结界面处可以形成浓度较高的第一二维电子气310,并且第一二维电子气310可以形成在靠近禁带宽度较小的沟道层300一侧,可以进一步提高垂直型高电子迁移率场效应晶体管1000器件的使用性能。具体的,势垒层400的厚度可以不小于30nm,例如,可以为35nm,可以为40nm,可以为45nm等。由此,当势垒层400的厚度在上述范围时,可以具有较好的性能,可以进一步提高垂直型高电子迁移率场效应晶体管1000器件的使用性能。According to the embodiment of the present invention, the material for forming the
根据本发明的实施例,形成钝化层500的材料不受特别限制,本领域技术人员可以根据需要进行选择。具体的,形成钝化层500的材料可以包括二氧化硅、氮化硅中的一种或多种。由此,该材料形成的钝化层500可以改善器件的表面态,并且可以隔离势垒层400与半导体层600,防止势垒层400和半导体层600之间相互影响,形成二维电子气,产生漏电流等不良问题,并且,钝化层500可以与第二二维电子气320一起将流经导电通孔201的第一二维电子气310隔断。According to the embodiment of the present invention, the material for forming the
根据本发明的实施例,半导体层600的禁带宽度可以小于沟道层300的禁带宽度。由此,半导体层600可以与沟道层300之间可以形成异质结结构,在异质结界面处可以形成浓度较高的第二二维电子气320,并且第二二维电子气320形成在靠近禁带宽度较小的半导体层600一侧,第二二维电子气320可以使与半导体层600相对应的沟道层300的一侧(即凹槽下方的区域)产生诱导极化的空穴,由此,可以令凹槽下方区域中的第一二维电子气310被耗尽,可以进一步阻断第一二维电子气310流经导电通孔201所形成的导电沟道,可以简便地实现垂直型高电子迁移率场效应晶体管1000器件的常关特性,可以进一步提高垂直型高电子迁移率场效应晶体管1000器件的使用性能。According to an embodiment of the present invention, the forbidden band width of the
根据本发明的实施例,形成半导体层600的材料不受特别限制,本领域技术人员可以根据需要进行选择。具体的,形成半导体层600的材料可以包括InnGa(1-n)N晶体,其中,0<n≤0.45,具体的,n可以为0.1,可以为0.2,可以为0.3,可以为0.4等。由此,该材料形成的半导体层600可以进一步提高异质结界面处的第二二维电子气320的浓度,提高电子迁移率,可以进一步提高垂直型高电子迁移率场效应晶体管1000器件的使用性能。具体的,半导体层600的厚度可以不小于30nm,例如,可以为35nm,可以为40nm,可以为45nm等。由此,当半导体层600的厚度在上述范围时,可以进一步提高垂直型高电子迁移率场效应晶体管1000器件的使用性能。According to the embodiment of the present invention, the material for forming the
根据本发明的实施例,参考图2,该垂直型高电子迁移率场效应晶体管1000还可以进一步包括:栅极700、源极800以及漏极900,其中,栅极700设置在半导体层600远离沟道层300的一侧,凹槽在衬底100上的正投影不大于栅极700在衬底100上的正投影,栅极700在衬底100上的正投影不小于导电通孔(图中未标出,可以参考图1中的导电通孔201)在衬底100上的正投影,源极800设置在势垒层400远离沟道层300的一侧,源极800和势垒层400相接触,漏极900设置在衬底100远离成核层110的一侧。由此,栅极700可以与半导体层600形成较好的肖特基接触,源极800可以直接与势垒层400接触形成较好的欧姆接触,漏极900制作在衬底100下方,可以使器件整个表面都处于低电场状态,可以有效避免电场在栅极700边缘的集中,器件的耐压性能不受横向尺寸的限制,器件主要通过栅极700与漏极900之间的纵向间距来承受耐压,器件的横向尺寸可以设计的较小,可以有效节省器件的面积,可以进一步提高垂直型高电子迁移率场效应晶体管1000器件的使用性能。具体的,形成栅极700的材料可以包括镍、金、钯、铂中的一种或多种。由此,该材料形成的栅极700可以与半导体层600形成较好的肖特基接触,可以进一步提高垂直型高电子迁移率场效应晶体管1000器件的使用性能。具体的,形成源极800和漏极900的材料可以包括钛、铝、镍、金、钽中的一种或多种。由此,该材料形成的源极800可以直接与势垒层400接触形成较好的欧姆接触,该材料形成的漏极900具有较好的性能,可以进一步提高垂直型高电子迁移率场效应晶体管1000器件的使用性能。According to an embodiment of the present invention, referring to FIG. 2 , the vertical high electron mobility
综上所述,根据本发明实施例的垂直型高电子迁移率场效应晶体管1000,第一二维电子气310经过导电通孔201形成的导电沟道可以被钝化层500以及第二二维电子气320阻断,可以较简便地实现该垂直型高电子迁移率场效应晶体管1000器件的常关特性,垂直型高电子迁移率场效应晶体管1000器件的使用性能较好,击穿电压较高,耐压性能较好,可靠性和稳定性较高,并且,该垂直型高电子迁移率场效应晶体管1000工作时,当给栅极700施加外加电压时,第二二维电子气320可以被耗尽,栅极700下方对应的沟道层300的一侧产生的诱导极化空穴也随之消失,第一二维电子气310经过导电通孔201构成的导电沟道可以重新导通,该垂直型高电子迁移率场效应晶体管1000器件的使用性能较好。To sum up, according to the vertical high electron mobility
