CN111454245B - 一种四胺芘电聚合空穴传输材料及其在钙钛矿太阳能电池中的应用 - Google Patents

一种四胺芘电聚合空穴传输材料及其在钙钛矿太阳能电池中的应用 Download PDF

Info

Publication number
CN111454245B
CN111454245B CN202010268932.XA CN202010268932A CN111454245B CN 111454245 B CN111454245 B CN 111454245B CN 202010268932 A CN202010268932 A CN 202010268932A CN 111454245 B CN111454245 B CN 111454245B
Authority
CN
China
Prior art keywords
hole transport
transport layer
solar cell
formula
perovskite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010268932.XA
Other languages
English (en)
Other versions
CN111454245A (zh
Inventor
钟羽武
邵将洋
李冬梅
孟庆波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Chemistry CAS
Original Assignee
Institute of Chemistry CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Chemistry CAS filed Critical Institute of Chemistry CAS
Priority to CN202010268932.XA priority Critical patent/CN111454245B/zh
Publication of CN111454245A publication Critical patent/CN111454245A/zh
Application granted granted Critical
Publication of CN111454245B publication Critical patent/CN111454245B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D333/00Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom
    • C07D333/02Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings
    • C07D333/04Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom
    • C07D333/06Heterocyclic compounds containing five-membered rings having one sulfur atom as the only ring hetero atom not condensed with other rings not substituted on the ring sulphur atom with only hydrogen atoms, hydrocarbon or substituted hydrocarbon radicals, directly attached to the ring carbon atoms
    • C07D333/14Radicals substituted by singly bound hetero atoms other than halogen
    • C07D333/20Radicals substituted by singly bound hetero atoms other than halogen by nitrogen atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/12Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule
    • C08G61/122Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides
    • C08G61/123Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds
    • C08G61/126Macromolecular compounds containing atoms other than carbon in the main chain of the macromolecule derived from five- or six-membered heterocyclic compounds, other than imides derived from five-membered heterocyclic compounds with a five-membered ring containing one sulfur atom in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25DPROCESSES FOR THE ELECTROLYTIC OR ELECTROPHORETIC PRODUCTION OF COATINGS; ELECTROFORMING; APPARATUS THEREFOR
    • C25D9/00Electrolytic coating other than with metals
    • C25D9/02Electrolytic coating other than with metals with organic materials
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/125Deposition of organic active material using liquid deposition, e.g. spin coating using electrolytic deposition e.g. in-situ electropolymerisation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • H10K85/111Organic polymers or oligomers comprising aromatic, heteroaromatic, or aryl chains, e.g. polyaniline, polyphenylene or polyphenylene vinylene
    • H10K85/113Heteroaromatic compounds comprising sulfur or selene, e.g. polythiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/10Definition of the polymer structure
    • C08G2261/11Homopolymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/312Non-condensed aromatic systems, e.g. benzene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/31Monomer units or repeat units incorporating structural elements in the main chain incorporating aromatic structural elements in the main chain
    • C08G2261/314Condensed aromatic systems, e.g. perylene, anthracene or pyrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/32Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain
    • C08G2261/322Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed
    • C08G2261/3223Monomer units or repeat units incorporating structural elements in the main chain incorporating heteroaromatic structural elements in the main chain non-condensed containing one or more sulfur atoms as the only heteroatom, e.g. thiophene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/30Monomer units or repeat units incorporating structural elements in the main chain
    • C08G2261/35Macromonomers, i.e. comprising more than 10 repeat units
    • C08G2261/354Macromonomers, i.e. comprising more than 10 repeat units containing hetero atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/40Polymerisation processes
    • C08G2261/44Electrochemical polymerisation, i.e. oxidative or reductive coupling
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/50Physical properties
    • C08G2261/51Charge transport
    • C08G2261/512Hole transport
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G2261/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G2261/90Applications
    • C08G2261/91Photovoltaic applications
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2365/00Characterised by the use of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Derivatives of such polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells

Abstract

本发明公开了一种四胺芘电聚合空穴传输材料及其制备与其在太阳能电池中的应用。所述四胺芘的结构式如式I所示。该类化合物含有电化学活性的三芳胺结构单元,其在二氯甲烷等溶剂中可以电化学原位聚合成膜,该电聚合薄膜具有良好的空穴迁移率以及电子阻挡性能,且制备工艺简单、成本低。通过光物理性质和电化学性能测试表明,所述电聚合空穴传输材料能级与钙钛矿能级相匹配。将其作为空穴传输层应用于钙钛矿太阳能电池中,具有良好的光电转换效率和稳定性。

Description

一种四胺芘电聚合空穴传输材料及其在钙钛矿太阳能电池中 的应用
技术领域
本发明属于钙钛矿太阳能电池领域,具体涉及一种四胺芘电聚合空穴传输材料及其制备与其在太阳能电池中的应用。
背景技术
经典的spiro-OMeTAD是一类含三芳胺结构的空穴传输材料,但是它的合成步骤复杂(五步)、提纯不易且价格昂贵(500美元/克,Merck;实验室制备成本大于100美元/克)。而且该类空穴传输材料空穴迁移率较低,通常需要使用双(三氟甲烷)磺酰亚胺锂盐(LiTFSI)和叔丁基吡啶(TBP)等添加剂来提高空穴迁移率和调节能级。但是由于Li-TFSI的吸湿性质,导致钙钛矿加速降解。此外,随着TBP的蒸发会与钙钛矿反应对PSCs的长期稳定性造成新的威胁。因此,添加剂的使用不仅增加了器件制备的复杂性和成本,还限制了器件的长期稳定性。
目前,大多数空穴传输材料都需要掺杂旋涂制备空穴传输层。电化学原位聚合成膜工艺简单、成本低,聚合与薄膜沉积一步完成,膜的形成只需要几秒或者几分钟,膜厚能通过聚合圈数、速度等控制。而且能够在电聚合薄膜制备过程中实现薄膜的电化学掺杂,这种方法比一般的化学掺杂更为简单。
发明内容
本发明的一个目的是提供一种可电化学聚合的四胺芘化合物。
本发明所提供的四胺芘化合物,其结构式如式I所示:
Figure BDA0002442328600000011
式I。
本发明的再一个目的是提供式I所示四胺芘化合物的制备方法。
本发明所提供的式I所示四胺芘化合物的制备方法,包括下述步骤:
在碱性条件下,将式II所示化合物与4-硼酸三苯胺在钯催化下发生Suzuki偶联反应,得到式I所示四胺芘化合物;
Figure BDA0002442328600000021
式II
上述方法中,所述Suzuki偶联反应在回流状态下进行,所述回流的温度可为80℃-140℃,回流的时间可为12h-48h;
所述碱性条件由碱提供;
所述碱可为叔丁醇钠、叔丁醇钾、碳酸钾、碳酸钠、碳酸铯、磷酸钾和氢氧化钠中的一种或者多种;
所述钯催化剂具体可为醋酸钯、双三苯基磷二氯化钯、四(三苯基膦)钯和钯/碳中的一种或者多种;
式II所示化合物、4-硼酸三苯胺、碱、钯催化剂的摩尔比依次可为1:(4-8):(4-20):(0.01-0.10);
所述Suzuki偶联反应可在溶剂中进行,所述溶剂可为甲苯、二甲苯、四氢呋喃、二氧六环、二甲基甲酰胺、乙醇和二甲基亚砜中的一种或者多种。
所述反应在惰性气氛中进行,所述惰性气氛具体可为氮气气氛。
上述式II所示化合物的制备方法为本领域已知的方法,具体可包括下述步骤:
1)将1,3,6,8-四溴芘与2-噻吩硼酸进行反应,得到式III所示化合物;
2)将式III所示的化合物进行溴化反应,得到II所示化合物;
Figure BDA0002442328600000022
式III
上述方法步骤1)中,所述反应的温度可为:80℃-140℃,反应时间可为:12h-48h;
所述反应在催化剂存在下进行,所述催化剂可为钯催化剂;
所述钯催化剂可为醋酸钯、双三苯基磷二氯化钯、四(三苯基膦)钯和钯/碳中的一种或者多种,
所述反应在碱性条件下进行,所述碱性条件由碱提供,所述碱具体可为碳酸钾;
1,3,6,8-四溴芘与碱、钯催化剂的摩尔比依次可为:1:(4-20):(0.01-0.1);
所述反应可在溶剂中进行,所述溶剂可为甲苯、二甲苯、四氢呋喃、二氧六环、二甲基甲酰胺、乙醇和二甲基亚砜中的一种或者多种;
1,3,6,8-四溴芘与2-噻吩硼酸的摩尔比可为1:(4-8);
上述方法步骤2)中,所述溴化反应的温度可为:室温,反应时间可为:12h-48h;
所述溴化反应采用的溴化剂可为液溴和N-溴代丁二酰亚胺中的一种;
所述溴化反应在溶剂中进行,所述溶剂可为四氢呋喃、氯仿和二氯甲烷中的一种或者多种;
采用N-溴代丁二酰亚胺为溴化剂时,式III所示化合物与N-溴代丁二酰亚胺的摩尔比可为1:(4-8),具体可为:1:6;
上述方法中,步骤1)-2)的反应均在惰性气氛中进行,所述惰性气氛具体可为氮气气氛。
另外,上述式I所示化合物在制备太阳能电池中的应用及含有式I所示化合物的太阳能电池,也属于本发明的保护范围。
式I所示化合物可用于制备所述太阳能电池中的空穴传输层。
优选的方案,将式I所示的四胺芘有机小分子在透明基底上电化学原位聚合制备空穴传输层,再进一步与钙钛矿吸光层、电子传输层和金属电极组装成钙钛矿太阳能电池。
本发明的再一个目的是提供一种钙钛矿太阳能电池。
所述钙钛矿太阳能电池,其自下而上依次包括:透明基底、空穴传输层、钙钛矿层、电子传输层和金属电极,其中,所述空穴传输层由本发明提供的式I所示的所述四胺芘电聚合薄膜制成。
本发明还提供基于四胺芘电聚合空穴传输材料的钙钛矿太阳能电池的制备方法。
本发明所提供的基于四胺芘电聚合空穴传输材料的钙钛矿太阳能电池的制备方法,包括如下步骤:
(1)以式I所示四胺芘化合物为单体在透明导电基底上采用电化学原位聚合的方法制备电聚合薄膜,形成空穴传输层;
(2)在空穴传输层上用旋涂钙钛矿前驱体溶液的方法先形成一层膜,退火后生长成高质量钙钛矿结构吸光层薄膜;
(3)在吸光层上用旋涂法制备电子传输层;
(4)在电子传输层上用真空热蒸镀制备顶电极。
步骤(1)中,所述透明基底层具体可为导电玻璃ITO,镀层厚度为250nm-300nm左右,基底的方块电阻为7Ω/sq左右,透光率为85%;
所述空穴传输层可由式I所示化合物的二氯甲烷溶液,在电位0-+1.6V之间循环扫描原位制备;
步骤(2)中,构成所述钙钛矿层的材料为(FAPbI3)0.85(MAPbBr3)0.15;所述钙钛矿层的厚度具体可为650nm;
步骤(3)中,所述电子传输层具体可由[6,6]-苯基C61丁酸甲酯(PC61BM)和2,9-二甲基-4,7-联苯-1,10-邻二氮杂菲(BCP)构成;
步骤(4)中,构成所述顶电极的材料可为Ag。
本发明的制备方法及所得到的产物具有如下优点及有益效果:
(1)本发明制备的四胺芘电聚合空穴传输材料具有良好的空穴传输性能以及电子阻挡性能,利于空穴的有效的选择性传输。
(2)本发明制备的四胺芘电聚合空穴传输材料与传统经典的Spiro-OMeTAD相比,工艺简单、成本低,并且作为空穴传输材料在钙钛矿太阳能电池性能得到了有效的提高,可广泛应用于钙钛矿太阳能电池等领域。
(3)本发明制备的四胺芘电聚合空穴传输材料不需要引入添加剂,可以大大提高钙钛矿太阳能电池的稳定性。
本发明的发明人以1,3,6,8-四溴芘作为原料,设计并制备了一种四胺芘化合物,并通过电化学原位聚合的方法制备电聚合空穴传输材料。实验结果表明,它们具有合适的最高占据分子轨道能级(HOMO)和空穴迁移率。将其作为空穴传输层应用于钙钛矿太阳能电池,具有良好的光电转换效率及稳定性,因此其应用前景良好。
附图说明
图1为本发明实施例1制备式I所示化合物的反应流程图;
图2为本发明实施例1制备的四胺芘电聚合薄膜的电聚合循环伏安图;
图3为本发明实施例2制备的四胺芘电聚合薄膜的紫外吸收光谱;
图4为本发明实施例2制备的四胺芘电聚合薄膜的循环伏安图;
图5为本发明实施例4制备的钙钛矿太阳能电池电流与电压关系曲线图;
图6为本发明实施例4制备的钙钛矿太阳能电池的稳定性测试。
具体实施方式
下面通过具体实施例对本发明进行说明,但本发明并不局限于此。
下述实施例中所使用的实验方法如无特殊说明,均为常规方法;下述实施例中所用的试剂、材料等,如无特殊说明,均可从商业途径得到。
实施例1、式I所示四胺芘化合物的合成
其合成路线如图1所示。
Figure BDA0002442328600000051
式I
中间体(1)的合成:
将517mg 1,3,6,8-四溴芘、640mg 2-噻吩硼酸、58mg四(三苯基膦)钯、和828mg碳酸钾于20mL DMF和5mL水中,在氮气保护下加热回流12小时。冷却后过滤,用环己烷清洗得到中间体(1),产率为72%。MALDI-TOF:529.5for[M]+.1H NMR(400MHz,CDCl3):δ7.25(s,4H),7.40(s,4H),7.52(d,J=4.8Hz,4H),8.24(s,4H),8.51(s,4H).
中间体(2)的合成:
将10.6g NBS逐滴滴到150mL化合物1(5.3g)的THF溶液中,在氮气保护下室温搅拌24小时。反应结束后过滤,并用水和丙酮清洗,干燥后得到中间体(2),产率为71%。MALDI-TOF:845.1for[M]+.
式I所示化合物的合成:
将85mg中间体2、144mg 4-硼酸三苯胺和12mg四三苯基膦钯溶于10mL甲苯、5mL乙醇和1mL K2CO3(2M)中,在氮气保护下加热回流24小时。用二氯甲烷萃取三次,有机相用无水硫酸镁干燥,旋转蒸发除去溶剂后,柱层析分离提纯(洗脱剂:石油醚/二氯甲烷5/1,v/v)得到目标产物I,产率为33%.MALDI-TOF:1502.7for[M]+.1H NMR(400MHz,CDCl3):δ7.06(t,J=7.4Hz,8H),7.10-7.15(m,28H),7.29(d,J=8.0Hz,12H),7.37(s,8H),7.57(d,J=8.4Hz,8H),8.32(s,2H),8.64(s,4H).
实施例2、本发明合成的四胺芘电聚合薄膜的制备
将实施例1制备的四胺芘化合物溶于二氯甲烷中,在电压为0-+1.6V vs Ag/AgCl之间反复扫描,可以明显地看到循环伏安电流值逐渐增大,这说明氧化聚合在电极表面顺利的进行。将所得的电聚合物膜用二氯甲烷充分洗涤,然后在N2气枪下干燥。
实施例1制备的四胺芘电聚合薄膜的电聚合循环伏安图示于图2。
实施例3、本发明合成的四胺芘电聚合薄膜的吸收光谱和电化学测试
将实施例2制备的四胺芘电聚合薄膜置于1cm比色皿中,利用北京普析通用有限公司紫外分析仪测试其吸收光谱。
将实施例2制备的四胺芘电聚合薄膜置于二氯甲烷溶液中,使用0.1mol/L四丁基六氟磷酸铵作为电解质;以铂丝作为对电极;以银丝/氯化银作为参比电极,测定电聚合薄膜的电化学性质。
实施例2制备的四胺芘电聚合薄膜的紫外吸收光谱和循环伏安图分别示于图3和图4。
实施例4、制备以本发明制备的四胺芘电聚合薄膜作为空穴传输层的钙钛矿太阳能电池
具体步骤包括:将ITO导电玻璃(250nm-300nm左右,基底的块电阻7Ω/sq,透光率85%)分别用去离子水、洗洁精、丙酮、乙醇超声15分钟,然后用氮气吹干,旋涂致密层前UVO处理30分钟。在ITO导电玻璃上采用电化学原位聚合的方法制备厚度为50nm的式I所示四胺芘电聚合空穴传输层。将钙钛矿溶液((FAPbI3)0.85(MAPbBr3)0.15)旋涂到空穴传输层上,并在150℃下退火处理10分钟,得到厚度为650nm的钙钛矿层。待冷却至室温,将PC61BM的氯苯溶液滴到钙钛矿层上,静置10s左右再进行旋涂,并在60℃下退火处理10分钟,得到电子传输层。采用蒸镀的方法制备厚度为80nm的银电极,即得。
在氮气氛围的手套箱中使用AAA级太阳光模拟器AM1.5G(100mW/cm2)的强度下对所制备钙钛矿太阳能电池器件的开路电压、短路电流、填充因子和能量转换效率进行测试。
测试后的电流密度-电压曲线示于图5。式I化合物对应的钙钛矿太阳能电池器件的开路电压为1.00V,短路电流为23.3mA/cm2,填充因子为71%,光电转换效率为16.5%。
式I化合物对应的钙钛矿太阳能电池器件具有良好稳定性性,如图6所示。
综上所述,本发明实施提供了一类四胺芘电聚合空穴传输材料的制备与应用。该类化合物具有电化学活性的三芳胺基团,其在二氯甲烷溶液中可以电化学原位聚合成膜,且具有良好的空穴迁移率以及电子阻挡性能。将其应用于钙钛矿太阳能电池中,具有良好的光电转化效率及稳定性,因此在钙钛矿电池等领域具有广泛的应用前景。
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。

Claims (4)

1.式I所示四胺芘化合物在太阳能电池的空穴传输层制备中的应用,所述太阳能电池为钙钛矿太阳能电池,式I所示四胺芘化合物通过电化学原位聚合制备所述空穴传输层,
Figure FDA0002996842610000011
2.一种钙钛矿太阳能电池,自下而上依次包括:透明基底、空穴传输层、钙钛矿层、电子传输层和金属电极,其特征在于:所述空穴传输层由 式I所示四胺芘电聚合薄膜制成;
Figure FDA0002996842610000012
3.制备权利要求2中钙钛矿太阳能电池的方法,包括如下步骤:
(1)以式I所示四胺芘化合物为单体在透明导电基底上采用电化学原位聚合的方法制备电聚合薄膜,形成空穴传输层;
(2)在空穴传输层上用旋涂钙钛矿前驱体溶液的方法先形成一层膜,退火后生长成高质量钙钛矿结构吸光层薄膜;
(3)在吸光层上用旋涂法制备电子传输层;
(4)在电子传输层上用真空热蒸镀制备顶电极;
Figure FDA0002996842610000021
4.根据权利要求3所述的方法,其特征在于:步骤(1)中,所述空穴传输层由式I所示四胺芘化合物的二氯甲烷溶液,在电位0-+1.6V之间循环扫描原位制备。
CN202010268932.XA 2020-04-08 2020-04-08 一种四胺芘电聚合空穴传输材料及其在钙钛矿太阳能电池中的应用 Active CN111454245B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010268932.XA CN111454245B (zh) 2020-04-08 2020-04-08 一种四胺芘电聚合空穴传输材料及其在钙钛矿太阳能电池中的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010268932.XA CN111454245B (zh) 2020-04-08 2020-04-08 一种四胺芘电聚合空穴传输材料及其在钙钛矿太阳能电池中的应用

Publications (2)

Publication Number Publication Date
CN111454245A CN111454245A (zh) 2020-07-28
CN111454245B true CN111454245B (zh) 2021-07-13

Family

ID=71675029

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010268932.XA Active CN111454245B (zh) 2020-04-08 2020-04-08 一种四胺芘电聚合空穴传输材料及其在钙钛矿太阳能电池中的应用

Country Status (1)

Country Link
CN (1) CN111454245B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112279775B (zh) * 2020-10-28 2021-08-31 中国科学院化学研究所 一种芘桥联的有机胺空穴传输材料及其制备方法与应用

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101948366A (zh) * 2010-07-31 2011-01-19 大连理工大学 一种在水相中制备4-(二苯氨基)联芳类化合物的方法
CN108484569B (zh) * 2018-03-07 2020-06-30 中国科学院化学研究所 一种噻吩桥联四胺芘空穴传输材料及其在钙钛矿太阳能电池中的应用
CN110190192B (zh) * 2019-05-31 2020-09-08 中南大学 一种反式有机无机杂化钙钛矿太阳能电池的制备方法

Also Published As

Publication number Publication date
CN111454245A (zh) 2020-07-28

Similar Documents

Publication Publication Date Title
CN108484569B (zh) 一种噻吩桥联四胺芘空穴传输材料及其在钙钛矿太阳能电池中的应用
CN108948327B (zh) 一种喹喔啉类共轭聚合物及其制备方法与其在聚合物太阳电池中的应用
CN107275490B (zh) 一种以环戊双噻吩衍生物为电子受体的有机太阳电池
CN104672434B (zh) 一种有机半导体材料及其制备方法与应用
CN109748925A (zh) 一类烷氧基取代的芳香稠环结构单元及其合成方法与应用
CN114716456B (zh) 小分子受体材料、无界面修饰层的有机太阳能电池及制备方法
Hu et al. Enhanced performance of inverted perovskite solar cells using solution-processed carboxylic potassium salt as cathode buffer layer
CN111138640B (zh) 受体聚合物、光活性层、能量器件及制备方法与应用
Yu et al. Synthesis and photovoltaic performance of DPP-based small molecules with tunable energy levels by altering the molecular terminals
CN111454245B (zh) 一种四胺芘电聚合空穴传输材料及其在钙钛矿太阳能电池中的应用
Zhang et al. Novel dye sensitizers of main chain polymeric metal complexes based on complexes of diaminomaleonitrile with Cd (II), Ni (II): Synthesis, characterization, and photovoltaic performance for dye-sensitized solar cells
KR101828012B1 (ko) 유기 태양전지용 공액 고분자 및 이의 제조방법
CN111187280B (zh) 基于茚并[1,2-b]咔唑的免掺杂空穴传输材料及其合成方法和应用
CN109713133B (zh) 有机-无机混合钙钛矿化合物、其制备方法及应用
CN111333665B (zh) 共轭小分子电子受体材料及其制备方法
CN116375732A (zh) 一种非富勒烯受体材料及其制备方法和应用
CN111978335B (zh) 一种带二乙烯基pi-桥的窄带隙有机受体光伏材料及其制备方法与应用
CN113185449B (zh) 基于咔唑的有机小分子空穴传输材料的合成及其在钙钛矿太阳能电池中的应用
Nasrun et al. Enhanced efficiency in organic solar cells by incorporation of small molecule based on tosylate anion
CN110982047B (zh) 一类引达省并二呋喃基有机太阳能电池给体材料、其制备方法及应用
CN111171046B (zh) 一种基于四噻吩并吡咯的免掺杂空穴传输材料及其合成方法和应用
US20140135460A1 (en) Low band gap copolymer and method for manufacturing same
CN110818729B (zh) 基于多元芳香环的酰亚胺类共轭小分子及其制备方法与在有机光电器件中的应用
CN109608475B (zh) A′-π-A-π-A′型有机小分子及其制备方法与应用
CN112812277A (zh) 噻吩稠合萘单酰亚胺聚合物及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant