CN111455333A - 一种富Al刚玉结构Al-Cr-O薄膜及其制备方法 - Google Patents

一种富Al刚玉结构Al-Cr-O薄膜及其制备方法 Download PDF

Info

Publication number
CN111455333A
CN111455333A CN202010289300.1A CN202010289300A CN111455333A CN 111455333 A CN111455333 A CN 111455333A CN 202010289300 A CN202010289300 A CN 202010289300A CN 111455333 A CN111455333 A CN 111455333A
Authority
CN
China
Prior art keywords
film
rich
corundum structure
target
direct current
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010289300.1A
Other languages
English (en)
Other versions
CN111455333B (zh
Inventor
邱万奇
万健
焦东玲
钟喜春
刘仲武
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
South China University of Technology SCUT
Original Assignee
South China University of Technology SCUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by South China University of Technology SCUT filed Critical South China University of Technology SCUT
Priority to CN202010289300.1A priority Critical patent/CN111455333B/zh
Publication of CN111455333A publication Critical patent/CN111455333A/zh
Application granted granted Critical
Publication of CN111455333B publication Critical patent/CN111455333B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • C23C14/022Cleaning or etching treatments by means of bombardment with energetic particles or radiation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/541Heating or cooling of the substrates

Abstract

本发明属于金属及其氧化物涂层技术领域,公开了一种富Al刚玉结构Al‑Cr‑O薄膜及其制备方法。首先在Ar气条件及基体温度为540~560℃利用直流磁控溅射纯Cr靶制备纯Cr过渡层,然后给基体施加‑150~‑100V范围内的脉冲直流负偏压,通入O2分压为10~12.5%的Ar+O2混合气体,调节基体温度为540~560℃,利用射频磁控溅射Al70Cr30合金靶反应沉积,得到富Al刚玉结构Al‑Cr‑O薄膜。所得薄膜由α‑Al2O3和α‑(Al,Cr)2O3相组成,最高Al含量可达39.9wt%。

Description

一种富Al刚玉结构Al-Cr-O薄膜及其制备方法
技术领域
本发明属于金属及其氧化物涂层技术领域,具体涉及一种富Al刚玉结构Al-Cr-O薄膜及其制备方法。
背景技术
刚玉结构的Al-Cr-O氧化物陶瓷具有高温硬度高、抗氧化能力好、电绝缘性高、氚渗透率低等优越性能,是理想的刀具、电绝缘、扩散阻挡层和防氚渗透涂层材料。刚玉结构的Al-Cr-O陶瓷是α-Cr2O3和α-Al2O3组成的固溶体,同时含有Al-O键和Cr-O键,Cr-O键结合能显著低于Al-O键,造成Cr含量越高,Cr-O键含量也越高,刚玉结构Al-Cr-O的热稳定性和化学稳定性越低。稳定性最高的纯刚玉α-Al2O3薄膜需要1000℃以上高温才能获得,低于该沉积温度只能得到含有包括亚稳相和稳定相的Al2O3的一系列混合相薄膜,严重降低Al2O3的稳定性和可靠性,难以实际应用。α-Cr2O3薄膜能在300℃低温沉积,沉积氧化铝时掺入α-Cr2O3能显著降低刚玉结构Al-Cr-O的沉积温度,Cr含量越高,所需沉积温度越低,却显著降低Al-Cr-O的热稳定性和化学稳定性。实际工程应用希望能将刚玉结构Al-Cr-O薄膜的沉积温度低于560℃(即高速钢的回火温度)的同时尽量提高刚玉结构Al-Cr-O薄膜中Al的含量。目前报道的用反应射频磁控溅射法在550℃溅射Al70Cr30靶材制备的刚玉结构Al-Cr-O薄膜中Al的含量为32.3wt%(α-Al2O3的Al含量为52.9wt%),进一步提高Al含量则需显著提高沉积温度才能获得全刚玉结构Al-Cr-O薄膜。许多工程应用希望能在低温下沉积出Al含量在35wt%的刚玉结构Al-Cr-O薄膜。
发明内容
针对以上现有技术存在的缺点和不足之处,本发明的首要目的在于提供一种富Al刚玉结构Al-Cr-O薄膜的制备方法。本发明的方法可在低温沉积Al含量在35wt%以上的刚玉结构Al-Cr-O薄膜。
本发明的另一目的在于提供一种通过上述方法制备得到的富Al刚玉结构Al-Cr-O薄膜。
本发明目的通过以下技术方案实现:
一种富Al刚玉结构Al-Cr-O薄膜的制备方法,包括如下步骤:
(1)利用纯Cr靶和Al70Cr30合金靶作为靶材,将其分别安装在直流磁控溅射和射频磁控溅射相应靶工位上;
(2)预抽本底真空度到10~20Pa后开启真空烘烤系统,再将真空度抽至本底真空度;关闭烘烤系统,将基体加热到540~560℃,再抽真空到本底真空度;
(3)通入Ar气,调节基体温度为540~560℃,利用直流磁控溅射纯Cr靶制备纯Cr过渡层;
(4)给基体施加-150~-100V范围内的脉冲直流负偏压;
(5)通入O2分压为10%~12.5%的Ar+O2混合气体,调节基体温度为540~560℃,利用射频磁控溅射Al70Cr30合金靶反应沉积,得到富Al刚玉结构Al-Cr-O薄膜。
进一步地,步骤(2)中所述烘烤系统温度为150℃。烘烤是为了充分排除腔体内水蒸气,水蒸气的存在会影响刚玉相的形成。
进一步地,步骤(3)中所述直流磁控溅射的参数为:靶功率密度为4~6W/cm2,真空度为0.5~1.5Pa,溅射时间为15~35min。制备纯Cr过渡层是为了增加膜基结合力,释放薄膜和基体之间的应力。
进一步地,步骤(4)中所述脉冲直流负偏压的占空比为70%~90%。基体上的负偏压可提高溅射粒子能量,在基体表面促进溅射Cr原子氧化成CrO3,并与Al原子结合成Al2O3和α-Cr2O3,释放出更多的生成热,促进Al2O3结晶成α-Al2O3并与α-Cr2O3结合形成α-(Al,Cr)2O3。大于-100V偏压所沉积的薄膜中将出现α-Cr2O3相,小于-150V偏压将使沉积速率显著降低。
进一步地,步骤(5)中所述射频磁控溅射的参数为:靶功率密度为6~10W/cm2,真空度为0.5~1.5Pa,沉积时间为240~360min。
进一步地,步骤(4)中脉冲直流负偏压和步骤(5)中O2分压的取值方法为:当O2分压为10%时,脉冲直流负偏压取-150V;当O2分压为12.5%时,脉冲直流负偏压取-100V。负偏压越大,基体表面形成的CrO3越多,因CrO3在540~560℃真空下易于挥发(被真空系统抽走),使Al-Cr-O薄膜中的Cr含量降低,但也降低薄膜的沉积速率。
进一步地,步骤(5)反应沉积完毕后,依次关闭射频磁控溅射电源、气体和脉冲直流负偏压,再抽真空到本底真空度;保持基体温度20~30min以去除薄膜中残存的O2气,然后关闭基体加热电源;当基体温度低于100℃时取出工件。
一种富Al刚玉结构Al-Cr-O薄膜,通过上述方法制备得到;所述富Al刚玉结构Al-Cr-O薄膜由α-Al2O3和α-(Al,Cr)2O3相组成,不含亚稳相氧化铝和α-Cr2O3相,其Al含量在35.6~39.9wt%范围。
本发明沉积的富Al刚玉结构Al-Cr-O薄膜具有如下优点:
(1)用本发明方法沉积的富Al刚玉结构Al-Cr-O薄膜由α-Al2O3和α-(Al,Cr)2O3相组成,不含亚稳相氧化铝和α-Cr2O3相,薄膜中的Cr-O键均来自于α-(Al,Cr)2O3相,比α-Cr2O3相中Cr-O键更稳定,因而薄膜的热稳定性好,不与活泼金属反应和粘结,且摩擦系数小,具有高温自润滑效应,是理想的切削刀具涂层材料。
(2)用本发明方法沉积的富Al刚玉结构Al-Cr-O薄膜为纳米晶薄膜,Al含量35.6~39.9wt%范围,显著高于传统文献中不加负偏压的32.3wt%。
(3)用本发明方法沉积的富Al刚玉结构Al-Cr-O薄膜的形成温度低于高速钢的回火温度,在淬火-回火后的高速钢基体上沉积不影响基体力学性能。
附图说明
图1为实施例1沉积的富Al刚玉结构Al-Cr-O薄膜的XRD谱图。
图2为实施例1中沉积的富Al刚玉结构Al-Cr-O薄膜扫描电镜表面形貌图。
具体实施方式
下面结合实施例及附图对本发明作进一步详细的描述,但本发明的实施方式不限于此。
实施例1
在W9Mo3Cr4V高速钢上沉积Al刚玉结构Al-Cr-O薄膜
(1)订制Φ60*3mm的Al70Cr30和纯Cr靶材,安装在相应靶工位上,调整靶基距为80mm。
(2)将淬火+560℃三次回火后的W9Mo3Cr4V高速钢切割成Φ15×5mm尺寸,打磨抛光至镜面,先后置于丙酮和无水乙醇中超声清洗15min,烘干后置于样品台上。
(3)预抽真空到10Pa,开启红外烘烤系统加热到150℃,再抽真空至5×10-4Pa,关闭烘烤,将基体加热到550℃,并继续抽真空到5×10-4Pa。
(4)通入Ar气,调节气压到1.0Pa,维持温度在550℃,利用直流电源溅射纯Cr靶,靶功率密度为5.3W/cm2,溅射时间为20min,制得0.5~0.6um的Cr过渡层。
(5)将样品转向Al70Cr30靶,打开Al70Cr30靶的射频电源预溅射15min,以清除靶表面污染物和氧化物。
(6)通入O2分压为10%的Ar+O2混合气体,调节真空度至1.0Pa,提高靶功率密度到8W/cm2,基体温度维持在550℃,对基体施加-150V脉冲直流偏压电源,占空比为80%。用反应射频溅射沉积240min得到0.6um左右的富Al刚玉结构Al-Cr-O薄膜。
(7)沉积完毕后,依次关闭溅射电源、气体、和偏压,再抽真空到本底真空度。保持基体温度20~30min以去除薄膜中残存的O2气,然后关闭基体加热电源。当基体温度低于100℃时,可开真空室并取出工件。
本实施例沉积的Al-Cr-O薄膜XRD如图1所示。显示薄膜由α-Al2O3和α-(Al,Cr)2O3两种刚玉结构相组成,能谱分析显示薄膜的Al含量达39.9wt%。图2为所沉积薄膜表面的SEM形貌,显示薄膜表面致密平整,纳米颗粒均匀,表面质量较好。
实施例2
在W9Mo3Cr4V高速钢上沉积Al刚玉结构Al-Cr-O薄膜
(1)订制Φ60*3mm的Al70Cr30和纯Cr靶材,安装在相应靶工位上,调整靶基距为80mm。
(2)将淬火+560℃三次回火后的W9Mo3Cr4V高速钢切割成Φ15×5mm尺寸,打磨抛光至镜面,先后置于丙酮和无水乙醇中超声清洗15min,烘干后置于样品台上。
(3)预抽真空到10Pa,开启红外烘烤系统加热到150℃,再抽真空至5×10-4Pa,关闭烘烤,将基体加热到550℃,并继续抽真空到5×10-4Pa。
(4)通入Ar体,调节气压到1.0Pa,维持温度在550℃,利用直流电源溅射纯Cr靶,靶功率密度为5.3W/cm2,溅射时间为20min,制得0.5~0.6um的Cr过渡层。
(5)将样品转向Al70Cr30靶,打开Al70Cr30靶的射频电源预溅射15min,以清除靶表面污染物和氧化物。
(6)通入O2分压为12.5%的Ar+O2混合气体,调节真空度至1.0Pa,提高靶功率密度到8W/cm2,基体温度维持在550℃,对基体施加-100V脉冲直流偏压电源,占空比为80%。用反应射频溅射沉积240min得到0.6um左右的富Al刚玉结构Al-Cr-O薄膜。
(7)沉积完毕后,依次关闭溅射电源、气体、和偏压,再抽真空到本底真空度。保持基体温度20~30min以去除薄膜中残存的O2气,然后关闭基体加热电源。当基体温度低于100℃时,可开真空室并取出工件。
本实施例沉积的富Al刚玉结构Al-Cr-O薄膜由α-Al2O3和α-(Al,Cr)2O3两种刚玉结构相组成,能谱分析显示薄膜的Al含量达36.6wt%。薄膜表面致密平整,纳米颗粒均匀,表面质量较好。
上述实施例为本发明较佳的实施方式,但本发明的实施方式并不受上述实施例的限制,其它的任何未背离本发明的精神实质与原理下所作的改变、修饰、替代、组合、简化,均应为等效的置换方式,都包含在本发明的保护范围之内。

Claims (8)

1.一种富Al刚玉结构Al-Cr-O薄膜的制备方法,其特征在于包括如下步骤:
(1)利用纯Cr靶和Al70Cr30合金靶作为靶材,将其分别安装在直流磁控溅射和射频磁控溅射相应靶工位上;
(2)预抽本底真空度到10~20Pa后开启真空烘烤系统,再将真空度抽至本底真空度;关闭烘烤系统,将基体加热到540~560℃,再抽真空到本底真空度;
(3)通入Ar气,调节基体温度为540~560℃,利用直流磁控溅射纯Cr靶制备纯Cr过渡层;
(4)给基体施加-150~-100V范围内的脉冲直流负偏压;
(5)通入O2分压为10%~12.5%的Ar+O2混合气体,调节基体温度为540~560℃,利用射频磁控溅射Al70Cr30合金靶反应沉积,得到富Al刚玉结构Al-Cr-O薄膜。
2.根据权利要求1所述的一种富Al刚玉结构Al-Cr-O薄膜的制备方法,其特征在于:步骤(2)中所述烘烤系统温度为150℃。
3.根据权利要求1所述的一种富Al刚玉结构Al-Cr-O薄膜的制备方法,其特征在于步骤(3)中所述直流磁控溅射的参数为:靶功率密度为4~6W/cm2,真空度为0.5~1.5Pa,溅射时间为15~35min。
4.根据权利要求1所述的一种富Al刚玉结构Al-Cr-O薄膜的制备方法,其特征在于:步骤(4)中所述脉冲直流负偏压的占空比为70%~90%。
5.根据权利要求1所述的一种富Al刚玉结构Al-Cr-O薄膜的制备方法,其特征在于步骤(5)中所述射频磁控溅射的参数为:靶功率密度为6~10W/cm2,真空度为0.5~1.5Pa,沉积时间为240~360min。
6.根据权利要求1所述的一种富Al刚玉结构Al-Cr-O薄膜的制备方法,其特征在于步骤(4)中脉冲直流负偏压和步骤(5)中O2分压的取值方法为:当O2分压为10%时,脉冲直流负偏压取-150V;当O2分压为12.5%时,脉冲直流负偏压取-100V。
7.根据权利要求1所述的一种富Al刚玉结构Al-Cr-O薄膜的制备方法,其特征在于:步骤(5)反应沉积完毕后,依次关闭射频磁控溅射电源、气体和脉冲直流负偏压,再抽真空到本底真空度;保持基体温度20~30min以去除薄膜中残存的O2气,然后关闭基体加热电源;当基体温度低于100℃时取出工件。
8.一种富Al刚玉结构Al-Cr-O薄膜,其特征在于:通过权利要求1~7任一项所述的方法制备得到;所述富Al刚玉结构Al-Cr-O薄膜由α-Al2O3和α-(Al,Cr)2O3相组成,不含亚稳相氧化铝和α-Cr2O3相,其Al含量在35.6~39.9wt%范围。
CN202010289300.1A 2020-04-14 2020-04-14 一种富Al刚玉结构Al-Cr-O薄膜及其制备方法 Expired - Fee Related CN111455333B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010289300.1A CN111455333B (zh) 2020-04-14 2020-04-14 一种富Al刚玉结构Al-Cr-O薄膜及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010289300.1A CN111455333B (zh) 2020-04-14 2020-04-14 一种富Al刚玉结构Al-Cr-O薄膜及其制备方法

Publications (2)

Publication Number Publication Date
CN111455333A true CN111455333A (zh) 2020-07-28
CN111455333B CN111455333B (zh) 2021-08-10

Family

ID=71677646

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010289300.1A Expired - Fee Related CN111455333B (zh) 2020-04-14 2020-04-14 一种富Al刚玉结构Al-Cr-O薄膜及其制备方法

Country Status (1)

Country Link
CN (1) CN111455333B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112239855A (zh) * 2020-10-30 2021-01-19 贵州大学 一种无基体偏压下获得的刚玉和立方结构三氧化二铝铬混合相涂层及其制备方法
CN112281115A (zh) * 2020-10-30 2021-01-29 贵州大学 一种低温下获得的晶态立方三氧化二铝铬稳定结构涂层及其制备方法
CN114717529A (zh) * 2022-04-13 2022-07-08 华南理工大学 一种反应磁控溅射系统中的紫外辅助沉积装置及沉积方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106939404A (zh) * 2017-02-24 2017-07-11 华南理工大学 一种纳米α‑氧化铝/氧化铬复合涂层及其制备方法
WO2019053257A1 (en) * 2017-09-15 2019-03-21 Oerlikon Surface Solutions Ag, Pfäffikon AL-CR-O COATINGS HAVING SUPERIOR THERMAL STABILITY AND PROCESS FOR PRODUCING THE SAME

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106939404A (zh) * 2017-02-24 2017-07-11 华南理工大学 一种纳米α‑氧化铝/氧化铬复合涂层及其制备方法
WO2019053257A1 (en) * 2017-09-15 2019-03-21 Oerlikon Surface Solutions Ag, Pfäffikon AL-CR-O COATINGS HAVING SUPERIOR THERMAL STABILITY AND PROCESS FOR PRODUCING THE SAME

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Y.T. CHENG等: "The influence of Cr content on the phase structure of the Al-rich Al-Cr-O films deposited by magnetron sputtering at low temperature", 《CERAMICS INTERNATIONAL》 *

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112239855A (zh) * 2020-10-30 2021-01-19 贵州大学 一种无基体偏压下获得的刚玉和立方结构三氧化二铝铬混合相涂层及其制备方法
CN112281115A (zh) * 2020-10-30 2021-01-29 贵州大学 一种低温下获得的晶态立方三氧化二铝铬稳定结构涂层及其制备方法
CN112239855B (zh) * 2020-10-30 2023-02-14 贵州大学 一种无基体偏压下获得的刚玉和立方结构三氧化二铝铬混合相涂层及其制备方法
CN112281115B (zh) * 2020-10-30 2023-04-07 贵州大学 一种低温下获得的晶态立方三氧化二铝铬稳定结构涂层及其制备方法
CN114717529A (zh) * 2022-04-13 2022-07-08 华南理工大学 一种反应磁控溅射系统中的紫外辅助沉积装置及沉积方法

Also Published As

Publication number Publication date
CN111455333B (zh) 2021-08-10

Similar Documents

Publication Publication Date Title
CN111455333B (zh) 一种富Al刚玉结构Al-Cr-O薄膜及其制备方法
CN109082641B (zh) 一种三层膜结构涂层及其制备方法
RU2551739C2 (ru) Способ получения слоев кубического оксида циркония
CN113789503B (zh) 一种具有抗氧化特性的高熵硅化物薄膜的原位合成方法
CN111349901B (zh) 一种切削刀具用耐高温氧化铝厚膜涂层的制备方法
CN113151795A (zh) 一种NbMoTaWAl难熔高熵合金薄膜及其制备方法
CN112813399B (zh) 一种高熵金属玻璃防护涂层及制备方法
CN111321381B (zh) 一种硬质合金刀片的AlCrNbSiTiBN基纳米复合涂层及其制备方法
CN112831751B (zh) 一种高温自转变非晶/纳米晶高熵氧化物薄膜、制备方法及应用
US7935387B2 (en) Methods for fabricating YAG barrier coatings
CN110257771A (zh) 一种高Al含量的c-CrAlSiN硬质涂层及其制备方法
CN107779829B (zh) 基于高温镍基合金的多层复合耐高温腐蚀涂层的制备方法
CN111500998A (zh) 一种AlTiN/TiAlSiN梯度纳米复合结构涂层及其一体化制备方法与应用
CN108411262B (zh) 一种低温反应溅射沉积纳米α-Al2O3涂层的方法
CN108977806B (zh) Gamma-TiAl金属间化合物表面金属/陶瓷复合涂层的制备方法
CN110670029A (zh) 一种铝合金表面高硬耐磨TiN/TiAlSiN复合涂层及其制备方法
CN113981392A (zh) 一种Ti-Al-C MAX相涂层及其低温成相制备方法
CN108130518A (zh) 一种具有高温热稳定性的AlB2型WB2(N)硬质薄膜及其制备方法
JP3971336B2 (ja) α型結晶構造主体のアルミナ皮膜の製造方法およびα型結晶構造主体のアルミナ皮膜で被覆された部材の製造方法
CN114000118B (zh) 一种钛合金表面硬度梯度分布层厚可调的氮化层制备方法
CN112553580B (zh) 一种二硼化物复合涂层及其制备方法和应用
JP3971337B2 (ja) α型結晶構造主体のアルミナ皮膜の製造方法、α型結晶構造主体のアルミナ皮膜で被覆された部材およびその製造方法
CN114672778A (zh) 一种纳米晶NbMoTaWTi难熔高熵合金涂层及其制备方法
CN109989044B (zh) 一种AlCr+α-Al2O3溅射靶材及制备与应用
CN114807849A (zh) 一种纳米复合高熵氮化物涂层及其复合沉积方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210810