在本发明的另一方面,本发明提出了一种制备前面所述的垂直型高电子迁移率场效应晶体管的方法。根据本发明的实施例,参考图3和图4,该方法包括:In another aspect of the present invention, the present invention provides a method for fabricating the aforementioned vertical high electron mobility field effect transistor. According to an embodiment of the present invention, with reference to FIG. 3 and FIG. 4 , the method includes:
S100:提供衬底S100: Provide substrate
该步骤中,提供衬底。根据本发明的实施例,参考图4中的(a),形成衬底100的材料不受特别限制,例如,形成衬底100的材料可以包括氮化镓、铝镓氮、铟镓氮、铝铟镓氮、磷化铟、砷化镓、碳化硅、金刚石、蓝宝石、锗、硅中的一种或多种。由此,该材料形成的衬底100可以具有较好的使用性能,可以提高垂直型高电子迁移率场效应晶体管的使用性能。In this step, a substrate is provided. According to an embodiment of the present invention, referring to (a) of FIG. 4 , the material for forming the
根据本发明的实施例,为了进一步提高所制备的高电子迁移率场效应晶体管的使用性能,在提供衬底100之后,该方法还可以进一步包括:在衬底100的一侧设置成核层(图中未示出),并在成核层远离衬底100的一侧设置缓冲层(图中未示出),在缓冲层远离成核层的一侧形成防扩散层(图中未示出)。由此,可以进一步提高垂直型高电子迁移率场效应晶体管器件的使用性能。According to an embodiment of the present invention, in order to further improve the performance of the prepared high electron mobility field effect transistor, after the
S200:在衬底的一侧形成电流阻挡层,电流阻挡层中具有导电通孔S200: A current blocking layer is formed on one side of the substrate, and the current blocking layer has conductive vias
该步骤中,在衬底的一侧形成电流阻挡层,电流阻挡层中具有导电通孔。根据本发明的实施例,参考图4中的(b),在衬底100的一侧形成电流阻挡层200,电流阻挡层200中具有导电通孔201。具体的,形成电流阻挡层200的材料不受特别限制,例如,形成电流阻挡层200的材料可以包括p型氮化镓。由此,电流阻挡层200由该材料形成时,可以较好的抑制该垂直型高电子迁移率场效应晶体管的电流泄漏,可以进一步提高垂直型高电子迁移率场效应晶体管器件的使用性能。根据本发明的实施例,电流阻挡层200的厚度可以为h,具体的,10nm≤h<1000nm,例如,可以为20nm,可以为50nm,可以为100nm,可以为200nm,可以为300nm,可以为500nm,可以为600nm,可以为700nm,可以为800nm,可以为900nm等。由此,电流阻挡层200的厚度在上述范围内时,可以进一步抑制该垂直型高电子迁移率场效应晶体管的电流泄漏,提高垂直型高电子迁移率场效应晶体管器件的使用性能。具体的,电流阻挡层200可以形成在缓冲层中。由此,可以较简便的形成电流阻挡层200。In this step, a current blocking layer is formed on one side of the substrate, and the current blocking layer has conductive through holes. According to an embodiment of the present invention, referring to (b) in FIG. 4 , a
根据本发明的实施例,参考图7,形成电流阻挡层200之前,该方法可以进一步包括:在衬底100的一侧形成缓冲层120,形成缓冲层120的材料可以包括:n型氮化镓晶体、非故意掺杂的氮化镓晶体中的一种或多种。由此,该材料形成的缓冲层120可以抑制该垂直型高电子迁移率场效应晶体管的电流泄漏,提高垂直型高电子迁移率场效应晶体管器件的使用性能。具体的,形成电流阻挡层200可以进一步包括:通过离子注入工艺在缓冲层120的远离衬底100一侧的部分表面注入Mg2+、Al3+中的至少一种,并通过退火工艺,在缓冲层的远离衬底100的一侧形成电流阻挡层200,电流阻挡层200中具有未注入离子的导电通孔201,形成电流阻挡层200的材料可以包括p型氮化镓。由此,可以较简便的在缓冲层120中形成电流阻挡层200,进一步提高垂直型高电子迁移率场效应晶体管器件的使用性能。According to an embodiment of the present invention, referring to FIG. 7 , before forming the
具体的,参考图8,在衬底100的一侧形成缓冲层120之后,形成电流阻挡层200还可以进一步包括:在缓冲层120远离衬底100的一侧原位生长p型氮化镓层222,并通过干法刻蚀处理,在p型氮化镓层222中形成导电通孔201,形成电流阻挡层200。由此,可以较简便的在缓冲层120一侧形成电流阻挡层200,进一步提高垂直型高电子迁移率场效应晶体管器件的使用性能。Specifically, referring to FIG. 8 , after forming the
具体的,参考图9,在衬底100的一侧形成缓冲层120之后,形成电流阻挡层200还可以进一步包括:对缓冲层120的部分区域进行干法刻蚀处理,以便形成刻蚀后的第一凹陷部121和第二凹陷部122,以及未被刻蚀的导电通孔201,导电通孔201位于第一凹陷部121和第二凹陷部122之间;在第一凹陷部121和第二凹陷部122中二次外延生长p型氮化镓层,以便形成具有导电通孔201的电流阻挡层200。由此,可以较简便的在缓冲层120中形成电流阻挡层200,进一步提高垂直型高电子迁移率场效应晶体管器件的使用性能。Specifically, referring to FIG. 9 , after forming the
S300:在电流阻挡层远离衬底的一侧形成沟道层S300 : forming a channel layer on the side of the current blocking layer away from the substrate
该步骤中,在电流阻挡层远离衬底的一侧形成沟道层。根据本发明的实施例,参考图4中的(c),在电流阻挡层200远离衬底100的一侧形成沟道层300。具体的,形成沟道层300的材料不受特别限制,例如,形成沟道层300的材料可以包括非故意掺杂的氮化镓晶体。由此,沟道层300由该材料形成时,可以使垂直型高电子迁移率场效应晶体管器件的耐压性能提高,可以在较高的温度下工作,并且,该材料形成的沟道层300可以与后续形成的势垒层之间较好地形成异质结结构,异质结界面处可以生成具有较高电子浓度和电子迁移率的二维电子气,导通电阻较低,可以进一步提高垂直型高电子迁移率场效应晶体管器件的使用性能。In this step, a channel layer is formed on the side of the current blocking layer away from the substrate. According to an embodiment of the present invention, referring to (c) of FIG. 4 , a
S400:在沟道层远离电流阻挡层一侧形成势垒层,在势垒层中形成凹槽S400 : forming a barrier layer on the side of the channel layer away from the current blocking layer, and forming a groove in the barrier layer
该步骤中,在沟道层远离电流阻挡层一侧形成势垒层,在势垒层中形成凹槽。根据本发明的实施例,参考图4中的(d),在沟道层300远离电流阻挡层200的一侧形成势垒层400,并在势垒层400中形成凹槽401。具体的,在沟道层300远离电流阻挡层200的一侧形成势垒层400,势垒层400和沟道层300相接触的界面处形成有第一二维电子气310,第一二维电子气310形成在沟道层300一侧,在势垒层400中形成凹槽401,凹槽401的底部和沟道层300之间的距离不大于5nm,即凹槽401的深度f和势垒层300的厚度d之差不大于5nm。由此,形成凹槽401的工艺也较简单,可以进一步提高垂直型高电子迁移率场效应晶体管的使用性能。具体的,凹槽401的底部和沟道层300之间的距离不大于5nm,例如可以为3nm,可以为1nm,可以为0,即凹槽401的深度f和势垒层400的厚度相等,由此,后续在该凹槽401中形成半导体层时,半导体层和沟道层300之间可以较好地形成第二二维电子气,并且该凹槽401的刻蚀工艺较为简单,刻蚀精确度要求较低,便于操作。In this step, a barrier layer is formed on the side of the channel layer away from the current blocking layer, and a groove is formed in the barrier layer. According to an embodiment of the present invention, referring to (d) of FIG. 4 , a
具体的,势垒层400的禁带宽度可以大于沟道层300的禁带宽度,由此,第一二维电子气310可以较好的形成在靠近禁带宽度较小的沟道层300一侧。具体的,形成势垒层400的材料可以包括AlmGa(1-m)N晶体,其中,0.15≤m≤0.80。由此,由该材料形成的势垒层400可以进一步提高垂直型高电子迁移率场效应晶体管的使用性能。具体的,势垒层400的厚度d可以不小于30nm,例如,可以为35nm,可以为40nm,可以为45nm等。由此,当势垒层400的厚度d在上述范围时,可以进一步提高垂直型高电子迁移率场效应晶体管器件的使用性能。具体的,参考图5,形成势垒层可以进一步包括:Specifically, the forbidden band width of the
S401:形成势垒层预制体S401: forming a barrier layer preform
该步骤中,可以在沟道层远离电流阻挡层的一侧生长AlmGa(1-m)N晶体材料,其中,0.15≤m≤0.80,以便形成势垒层预制体。In this step, AlmGa (1-m) N crystal material may be grown on the side of the channel layer away from the current blocking layer, wherein 0.15≤m≤0.80, so as to form a barrier layer preform.
S402:设置第一掩膜S402: Set the first mask
该步骤中,可以在势垒层预制体远离沟道层的一侧的部分表面设置第一掩膜。具体的,形成第一掩膜的材料可以包括二氧化硅或氮化硅。In this step, a first mask may be provided on a part of the surface of the barrier layer preform on the side away from the channel layer. Specifically, the material for forming the first mask may include silicon dioxide or silicon nitride.
S403:对未被第一掩膜覆盖的势垒层预制体进行第一干法刻蚀处理,形成凹槽S403 : perform a first dry etching process on the barrier layer preform not covered by the first mask to form a groove
该步骤中,可以对未被第一掩膜覆盖的势垒层预制体进行第一干法刻蚀处理,例如,可以利用感应耦合等离子体刻蚀(ICP)、反应离子刻蚀(RIE)、电子回旋共振等离子体刻蚀(ECR),或离子束刻蚀(IBE)等方法对未被第一掩膜覆盖的势垒层预制体进行刻蚀,以便形成凹槽,其中,第一干法刻蚀处理的刻蚀深度和势垒层预制体的厚度之差不大于5nm。由此,形成凹槽时的刻蚀精度要求较低,可以降低工艺难度,有利于较好的制备出性能较好的垂直型高电子迁移率场效应晶体管器件。In this step, a first dry etching process may be performed on the barrier layer preform not covered by the first mask, for example, inductively coupled plasma etching (ICP), reactive ion etching (RIE), Electron cyclotron resonance plasma etching (ECR), or ion beam etching (IBE) and other methods are used to etch the barrier layer preform not covered by the first mask, so as to form grooves, wherein the first dry method The difference between the etching depth of the etching process and the thickness of the barrier layer preform is not more than 5 nm. As a result, the etching precision requirements when forming the grooves are low, the process difficulty can be reduced, and the vertical type high electron mobility field effect transistor device with better performance can be better prepared.
S404:去除第一掩膜,形成势垒层S404: Remove the first mask to form a barrier layer
在该步骤中,去除第一掩模,形成具有凹槽的势垒层。由此,可以较简便的形成势垒层,有利于制备出性能较好的垂直型高电子迁移率场效应晶体管器件。In this step, the first mask is removed to form a barrier layer having grooves. Therefore, the barrier layer can be easily formed, which is favorable for preparing a vertical type high electron mobility field effect transistor device with better performance.
根据本发明的实施例,形成势垒层之后,该方法还可以进一步包括:在势垒层远离沟道层一侧的表面上制备源极。具体的,可以利用电子束蒸发技术或磁控溅射技术中的至少一种,在源极对应区域沉积金属材料,以便形成源极,对源极再进行退火处理,以便形成源极欧姆接触。具体的,形成源极的材料可以包括钛、铝、镍、金、钽中的一种或多种。由此,可以进一步提高制备的垂直型高电子迁移率场效应晶体管器件的使用性能。According to an embodiment of the present invention, after forming the barrier layer, the method may further include: preparing a source electrode on a surface of the barrier layer on the side away from the channel layer. Specifically, at least one of electron beam evaporation technology or magnetron sputtering technology can be used to deposit a metal material in the region corresponding to the source electrode to form the source electrode, and then anneal the source electrode to form the source electrode ohmic contact. Specifically, the material for forming the source electrode may include one or more of titanium, aluminum, nickel, gold, and tantalum. Thus, the use performance of the prepared vertical high electron mobility field effect transistor device can be further improved.
根据本发明的实施例,形成势垒层之后,该方法还可以进一步包括:在衬底远离成核层一侧的表面上制备漏极。具体的,可以利用电子束蒸发技术或磁控溅射技术中的至少一种,在漏极对应区域沉积金属材料,以便形成漏极,对漏极再进行退火处理,以便形成漏极欧姆接触。具体的,形成漏极的材料可以包括钛、铝、镍、金、钽中的一种或多种。由此,可以进一步提高制备的垂直型高电子迁移率场效应晶体管器件的使用性能。According to an embodiment of the present invention, after forming the barrier layer, the method may further include: preparing a drain electrode on the surface of the substrate on the side away from the nucleation layer. Specifically, at least one of electron beam evaporation technology or magnetron sputtering technology can be used to deposit a metal material in the region corresponding to the drain to form the drain, and then anneal the drain to form the ohmic contact of the drain. Specifically, the material for forming the drain may include one or more of titanium, aluminum, nickel, gold, and tantalum. Thus, the use performance of the prepared vertical high electron mobility field effect transistor device can be further improved.
S500:在势垒层远离沟道层一侧形成钝化层S500: forming a passivation layer on the side of the barrier layer away from the channel layer
该步骤中,在势垒层远离沟道层一侧形成钝化层。根据本发明的实施例,参考图4中的(e),在势垒层400远离沟道层300的一侧形成钝化层500,钝化层500覆盖势垒层400的朝向凹槽401内部的侧壁,钝化层500不覆盖凹槽401的底部。由此,钝化层500可以较好的改善器件的表面态,并且可以隔离势垒层400与后续在凹槽401中形成的半导体层,防止势垒层400和后续在凹槽401中形成的半导体层之间相互影响,形成二维电子气,产生漏电流等不良问题,并且,钝化层500可以与第二二维电子气320一起将第一二维电子气310隔断。具体的,形成钝化层500的材料可以包括二氧化硅、氮化硅中的一种或多种。由此,该材料形成的钝化层500可以进一步改善器件的表面态,隔离势垒层400和后续在凹槽401中形成的半导体层,提高制备的垂直型高电子迁移率场效应晶体管器件的使用性能。具体的,参考图6,形成钝化层可以进一步包括:In this step, a passivation layer is formed on the side of the barrier layer away from the channel layer. According to an embodiment of the present invention, referring to (e) in FIG. 4 , a
S501:形成钝化层预制体S501: forming a passivation layer preform
在该步骤中,可以在势垒层远离沟道层的一侧沉积钝化层材料,以便形成钝化层预制体。具体的,可以利用金属有机化合物化学气相沉淀法(MOCVD)或等离子体增强化学气相沉积法(PECVD)在势垒层远离沟道层的一侧(即源极之间的区域中)生长一层钝化层。由此,可以较简便的生成钝化层,可以进一步提高制备的垂直型高电子迁移率场效应晶体管器件的使用性能。In this step, a passivation layer material may be deposited on a side of the barrier layer away from the channel layer, so as to form a passivation layer preform. Specifically, a metal organic compound chemical vapor deposition method (MOCVD) or a plasma enhanced chemical vapor deposition method (PECVD) can be used to grow a layer on the side of the barrier layer away from the channel layer (that is, in the region between the source electrodes) passivation layer. Therefore, the passivation layer can be easily generated, and the use performance of the prepared vertical high electron mobility field effect transistor device can be further improved.
S502:设置第二掩膜,第二掩膜覆盖除凹槽的底部之外的区域S502: Set a second mask, the second mask covers the area except the bottom of the groove
在该步骤中,可以在钝化层预制体的表面设置第二掩膜,第二掩膜覆盖除凹槽的底部之外的区域。具体的,形成第二掩膜的材料可以包括二氧化硅或氮化硅。In this step, a second mask may be provided on the surface of the passivation layer preform, and the second mask covers the area except the bottom of the groove. Specifically, the material for forming the second mask may include silicon dioxide or silicon nitride.
S503:对未被第二掩膜覆盖的钝化层预制体进行第二干法刻蚀处理,形成钝化层S503: Perform a second dry etching process on the passivation layer preform not covered by the second mask to form a passivation layer
在该步骤中,对未被第二掩膜覆盖的钝化层预制体进行第二干法刻蚀处理,形成钝化层。具体的,可以对未被第二掩膜覆盖的钝化层预制体进行第二干法刻蚀处理,例如,可以利用感应耦合等离子体刻蚀(ICP)、反应离子刻蚀(RIE)、电子回旋共振等离子体刻蚀(ECR),或离子束刻蚀(IBE)等方法对未被第二掩膜覆盖的钝化层预制体进行刻蚀,以便形成钝化层,钝化层覆盖势垒层远离沟道层一侧的表面,并覆盖势垒层的朝向凹槽内部的侧壁。由此,可以较简便的形成钝化层,可以进一步提高制备的垂直型高电子迁移率场效应晶体管器件的使用性能。In this step, a second dry etching process is performed on the passivation layer preform not covered by the second mask to form a passivation layer. Specifically, a second dry etching process may be performed on the passivation layer preform not covered by the second mask, for example, inductively coupled plasma etching (ICP), reactive ion etching (RIE), electron The passivation layer preform not covered by the second mask is etched by methods such as cyclotron resonance plasma etching (ECR), or ion beam etching (IBE), so as to form a passivation layer that covers the barrier The layer faces away from the surface of the side of the channel layer and covers the sidewall of the barrier layer facing the inside of the groove. Therefore, the passivation layer can be formed relatively simply, and the use performance of the prepared vertical high electron mobility field effect transistor device can be further improved.
S504:去除第二掩膜S504: Remove the second mask
在该步骤中,去除第二掩模。由此,可以较简便的形成钝化层,钝化层可以较好的覆盖势垒层远离沟道层一侧的表面,并覆盖势垒层的朝向凹槽内部的侧壁,较好的改善器件的表面态,并且可以隔离势垒层与后续在凹槽中形成的半导体层,防止势垒层和后续在凹槽中形成的半导体层之间相互影响,形成二维电子气,产生漏电流等不良问题,并且,钝化层可以与第二二维电子气一起将第一二维电子气隔断,可以进一步提高制备的垂直型高电子迁移率场效应晶体管器件的使用性能。In this step, the second mask is removed. As a result, the passivation layer can be easily formed, and the passivation layer can better cover the surface of the barrier layer on the side away from the channel layer, and cover the sidewall of the barrier layer facing the inside of the groove, which can better improve the The surface state of the device, and can isolate the barrier layer from the semiconductor layer formed in the groove subsequently, prevent the barrier layer and the semiconductor layer formed in the groove from interacting with each other, form a two-dimensional electron gas, and generate leakage current In addition, the passivation layer can block the first two-dimensional electron gas together with the second two-dimensional electron gas, which can further improve the performance of the prepared vertical high electron mobility field effect transistor device.
S600:在凹槽中形成半导体层S600: Forming a semiconductor layer in the groove
该步骤中,在凹槽中形成半导体层。根据本发明的实施例,参考图4中的(f),在凹槽401中形成半导体层600,半导体层600和沟道层300的界面处形成有第二二维电子气320,第二二维电子气320形成在半导体层600一侧。由此,第二二维电子气320可以使与半导体层600相对应的沟道层300的一侧(即凹槽401下方的区域)产生诱导极化的空穴,由此,可以令凹槽401下方区域中的第一二维电子气310被耗尽,可以进一步阻断第一二维电子气310流经导电通孔所形成的导电沟道,可以简便地制备出常关特性的垂直型高电子迁移率场效应晶体管器件,可以进一步提高垂直型高电子迁移率场效应晶体管器件的使用性能。具体的,可以利用金属有机化合物化学气相沉淀法(MOCVD)在凹槽401中沉积半导体材料,形成半导体层600。由此,可以较简便的形成半导体层600。具体的,形成半导体层600的材料可以包括InnGa(1-n)N晶体,其中,0<n≤0.45。由此,该材料形成的半导体层600的禁带宽度可以小于沟道层300的禁带宽度,半导体层600与沟道层300之间的异质结界面处可以形成浓度较高以及电子迁移率较高的第二二维电子气320,并且第二二维电子气320形成在靠近禁带宽度较小的半导体层600一侧,第二二维电子气320可以使与半导体层600相对应的沟道层300的一侧(即凹槽下方的区域)产生诱导极化的空穴,由此,可以令凹槽下方区域中的第一二维电子气310被耗尽,可以进一步阻断第一二维电子气310流经导电通孔所形成的导电沟道,可以简便地制备出常关特性的垂直型高电子迁移率场效应晶体管器件,可以进一步提高制备的垂直型高电子迁移率场效应晶体管器件的使用性能。具体的,半导体层600的厚度可以不小于30nm,例如,可以为35nm,可以为40nm,可以为45nm等。由此,当半导体层600的厚度在上述范围时,可以进一步提高垂直型高电子迁移率场效应晶体管器件的使用性能。In this step, a semiconductor layer is formed in the groove. According to an embodiment of the present invention, referring to (f) in FIG. 4 , a
根据本发明的实施例,在凹槽401中形成半导体层600之后,该方法还可以进一步包括:利用光刻工艺,在半导体层600远离沟道层300一侧刻蚀栅极窗口,在栅极窗口中制备栅极。具体的,可以利用电子束蒸发技术或磁控溅射技术在栅极窗口中沉积金属材料形成栅极。由此,栅极可以和半导体层600形成肖特基接触。具体的,形成栅极的材料可以包括镍、金、钯、铂中的一种或多种。由此,该材料形成的栅极可以与半导体层600形成较好的肖特基接触,可以进一步提高制备的垂直型高电子迁移率场效应晶体管器件的使用性能。According to an embodiment of the present invention, after the
综上所述,该方法通过利用势垒层和沟道层相接触的界面处形成有第一二维电子气,第一二维电子气形成在沟道层一侧,在势垒层中形成凹槽,令凹槽的深度和势垒层的厚度之差不大于5nm,以及在势垒层远离沟道层的一侧形成钝化层,令钝化层覆盖势垒层的朝向凹槽内部的侧壁,钝化层不覆盖凹槽的底部,再在凹槽中形成半导体层,半导体层和沟道层的界面处形成有第二二维电子气,第二二维电子气形成在半导体层一侧,该方法中第一二维电子气经过导电通孔所形成的导电沟道可以被钝化层以及第二二维电子气阻断,可以简便地制备出具有常关特性的垂直型高电子迁移率场效应晶体管,该方法制备的垂直型高电子迁移率场效应晶体管器件的使用性能较好,击穿电压较高,耐压性能较好,可靠性和稳定性较高。To sum up, in this method, a first two-dimensional electron gas is formed at the interface where the barrier layer and the channel layer are in contact, the first two-dimensional electron gas is formed on the side of the channel layer, and the first two-dimensional electron gas is formed in the barrier layer The groove, so that the difference between the depth of the groove and the thickness of the barrier layer is not greater than 5nm, and a passivation layer is formed on the side of the barrier layer far from the channel layer, so that the passivation layer covers the inner side of the barrier layer toward the groove The sidewall of the groove, the passivation layer does not cover the bottom of the groove, and then a semiconductor layer is formed in the groove, and a second two-dimensional electron gas is formed at the interface between the semiconductor layer and the channel layer, and the second two-dimensional electron gas is formed on the semiconductor layer. On the layer side, in this method, the conductive channel formed by the first two-dimensional electron gas passing through the conductive via can be blocked by the passivation layer and the second two-dimensional electron gas, and a vertical type with normally-off characteristics can be easily prepared. The high electron mobility field effect transistor, the vertical type high electron mobility field effect transistor device prepared by the method has better performance, higher breakdown voltage, better withstand voltage performance, and higher reliability and stability.
在本说明书的描述中,术语“上”、“下”、“底部”、“一侧”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明而不是要求本发明必须以特定的方位构造和操作,因此不能理解为对本发明的限制。In the description of this specification, the orientation or positional relationship indicated by the terms "upper", "lower", "bottom", "one side", etc. is based on the orientation or positional relationship shown in the accompanying drawings, and is only for the convenience of describing the present invention It is not intended that the present invention must be constructed and operated in a particular orientation, and therefore should not be construed as a limitation of the present invention.
在本说明书的描述中,参考术语“一个实施例”、“另一个实施例”等的描述意指结合该实施例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。In the description of this specification, description with reference to the terms "one embodiment", "another embodiment", etc. means that a particular feature, structure, material or characteristic described in connection with the embodiment is included in at least one embodiment of the present invention . In this specification, schematic representations of the above terms are not necessarily directed to the same embodiment or example. Furthermore, the particular features, structures, materials or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, those skilled in the art may combine and combine the different embodiments or examples described in this specification, as well as the features of the different embodiments or examples, without conflicting each other.
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。Although the embodiments of the present invention have been shown and described above, it should be understood that the above-mentioned embodiments are exemplary and should not be construed as limiting the present invention. Embodiments are subject to variations, modifications, substitutions and variations.
Claims (13)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010162428.1A CN111463260B (en) | 2020-03-10 | 2020-03-10 | Vertical high electron mobility field effect transistor and preparation method thereof |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010162428.1A CN111463260B (en) | 2020-03-10 | 2020-03-10 | Vertical high electron mobility field effect transistor and preparation method thereof |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111463260A CN111463260A (en) | 2020-07-28 |
CN111463260B true CN111463260B (en) | 2022-09-13 |
Family
ID=71680045
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010162428.1A Active CN111463260B (en) | 2020-03-10 | 2020-03-10 | Vertical high electron mobility field effect transistor and preparation method thereof |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111463260B (en) |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112420826B (en) * | 2020-11-20 | 2022-09-20 | 成都挚信电子技术有限责任公司 | Vertical pHEMT transistor structure and switch chip |
CN113540283B (en) * | 2021-06-18 | 2023-01-24 | 西安理工大学 | Two-dimensional electron gas type photoconductive longitudinal switch and manufacturing method thereof |
CN113284802A (en) * | 2021-06-28 | 2021-08-20 | 厦门市三安集成电路有限公司 | High electron mobility transistor and preparation method thereof |
CN113707718B (en) * | 2021-07-27 | 2023-11-03 | 华为技术有限公司 | Power device, preparation method thereof and electronic device |
CN115274846B (en) * | 2022-09-26 | 2023-01-10 | 晶通半导体(深圳)有限公司 | High Electron Mobility Transistor |
CN117790534A (en) * | 2022-11-14 | 2024-03-29 | 北京大学 | High-stability GaN device and GaN bridge type integrated circuit |
CN116581159B (en) * | 2023-05-12 | 2024-05-17 | 苏州汉骅半导体有限公司 | Vertical power device and preparation method thereof |
CN117810250B (en) * | 2024-02-23 | 2024-06-11 | 深圳天狼芯半导体有限公司 | Enhancement-mode vertical HEMT devices |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6286767A (en) * | 1985-10-12 | 1987-04-21 | Nippon Telegr & Teleph Corp <Ntt> | Normally-off type field effect transistor and manufacture of same |
CN102130160A (en) * | 2011-01-06 | 2011-07-20 | 西安电子科技大学 | Trench channel AlGaN/GaN enhanced HEMT device and manufacturing method |
CN105789047A (en) * | 2016-05-13 | 2016-07-20 | 中国科学院半导体研究所 | Preparation method of enhanced AlGaN/GaN high-electron mobility transistor |
CN108598162A (en) * | 2018-05-09 | 2018-09-28 | 大连芯冠科技有限公司 | Enhanced GaN HEMT and preparation method with polarization matching barrier layer |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9614069B1 (en) * | 2015-04-10 | 2017-04-04 | Cambridge Electronics, Inc. | III-Nitride semiconductors with recess regions and methods of manufacture |
-
2020
- 2020-03-10 CN CN202010162428.1A patent/CN111463260B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6286767A (en) * | 1985-10-12 | 1987-04-21 | Nippon Telegr & Teleph Corp <Ntt> | Normally-off type field effect transistor and manufacture of same |
CN102130160A (en) * | 2011-01-06 | 2011-07-20 | 西安电子科技大学 | Trench channel AlGaN/GaN enhanced HEMT device and manufacturing method |
CN105789047A (en) * | 2016-05-13 | 2016-07-20 | 中国科学院半导体研究所 | Preparation method of enhanced AlGaN/GaN high-electron mobility transistor |
CN108598162A (en) * | 2018-05-09 | 2018-09-28 | 大连芯冠科技有限公司 | Enhanced GaN HEMT and preparation method with polarization matching barrier layer |
Also Published As
Publication number | Publication date |
---|---|
CN111463260A (en) | 2020-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111463260B (en) | Vertical high electron mobility field effect transistor and preparation method thereof | |
US9466705B2 (en) | Semiconductor device and method of manufacturing the same | |
CN103137681B (en) | There is the circuit structure of the islands between source electrode and drain electrode | |
WO2020207098A1 (en) | Semiconductor device and fabrication method therefor | |
JP2021510461A (en) | Group III nitride enhancement type HEMT based on the composite barrier layer structure and its manufacturing method | |
WO2020228352A1 (en) | Semiconductor device and manufacturing method therefor | |
CN103187441B (en) | High electron mobility transistor and forming method thereof | |
CN216354230U (en) | Semiconductor device and application thereof | |
CN110476254B (en) | Heterojunction transistor with vertical structure | |
CN101022128A (en) | Nitride semiconductor device and method for manufacturing same | |
CN103594507B (en) | High breakdown voltage III-nitride device | |
CN111048420B (en) | Method for manufacturing lateral double-diffused transistor | |
JP2010225979A (en) | GaN-based field effect transistor | |
CN105244377A (en) | Silicon substrate based HEMT device and manufacturing method thereof | |
CN110429127B (en) | Gallium nitride transistor structure and preparation method thereof | |
TWI701835B (en) | High electron mobility transistor | |
CN110957370A (en) | Manufacturing method of lateral double diffused transistor | |
CN112310208A (en) | Enhanced gallium nitride-based transistor, preparation method thereof and electronic device | |
TWI787556B (en) | Semiconductor device and manufacturing method thereof | |
CN111463259B (en) | High electron mobility field effect transistor and preparation method thereof | |
EP4250368A1 (en) | High electron mobility transistor and manufacturing method therefor, chip, and electronic device | |
TWI732813B (en) | Semiconductor device, electronic part, electronic apparatus, and method for fabricating semiconductor device | |
CN111739800B (en) | Preparation method of SOI-based concave gate enhanced GaN power switch device | |
KR20140131167A (en) | Nitride semiconductor and method thereof | |
US20230387284A1 (en) | Enhancement mode switching devices and manufacturing methods thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information | ||
CB02 | Change of applicant information |
Address after: 241000 1803, building 3, service outsourcing park, Wuhu high tech Industrial Development Zone, Anhui Province Applicant after: Anhui Changfei Advanced Semiconductor Co.,Ltd. Address before: 241000 18 / F, building 3, Service Outsourcing Industrial Park, Yijiang District, Wuhu City, Anhui Province Applicant before: WUHU QIDI SEMICONDUCTOR Co.,Ltd. |
|
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right | ||
TR01 | Transfer of patent right |
Effective date of registration: 20240805 Address after: Room 546, 18th Floor, Building B4, Longshan Innovation Park Phase I, Wuhan Future Science and Technology City, No. 999 Gaoxin Avenue, Donghu New Technology Development Zone, Dongxihu District, Wuhan City, Hubei Province, 430000 (Free Trade Zone Wuhan Area) Patentee after: Changfei Advanced Semiconductor (Wuhan) Co.,Ltd. Country or region after: China Address before: 241000 1803, building 3, service outsourcing park, Wuhu high tech Industrial Development Zone, Anhui Province Patentee before: Anhui Changfei Advanced Semiconductor Co.,Ltd. Country or region before: China |