CN111447997B - 制造用于废气处理的介孔储氧材料的方法、所述储氧材料及其用途 - Google Patents

制造用于废气处理的介孔储氧材料的方法、所述储氧材料及其用途 Download PDF

Info

Publication number
CN111447997B
CN111447997B CN201980006157.6A CN201980006157A CN111447997B CN 111447997 B CN111447997 B CN 111447997B CN 201980006157 A CN201980006157 A CN 201980006157A CN 111447997 B CN111447997 B CN 111447997B
Authority
CN
China
Prior art keywords
osm
mesoporous
zirconium
cerium
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201980006157.6A
Other languages
English (en)
Other versions
CN111447997A (zh
Inventor
A·博顿
M·博顿
D·谢泼德
Y·李
J·赵
W·吴
J·拉沙佩尔
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Pacific Industrial Development Corp
Original Assignee
Pacific Industrial Development Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Pacific Industrial Development Corp filed Critical Pacific Industrial Development Corp
Publication of CN111447997A publication Critical patent/CN111447997A/zh
Application granted granted Critical
Publication of CN111447997B publication Critical patent/CN111447997B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • B01J37/038Precipitation; Co-precipitation to form slurries or suspensions, e.g. a washcoat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/101Three-way catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • B01J23/04Alkali metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/03Precipitation; Co-precipitation
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/207Transition metals
    • B01D2255/20715Zirconium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/908O2-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9445Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC]
    • B01D53/945Simultaneously removing carbon monoxide, hydrocarbons or nitrogen oxides making use of three-way catalysts [TWC] or four-way-catalysts [FWC] characterised by a specific catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/61310-100 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/65150-500 nm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/009Preparation by separation, e.g. by filtration, decantation, screening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/14Pore volume
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/16Pore diameter
    • C01P2006/17Pore diameter distribution
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Toxicology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Catalysts (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Nanotechnology (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Oxygen, Ozone, And Oxides In General (AREA)
  • Exhaust Gas After Treatment (AREA)

Abstract

本发明提供了一种制造储氧材料(OSM)的方法,该储氧材料具有发达的介孔性且有小部分的孔<10nm(新鲜或老化的),并且具有抗热烧结性。该OSM适合用作催化剂和催化剂载体。制造该储氧材料(OSM)的方法包括:包含预聚合的锆低聚物、铈、稀土金属和过渡金属的盐的溶液的制备;该溶液与对锆具有亲和性的络合剂之间的相互作用;锆基前体的形成;以及所有组成性金属氢氧化物用碱的共沉淀。

Description

制造用于废气处理的介孔储氧材料的方法、所述储氧材料及 其用途
技术领域
本公开一般涉及储氧材料、制造所述储氧材料的方法及其用途。更具体地,所述储氧材料可以用于催化应用。
背景技术
本节中的陈述仅提供涉及本公开的背景信息,并且不可以构成现有技术。
铈-锆混合氧化物被广泛用作用于处理汽车废气的三效催化剂中的储氧材料(OSM)。OSM的成功应用应该满足几个要求。这些要求包括高的热稳定性、抗烧结性和与贵金属的相容性,从而使这些金属能够在OSM表面上高度分散。
使用不同的方法来制作常规的二氧化铈-氧化锆基的OSM。这些方法包括如JP-A-5-193948中所述的溶胶-凝胶技术、如JP-A-5-155622中所示的试剂之间的固态反应、以及如美国专利6,139,814中所定义的浸渍法。制备热稳定的OSM的最普遍和广泛使用的方法是基于美国专利No.6,171,572、6,214,306、6,255,242、6,387,338、7,431,910、7,919,429和7,927,699、以及美国公布No.2016/0207027的沉淀/共沉淀法。采用沉淀法/共沉淀技术制备的OSM具有很高的抗烧结性,在某些情况下,其在1100℃老化后的表面积可超过15-25m2/g。
OSM材料的孔隙率是对其应用具有重要影响的另一个重要因素。具有大孔(即,介孔和大孔)的OSM有更好的气体扩散以及增强的热稳定性的优点。如美国专利No.7,642,210所示,平均孔直径为7纳米(nm)至10nm的混合氧化物易于烧结,而具有较大孔(即介孔和大孔)的材料则更耐高温,如美国专利No.7,642,210、7,795,171、7,927,699和8,956,994所述。具有小孔(即微孔和小于10nm的介孔)的OSM的另一个缺点是负载在老化后的OSM表面上的大部分铂族金属(PGM)的封装和失活。从这个方面,没有或仅有小部分直径小于10nm的孔的OSM将优选用于节约PGM。因此,期望一种能够满足三效催化剂(TWC)要求的储氧材料(OSM),其具有发达的介孔性且缺少小孔,并具有抗烧结性。
发明内容
本公开一般提供了一种制造储氧材料(OSM)的方法,该储氧材料具有发达的介孔性且有小部分的孔<10nm(新鲜的或老化的),并且具有抗热烧结性。该OSM适合用作催化剂和催化剂载体。制造所述储氧材料(OSM)的过程一般包括:含预聚合的锆低聚物、铈、稀土金属和过渡金属的盐的溶液的制备;该溶液与对锆具有亲和性的络合剂的相互作用;锆基前体的形成;以及所有组成性金属氢氧化物用碱的共沉淀。
根据本文提供的描述,适用性的其他领域将变得显而易见。应当理解,本说明书和具体实施例仅用于说明的目的,并不旨在限制本公开的范围。
附图说明
为了本公开可被更好的理解,现在将通过实施例的方式并参考附图描述本公开的各种形式,其中:
图1是流程图的示意图,其说明了根据本公开的教导形成储氧材料(OSM)的方法;
图2是由实施例1(虚线)和比较实施例1A(实线)中所制的OSM材料的新鲜样品所显示的孔径分布的图形表示;
图3是由实施例1(虚线)和比较实施例1A(实线)中所制的样品于1100℃老化2小时后所显示的孔径分布的图形表示;以及
图4是根据实施例2制备的新鲜和老化样品所显示的孔径分布的图形表示。
本文所述的附图仅用于说明的目的,不旨在以任何方式限制本公开的范围。
具体实施方式
以下描述本质上仅是示例性的,决不旨在限制本公开或其应用或用途。例如,在整个本公开内容中,描述了根据本文包含的教导制造和使用的与用于处理车辆废气的三效催化剂相结合的储氧材料(OSM),以便更充分地说明其组成和用途。此类储氧材料在其他催化剂(例如,四效催化剂、柴油氧化催化剂和氧化催化剂)或催化应用中的纳入和使用均预期在本公开的范围内。应当理解,在整个说明书中,相应的附图标记表示相似或相应的部分和特征。
本公开一般提供一种储氧材料(OSM)和制造该OSM的方法,该OSM具有发达的介孔性(小部分的孔的直径小于10nm)、以及增强的抗烧结性。该介孔OSM有直径为约2nm至10nm的一部分孔,所述一部分孔小于20%,或者小于15%,或者小于10%。
参考图1,制造介孔OSM的方法1一般包括步骤(a)-(i)。步骤(a)涉及制备5含聚合的锆低聚物的酸性溶液。步骤(b)将铈和稀土金属的盐的酸性溶液添加10至该含锆溶液中以制造含多价金属的混合物。步骤(c)允许15该酸性含多价金属的混合物与显示出对锆有亲和性的络合剂溶液相互作用。在步骤(d)中,形成20锆基前体浆料。步骤(e)用碱中和25该含锆前体浆料以实现任何组成性金属氢氧化物的共沉淀。步骤(f)用水洗涤30沉淀的混合氧化物材料以去除阳离子和阴离子混合物。步骤(g)将新鲜沉淀的混合氧化物材料在环境温度或者升高的温度老化35。步骤(h)干燥40湿的混合氧化物材料。最后,步骤(i)煅烧45所述混合氧化物材料以形成所述OSM。
参照方法1的具体方面,所制备5的酸性溶液包括含有聚合的锆低聚物的溶液,该聚合的锆低聚物的量占该溶液总重量的约30重量%至约100重量%。或者,聚合的锆低聚物的存在量范围为35重量%至约90重量%,或者为40重量%至约80重量%,或者大于30重量%,或者大于50重量%,或者大于75重量%。
聚合的锆低聚物溶液可以通过任何已知的方法制备5。这些方法可包括但不限于:通过电渗析部分去除任何电荷平衡反离子;用脂肪胺或通过用阴离子交换树脂处理进行阴离子萃取;将新制造的氢氧化锆溶解在酸中;或与氯离子进行氧化还原反应在酸性介质中形成氯氧化锆溶液和H2O2。使用聚合的锆种类作为锆源导致氧化锆核形成中起始嵌段从锆四聚体单元(对于氯氧化锆)不同程度地变为锆低聚物种类(例如八聚物),从而增加了平均核尺寸并改变了它们的形态。当需要时,聚合的锆低聚物可包含含量范围为约30%至100%、或者含量范围为约40%至约90%的锆八聚物。聚合的锆低聚物不包含氧化锆溶胶颗粒。
方法1的另一方面是向多价金属反应混合物中添加15络合剂。络合剂可包含对锆具有亲和性的阴离子。络合剂可以选自包含硫酸盐、草酸盐、琥珀酸盐、富马酸盐及其组合的组,可以选自由硫酸盐、草酸盐、琥珀酸盐、富马酸盐及其组合所组成的组,或可以选自基本由硫酸盐、草酸盐、琥珀酸盐、富马酸盐及其组合所组成的组。当选择锆络合剂(ZCA)的量以使其具有约0.35至约0.85的ZCA/ZrO2摩尔比时,该络合剂被吸附在该锆低聚物表面上,从而占据和保护反应位点,使其不参与进一步的聚合反应。或者,ZCA/ZrO2比率为0.40至0.80,或者为0.50至0.70。结果,在中和反应(例如,添加碱)的过程中,络合剂减慢了氢氧化锆初级粒子的形成,这是由于羟基离子引起的竞争以及对其尺寸、形态和填充方式的影响(例如,使得能够形成松散组装的二级聚集体)。进一步的沉淀物的干燥和煅烧稳定了混合氧化物材料的开放式骨架结构,从而产生的材料显示出发达的介孔性、缺少小孔(<10nm)、和改善的热稳定性。
根据该方法的另一方面,含多价金属的混合物包括但不限于水溶性硝酸盐、氯化物、硫酸盐、柠檬酸盐、乙酸盐或其组合。用于沉淀的碱可以选自碱金属氢氧化物、氨水或四烷基氢氧化铵。
本发明的储氧材料的特征还为一种特定组成,所述特定组成包括锆、铈、和铈之外的至少一种稀土金属,由锆、铈、和铈之外的至少一种稀土金属所组成,或基本由锆、铈、和铈之外的至少一种稀土金属所组成。储氧材料中的氧化锆不小于20重量%,或者不小于40重量%。本公开的OSM中的氧化铈含量以约5重量%至约70重量%的量存在。或者,OSM中的氧化铈含量为约10重量%至约60重量%,或者为约20重量%至约50重量%。
根据本公开的另一方面,OSM包括铈之外的一种或多种稀土金属。这些稀土金属可包括但不限于镧、钕、镨、钇或其组合。基于OSM的总重量,稀土金属的存在量范围可以为0重量%至15重量%。或者,相对于OSM的总重量,稀土金属的存在量大于0重量%且小于15重量%,或者约为5重量%至10重量%。
根据本公开的另一方面,在600℃煅烧后,OSM的总孔体积(PV)至少为0.5cm3/g,直径小于10nm的孔的部分小于20%。在800℃煅烧后,OSM的总孔体积至少为0.3cm3/g,直径小于10nm的孔的部分小于10%。新鲜的OSM显示出单一模式的孔径分布,其平均孔半径范围为约15nm至约35nm,或者为20nm至30nm。
在1000℃或更高的温度老化后,OSM中直径小于10nm的孔的部分小于5%。老化的OSM表现出单一模式的孔径分布,其平均孔半径范围为约20nm至约40nm,或者为25nm至35nm。根据本公开的另一方面,在约600℃至约1100℃的宽煅烧温度范围内,OSM的平均孔直径基本保持不变。
就本公开的目的而言,由于本领域技术人员已知的预期变化(例如测量中的限制和变化),术语“约”和“基本上”在本文中用于可测量值和范围。
就本公开的目的而言,术语“重量”指质量值,例如以克、千克等为单位。此外,用端点表示的数值范围包括该端点和该数值范围内的所有数字。例如,从40重量%至60重量%的浓度范围包括40重量%的浓度、60%重量的浓度范围以及其间的所有浓度(例如40.1重量%、41重量%、45重量%、50重量%、52.5重量%、55重量%、59重量%等)。
就本公开的目的而言,术语“至少一个”和“一个或多个”元素可以互换使用并且可以具有相同的含义。这些术语指的是包含单个元素或多个元素,也可以用元素末尾的后缀“(s)”来表示。例如,“至少一种聚氨酯”、“一种或多种聚氨酯”和“聚氨酯(polyurethane(s))”可以互换使用,并具有相同的含义。
以下具体实施例用以说明根据本公开的教导制造的储氧材料(OSM)及其性质,且不应被解释为限制本公开的范围。根据本公开,本领域技术人员将理解,可以在本文公开的具体实施方案中进行许多改变,并且仍然可获得相同或类似的结果且不脱离或超出本公开的精神或范围。本领域技术人员将进一步理解,本文报告的任何性质表示常规测量的性质,并且可以通过多种不同方法获得。本文描述的方法表示一种此类方法,其他方法可以在不超出本公开的范围的情况下使用。
实施例1A-OSM的制备
将总共97.0g的八水氯氧化锆晶体溶于200g的去离子水中。然后将35.8g的27.9重量%的硝酸铈(III)溶液、9.8g的25.4重量%的硝酸镨溶液和9.9g的25.3重量%的硝酸镧溶液添加到该含锆溶液中。使该含多价金属的混合物通过具有300g OH型DOW AmberlitePWA15树脂的柱,以形成预聚合的锆低聚物。然后,向该多价金属混合物中添加总共90g 20重量%硫酸钠溶液,然后缓慢添加20重量%氢氧化钠溶液,直到反应混合物的pH值达到13。形成的沉淀物用布氏过滤器过滤,并用去离子水洗涤以除去过量的氯离子、硝酸根离子、硫酸根离子和钠离子。
收集的湿沉淀物在130℃电炉中干燥约12小时,然后在空气中于700℃煅烧2小时。然后将煅烧后的OSM于1100℃另外老化2小时。测量于700℃煅烧后(见图2)和于1100℃老化后(见图3)的OSM材料的孔半径。
实施例1C-比较性OSM的制备
将总共97.0g的八水氯氧化锆晶体溶解在200g去离子(DI)水中。然后向该含锆溶液中加入35.8g 27.9重量%的硝酸铈(III)溶液、9.8g 25.4重量%的硝酸镨溶液和9.9g25.3重量%的硝酸镧溶液。然后,向该多价金属混合物中加入90g 20重量%硫酸钠溶液,然后缓慢加入20重量%氢氧化钠溶液,直到反应混合物的pH值达到13。形成的沉淀物用布氏过滤器过滤,并用去离子水洗涤以除去过量的氯离子、硝酸根离子、硫酸根离子和钠离子。
收集的湿沉淀物在130℃电炉中干燥约12小时,然后在空气中于700℃煅烧2小时。然后将煅烧后的OSM于1100℃另外老化2小时。用TriStar Micromeritics Inc.分析仪通过常规Brunauer-Emmett-Teller(BET)和Barrett-Joyner-Halenda(BHJ)分析方法测量于700℃煅烧后(见图2)和于1100℃老化后(见图3)的OSM材料的表面积和孔径分布。
实施例2-OSM的制备
预聚合的含锆溶液的制备包括将包含30.3g碱式碳酸锆(41.3重量%二氧化锆)的100g浆料与53.4g 23.4重量%氯氧化锆溶液混合,直到所得溶液澄清为止。然后向该含锆溶液中加入63g 27.8重量%硝酸铈(III)溶液、13.5g 29.65重量%硝酸钕溶液、5.45g18.3重量%硝酸镧溶液和12.95g 19.3重量%硝酸钇溶液。然后,将71.6g的20重量%的硫酸钠溶液加入该多价金属混合物中,然后缓慢加入20重量%的氢氧化钠溶液直到反应混合物的pH值达到13。使用布氏过滤器过滤形成的沉淀物,并用去离子水洗涤以除去过量的氯离子、硝酸根离子、硫酸根离子和钠离子。
收集的湿沉淀物在130℃电炉中干燥约12小时,然后在空气中于600℃煅烧2小时。然后将煅烧后的样品于1000℃至1100℃另外老化2小时。
实施例3-OSM的制备
通过将63.5g八水氯氧化锆、62.7g 27.9重量%硝酸铈(III)溶液、13.5g 29.65重量%硝酸钕溶液、5.45g 18.3重量%硝酸镧溶液和12.95g19.3重量%硝酸钇溶液与1000g去离子水混合,制备了含有锆、铈、钕、镧和钇的盐的溶液。然后,将65g的10重量%的氢氧化钠溶液加入该含多价金属的溶液中并混合直至形成澄清溶液。然后将总计64g的20重量%的硫酸钠溶液加入含有聚合锆低聚物的溶液中,然后缓慢加入20重量%的氢氧化钠溶液直至反应混合物的pH值达到13。使用布氏过滤器过滤形成的沉淀物,并用去离子水洗涤以除去过量的氯离子、硝酸盐离子、硫酸盐离子和钠离子。
收集的湿沉淀物在130℃电炉中干燥约12小时,然后在空气中于800℃煅烧2小时。然后将煅烧样品于1100℃另外老化2小时。
实施例4-OSM的性质测量
于700℃煅烧后和1100℃老化后测量实施例1A、1C、2和3中制备的OSM的表面积(SA)和孔体积(PV)。OSM的表面积在Micromeritics Tristar II分析仪上使用常规BET分析方法测量。OSM的孔体积在Micromeritics Tristar II分析仪上使用常规BJH分析方法测量。测量结果总结在表1中。
表1
该实施例表明,在初始煅烧后以及在高温下老化后,根据本公开的教导而制备的OSM(实施例1A、2和3)的表面积和孔体积均大于比较实施例1C的表面积和孔体积。然而,即使本公开的新鲜和老化的OSM(实施例1A、2和3)的孔体积(PV)远高于参考OSM(实施例1C)的孔体积,直径小于10nm的小孔的体积也显著低于参考材料(实施例1C)的小孔的体积。本发明的新鲜和老化的OSM的小孔(<10nm)的体积分数分别为8-17%和4-5%,相比之下,参考OSM(实施例1C)的小孔的体积分数为44%和25%。
图4中提供了根据实施例2制备的新鲜和老化的OSM的孔径分布。如图4所示,OSM的平均孔径约为40-45nm,并且在从600℃至1100℃宽煅烧温度范围内保持不变。唯一可观察到的变化是总孔体积逐渐减小。这是本公开的意料之外的结果,因为典型的结果是由于小孔的逐渐塌陷而导致的与煅烧温度的升高一致的平均孔径直径的增加。
在本说明书中,以能够书写出清晰简洁的说明书的方式描述了实施方案,但其旨在并被理解为,实施方案可以在不脱离本发明的情况下进行各种组合或分离。例如,应当理解,本文描述的所有优选特征均适用于本文描述的本发明的所有方面。
为了说明和描述的目的,已经给出了本发明的各种形式的前述描述。本说明书并不旨在详尽无遗或将本发明限制为所公开的精确形式。根据上述教导,许多修改或变化是可能的。选择和描述所讨论的形式以提供对本发明的原理及其实际应用的最佳说明,从而使本领域的普通技术人员能够以适合所设想的特定用途的各种形式和各种修改来利用本发明。所有这样的修改和改变均在由随附权利要求在根据公平、合法和合理地赋予它们的宽度来进行解释时所确定的本发明范围内。

Claims (14)

1.一种制造介孔OSM的方法,所述方法包括以下步骤:
(a)制备锆低聚物种类的酸性预聚合溶液,聚合的锆低聚物包含以所述聚合的锆低聚物计含量范围为30%至100%的锆八聚物;
(b)将铈和铈盐之外的一种或多种稀土金属的酸性溶液添加至所述锆低聚物种类的酸性预聚合溶液以制造含多价金属的混合物;
(c)向所述含多价金属的混合物中添加络合剂;
(d)允许所述含多价金属的混合物与包含对锆具有亲和性的阴离子的络合剂相互作用;
(e)形成锆基前体浆料;
(f)用碱中和所述锆基前体浆料以实现任何组成性金属氢氧化物的共沉淀;
(g)用水洗涤共沉淀的金属氢氧化物以去除阳离子和阴离子混合物;
(h)干燥洗涤的共沉淀的金属氢氧化物;以及
(i)煅烧所述洗涤的共沉淀的金属氢氧化物以形成所述介孔OSM;
其中所述介孔OSM具有2-10nm的孔的部分小于20%;
其中所述络合剂选自由硫酸盐、草酸盐、琥珀酸盐、富马酸盐及其组合组成的组;
其中存在使得络合剂与锆的摩尔比范围为0.35至0.85的所述络合剂与锆。
2.根据权利要求1所述的制造介孔OSM的方法,其中所述聚合的锆低聚物不包含氧化锆溶胶粒子。
3.根据权利要求1或2所述的制造介孔OSM的方法,其中所述含多价金属的混合物包括水溶性硝酸盐、氯化物、硫酸盐、柠檬酸盐、乙酸盐或其组合。
4.根据权利要求1或2所述的制造介孔OSM的方法,其中所述碱选自碱金属氢氧化物、氨水或四烷基氢氧化铵的组。
5.一种介孔OSM,所述介孔OSM是根据权利要求1-4中任一项所述的方法形成的,其中所述介孔OSM包含锆、铈、和铈以外的至少一种稀土金属;
其中所述介孔OSM具有2-10nm的孔的部分小于20%;
其中基于所述介孔OSM的总重量,氧化锆含量不小于20重量%。
6.根据权利要求5所述的介孔OSM,其中所述氧化锆含量不小于40重量%。
7.根据权利要求5或6所述的介孔OSM,其中相对于所述介孔OSM的总重量,所述介孔OSM具有含量范围为5重量%至70重量%的氧化铈。
8.根据权利要求5或6所述的介孔OSM,其中所述铈以外的至少一种稀土金属选自由镧、钕、镨、钇及其组合组成的组;
其中相对于所述介孔OSM的总重量,所述铈以外的至少一种稀土金属的存在量范围为大于0重量%至15重量%。
9.根据权利要求5或6所述的介孔OSM,其中所述介孔OSM在600℃煅烧后的总孔体积至少为0.5cm3/g,并且直径为2-10nm的孔的部分小于20%。
10.根据权利要求5或6所述的介孔OSM,其中所述介孔OSM在800℃煅烧后的总孔体积至少为0.3cm3/g,并且直径为2-10nm的孔的部分小于10%。
11.根据权利要求5或6所述的介孔OSM,其中所述介孔OSM在1000℃或更高的温度煅烧后的直径为2-10nm的孔的部分小于5%。
12.根据权利要求5或6所述的介孔OSM,其中所述介孔OSM的平均孔直径在600℃至1100℃的煅烧温度范围保持不变。
13.根据权利要求1-4中任一项所述方法形成的介孔OSM在用于处理车辆废气的三效催化剂或四效催化剂中的用途。
14.根据权利要求5-12中任一项所述的介孔OSM在用于处理车辆废气的三效催化剂或四效催化剂的用途。
CN201980006157.6A 2018-01-08 2019-01-07 制造用于废气处理的介孔储氧材料的方法、所述储氧材料及其用途 Active CN111447997B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201862614600P 2018-01-08 2018-01-08
US62/614,600 2018-01-08
PCT/US2019/012480 WO2019136343A1 (en) 2018-01-08 2019-01-07 Method of making mesoporous oxygen storage materials for exhaust gas treatment; said oxygen storage materials and their use

Publications (2)

Publication Number Publication Date
CN111447997A CN111447997A (zh) 2020-07-24
CN111447997B true CN111447997B (zh) 2023-08-01

Family

ID=65352089

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201980006157.6A Active CN111447997B (zh) 2018-01-08 2019-01-07 制造用于废气处理的介孔储氧材料的方法、所述储氧材料及其用途

Country Status (6)

Country Link
US (1) US11635009B2 (zh)
EP (1) EP3694644A1 (zh)
JP (1) JP7403458B2 (zh)
KR (1) KR20200104903A (zh)
CN (1) CN111447997B (zh)
WO (1) WO2019136343A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020142472A1 (en) * 2019-01-04 2020-07-09 Pacific Industrial Development Corporation Nanocrystal-sized cerium-zirconium oxide material and method of making the same
CN115003628A (zh) * 2020-01-28 2022-09-02 太平洋工业发展公司 具有高氧迁移的基于铈-锆氧化物的氧离子导体(czoic)材料

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012088373A2 (en) * 2010-12-22 2012-06-28 Pacific Industrial Development Corporation Catalyst support materials with oxygen storage capacity (osc) and method of making thereof
CN103889554A (zh) * 2011-10-27 2014-06-25 庄信万丰股份有限公司 用于制备二氧化铈-氧化锆-氧化铝复合氧化物的方法及其应用

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3368507B2 (ja) 1991-11-06 2003-01-20 東ソー株式会社 ジルコニア粉末およびその製造方法
JP3146578B2 (ja) 1991-12-04 2001-03-19 東ソー株式会社 ジルコニア微粉末の製造法
FR2736343B1 (fr) 1995-07-03 1997-09-19 Rhone Poulenc Chimie Composition a base d'oxyde de zirconium et d'oxyde de cerium, procede de preparation et utilisation
JP4053623B2 (ja) 1996-12-27 2008-02-27 阿南化成株式会社 ジルコニウム−セリウム系複合酸化物及びその製造方法
US6139814A (en) 1997-11-10 2000-10-31 Ford Global Technologies, Inc. Thermally stable, high-surface-area metal oxides made by organic templating
DE60033328T2 (de) 1999-03-05 2007-11-22 Daiichi Kigenso Kagaku Kogyo Co. Ltd. Mischoxid auf Basis von Cerium und Zirkonium, Verfahren zu dessen Herstellung; das Mischoxid enthaltender Katalysator und Anwendung des Katalysators zur Abgasreinigung
US6387338B1 (en) 2000-03-15 2002-05-14 Delphi Technologies, Inc. Preparation of multi-component Ce, Zr, Mox high oxygen-ion-conduct/oxygen-storage-capacity materials
JP3946982B2 (ja) 2001-11-01 2007-07-18 ニッケイ・メル株式会社 ジルコニア・セリア基複合酸化物の製造方法
FR2838426B1 (fr) * 2002-04-11 2004-07-09 Rhodia Elect & Catalysis Materiau mesostructure partiellement cristallin constitue d'oxyde de cerium, de zirconium ou de titane et comprenant un element en solution solide dans ledit oxyde
CN1264606C (zh) 2003-12-12 2006-07-19 天津化工研究设计院 一种铈基稀土复合氧化物材料的制法及用途
JP4660135B2 (ja) 2004-07-26 2011-03-30 第一稀元素化学工業株式会社 ジルコニア系多孔質体及びその製造方法
JP4450763B2 (ja) 2005-03-10 2010-04-14 第一稀元素化学工業株式会社 排ガス浄化触媒用貴金属含有複合金属酸化物及びその製造方法
EP1894620B2 (en) 2006-08-22 2023-06-07 Daiichi Kigenso Kagaku Kogyo Co., Ltd. Method to produce a porous zirconia powder
JP5100244B2 (ja) 2006-10-12 2012-12-19 第一稀元素化学工業株式会社 ジルコニア・セリア・イットリア系複合酸化物及びその製造方法
US20080095682A1 (en) * 2006-10-19 2008-04-24 Kharas Karl C Ce-Zr-R-O CATALYSTS, ARTICLES COMPRISING THE Ce Zr R O CATALYSTS AND METHODS OF MAKING AND USING THE Ce-Zr-R-O CATALYSTS
JP5164665B2 (ja) 2008-04-09 2013-03-21 第一稀元素化学工業株式会社 セリウム−ジルコニウム系複合酸化物及びその製造方法
FR2959735B1 (fr) * 2010-05-06 2012-06-22 Rhodia Operations Composition a base d'oxydes de zirconium, de cerium d'au moins une autre terre rare, a porosite specifique, procede de preparation et utilisation en catalyse.
US10232348B2 (en) 2010-12-22 2019-03-19 Pacific Industrial Development Corporation Doped catalyst support materials having oxygen storage capacity (OSC) and method of making thereof
EP3006404B1 (en) * 2013-06-04 2020-07-29 Nippon Denko Co.,Ltd. Ceria-zirconia mixed oxide and method for producing same
JP5744274B1 (ja) 2014-03-28 2015-07-08 第一稀元素化学工業株式会社 ジルコニア系多孔質体及びその製造方法
GB201518996D0 (en) * 2015-10-27 2015-12-09 Magnesium Elektron Ltd Zirconia-based compositions for use as three-way catalysts
US20190134608A1 (en) * 2016-04-26 2019-05-09 Rhodia Operations Cerium-and zirconium-based mixed oxides
EP3266519A1 (en) * 2016-06-16 2018-01-10 Pacific Industrial Development Corporation Doped ceria-zirconia-alumina catalyst support materials with oxygen storage capacity (osc) and method of making thereof
CN107282032A (zh) * 2017-06-21 2017-10-24 广东科远高新材料有限责任公司 一种氧化锆氧化铈基稀土复合固溶体氧化物及其制备方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012088373A2 (en) * 2010-12-22 2012-06-28 Pacific Industrial Development Corporation Catalyst support materials with oxygen storage capacity (osc) and method of making thereof
CN103889554A (zh) * 2011-10-27 2014-06-25 庄信万丰股份有限公司 用于制备二氧化铈-氧化锆-氧化铝复合氧化物的方法及其应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
储氧材料CeO_2-ZrO_2-La_2O_3-Pr_6O_(11)的制备与表征;兰石琨;王志坚;翁国庆;苏正夫;杨庆山;解焕英;;有色金属(冶炼部分)(第09期);全文 *
高性能铈锆钇储氧材料的制备及应用研究;吴群英;陈楠;郭子峰;袁慎忠;张燕;王林江;;无机盐工业(第01期);全文 *

Also Published As

Publication number Publication date
JP7403458B2 (ja) 2023-12-22
EP3694644A1 (en) 2020-08-19
CN111447997A (zh) 2020-07-24
WO2019136343A1 (en) 2019-07-11
JP2021510120A (ja) 2021-04-15
US20210071558A1 (en) 2021-03-11
KR20200104903A (ko) 2020-09-04
US11635009B2 (en) 2023-04-25

Similar Documents

Publication Publication Date Title
JP4660135B2 (ja) ジルコニア系多孔質体及びその製造方法
RU2411995C2 (ru) Композиция на основе нанометрического оксида церия на носителе с повышенной восстановительной способностью, способ ее получения и применение в качестве катализатора
JP5564109B2 (ja) 特有の多孔度を有する酸化セリウムおよび酸化ジルコニウムを含む組成物、この調製方法および触媒作用におけるこの使用
JP5746716B2 (ja) 多孔質アルミナ材料及びその製造方法、並びに触媒
JP5350249B2 (ja) ディーゼルエンジン排出ガスの処理方法、ディーゼルエンジンの有害放出物抑制用の貴金属触媒に対する支持体成分として有用なアルミナ粒子の構造物をつくる方法およびディーゼルエンジン排出ガスの処理用触媒組成物
JP5450457B2 (ja) アルミナまたはアルミニウムオキシ水酸化物担体上の酸化ジルコニウム、酸化チタン、または混合ジルコニウムチタン酸化物をベースとする組成物、調製方法、および触媒としての使用
KR20070102525A (ko) 열 안정성 도프처리 및 도프처리되지 않은 다공성 알루미늄산화물과 나노복합물 CeO₂-ZrO₂및 Al₂O₃가함유된 혼합 산화물
CA3021146A1 (en) Cerium- and zirconium-based mixed oxides
CN111447997B (zh) 制造用于废气处理的介孔储氧材料的方法、所述储氧材料及其用途
JP2007197311A (ja) セリウム・ジルコニウム複合酸化物及びその製造方法
US20220064017A1 (en) Nanocrystal-sized cerium-zirconium-aluminum oxide material and method of making the same
US12129182B2 (en) Nanocrystal-sized cerium-zirconium oxide material and method of making the same
CN110252276B (zh) 一种抗老化的铈锆复合氧化物及其制备方法和应用
WO2012067656A1 (en) Sulfur tolerant alumina catalyst support
JP6682650B2 (ja) メソポーラスジルコニウム系複合酸化物の製造方法
CN110026178B (zh) 一种铈锆复合氧化物及其制备方法和应用
CN111417452B (zh) 包含二氧化铈-氧化锆-储氧材料的催化剂与该催化剂的生产方法
JP2002220228A (ja) 酸化物粉末とその製造方法及び触媒
JPWO2020142472A5 (zh)
JP2005154161A (ja) 無機酸化物粉末及びその製造方法、触媒担体並びに触媒及びその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant