CN111416023A - Method for improving light efficiency by laterally coating high-reflection film on metal electrode - Google Patents

Method for improving light efficiency by laterally coating high-reflection film on metal electrode Download PDF

Info

Publication number
CN111416023A
CN111416023A CN201910010353.2A CN201910010353A CN111416023A CN 111416023 A CN111416023 A CN 111416023A CN 201910010353 A CN201910010353 A CN 201910010353A CN 111416023 A CN111416023 A CN 111416023A
Authority
CN
China
Prior art keywords
layer
metal electrode
reflection
light efficiency
sio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910010353.2A
Other languages
Chinese (zh)
Inventor
王帅
程叶
杨猛
王利明
凌华山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Focus Lightings Technology Suqian Co ltd
Original Assignee
Focus Lightings Technology Suqian Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Focus Lightings Technology Suqian Co ltd filed Critical Focus Lightings Technology Suqian Co ltd
Priority to CN201910010353.2A priority Critical patent/CN111416023A/en
Publication of CN111416023A publication Critical patent/CN111416023A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • H01L33/46Reflective coating, e.g. dielectric Bragg reflector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • H01L33/0091Processes for devices with an active region comprising only IV-VI compounds

Abstract

The invention relates to the technical field of L ED, in particular to a method for improving light efficiency by laterally coating a high-reflection film on a metal electrode, which comprises the following steps of 1) MSA, CB L, TC L, PAD, NDBR and PSV, and specifically comprises the following steps of 1) defining the pattern size of a L ED chip on GAN by MSA, 2) CB L depositing a layer of SiO2A current barrier layer, 3) TC L depositing a conductive layer, 4) PAD plating a metal electrode for conducting, 5) NDBR plating a high-reflection DBR layer on the side of the metal electrode, 6) PSV plating a SiO layer2The invention breaks the conventional thought as a chip protective layer, increases the reflection of lateral light on the metal electrode by plating a high-reflection DBR layer on the side surface of the metal electrode so as to further realize the maximization of light efficiency, has simple preparation process, meets the manufacturing requirement of L ED chips, and can be popularized and applied in actual industrial production.

Description

Method for improving light efficiency by laterally coating high-reflection film on metal electrode
Technical Field
The invention relates to the technical field of L ED, in particular to a method for improving light efficiency by laterally coating a high-reflection film on a metal electrode.
Background
Currently, a third generation light source L ED gradually replaces a traditional light source with specific energy-saving and environment-friendly advantages, the light emitting core of the L ED light source lies in chip manufacturing and light effect extraction, and currently, L ED chip manufacturing in the industry is mainly a chip with a forward mounting structure, namely, light emitted by an epitaxial GAN is emitted from the front of the chip to the maximum extent by utilizing a series of transmission and reflection principles, and absorption of light on the aspects of the back and side walls of the chip is reduced, so that light effect maximization is realized.
At present, the light-emitting efficiency of epitaxy does not reach 100% at the end of a middle-stream chip of the chip, wherein one part of the light-emitting efficiency is shielded by a metal electrode, although an Al layer with a certain thickness is arranged below the metal electrode, the thickness of the metal electrode can be relatively shielded.
Disclosure of Invention
Aiming at the defects of the prior art, the invention provides a method for improving the luminous efficiency by coating a high-reflection film on the lateral side of a metal electrode.
In order to achieve the purpose, the invention is realized by the following technical scheme:
a method for improving light efficiency by laterally coating a high-reflection film on a metal electrode comprises the following steps of MSA, CB L, TC L, PAD, NDBR and PSV:
1) MSA, L ED chip pattern size is defined on GAN;
2) CB L deposition of a layer of SiO2A current blocking layer;
3) TC L depositing a conductive layer;
4) PAD: plating a metal electrode for conducting operation;
5) NDBR: plating a high-reflection DBR layer on the side surface of the metal electrode;
6) PSV: finally, a layer of SiO is plated2As chip protection layer.
Preferably, the highly reflective DBR layer in step 5) is made of SiO2And Ti3O5And the thickness of the high-reflection DBR layer is 3.0-6.0 um.
Preferably, the thickness of the highly reflective DBR layer is 3.5 um.
Preferably, SiO in the high-reflection DBR layer2With Ti3O5The thickness ratio of (1): 1.
preferably, the metal electrode in step 4) is any one of a gold electrode, a silver electrode or a copper electrode.
Preferably, the conductive layer in step 3) is an indium tin oxide deposition layer.
Has the advantages that:
the invention breaks through the conventional thought, increases the reflection of lateral light on the metal electrode by plating a high-reflection DBR layer on the side surface of the metal electrode, further realizes the maximization of the light efficiency, has simple preparation process, meets the manufacturing requirement of L ED chips, and can be popularized and applied in the actual industrial production.
Drawings
FIG. 1 is a schematic structural diagram of an L ED chip prepared according to the present invention;
FIG. 2 is a schematic diagram of the structure of L ED chip prepared by the prior art;
FIG. 3 is a comparison graph of the brightness of L ED chips manufactured by the present invention and the prior art under different conditions;
fig. 4 is a voltage comparison graph of L ED chips manufactured by the technical solution of the present invention and the prior art under different conditions.
1, P-PAD, 2, PSV, 3, TC L, 4, CB L, 5, P-GAN, 6, MQW, 7, N-GAN, 8, substrate, 9, pressing plate, 10, DBR, 11, high reflection DBR layer.
Detailed Description
In order to make the objects, technical solutions and advantages of the embodiments of the present invention clearer, the technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the embodiments of the present invention, and it is obvious that the described embodiments are a part of the embodiments of the present invention, but not all of the embodiments. All other embodiments, which can be derived by a person skilled in the art from the embodiments given herein without making any creative effort, shall fall within the protection scope of the present invention.
Example 1:
a method for improving light efficiency by laterally coating a high-reflection film on a metal electrode is characterized in that the process flow of the method comprises MSA, CB L, TC L, PAD, NDBR and PSV, and the method comprises the following specific steps:
1) MSA, L ED chip pattern size is defined on GAN;
2) CB L deposition of a layer of SiO2A current blocking layer;
3) TC L depositing a conductive layer;
4) PAD: plating a metal electrode for conducting operation;
5) NDBR: plating a high-reflection DBR layer on the side surface of the metal electrode;
6) PSV: finally, a layer of SiO is plated2As chip protection layer.
Step 5) the high reflectivity DBR layer is made of SiO2And Ti3O5And the high-reflection DBR layer is 3.5um in thickness.
SiO in high reflection DBR layer2With Ti3O5The thickness ratio of (1): 1.
and 4), selecting any one of a gold electrode, a silver electrode or a copper electrode as the metal electrode in the step 4).
The conducting layer in the step 3) is an indium tin oxide deposition layer.
Example 2:
a method for improving light efficiency by laterally coating a high-reflection film on a metal electrode is characterized in that the process flow of the method comprises MSA, CB L, TC L, PAD, NDBR and PSV, and the method comprises the following specific steps:
1) MSA, L ED chip pattern size is defined on GAN;
2) CB L deposition of a layer of SiO2A current blocking layer;
3) TC L depositing a conductive layer;
4) PAD: plating a metal electrode for conducting operation;
5) NDBR: plating a high-reflection DBR layer on the side surface of the metal electrode;
6)PSV: finally, a layer of SiO is plated2As chip protection layer.
Step 5) the high reflectivity DBR layer is made of SiO2And Ti3O5And the high-reflection DBR layer is 6.0um in thickness.
SiO in high reflection DBR layer2With Ti3O5The thickness ratio of (1): 1.
and 4), selecting any one of a gold electrode, a silver electrode or a copper electrode as the metal electrode in the step 4).
The conducting layer in the step 3) is an indium tin oxide deposition layer.
Example 3:
a method for improving light efficiency by laterally coating a high-reflection film on a metal electrode is characterized in that the process flow of the method comprises MSA, CB L, TC L, PAD, NDBR and PSV, and the method comprises the following specific steps:
1) MSA, L ED chip pattern size is defined on GAN;
2) CB L deposition of a layer of SiO2A current blocking layer;
3) TC L depositing a conductive layer;
4) PAD: plating a metal electrode for conducting operation;
5) NDBR: plating a high-reflection DBR layer on the side surface of the metal electrode;
6) PSV: finally, a layer of SiO is plated2As chip protection layer.
Step 5) the high reflectivity DBR layer is made of SiO2And Ti3O5And the high-reflection DBR layer is 3.0um in thickness.
SiO in high reflection DBR layer2With Ti3O5The thickness ratio of (1): 1.
and 4), selecting any one of a gold electrode, a silver electrode or a copper electrode as the metal electrode in the step 4).
The conducting layer in the step 3) is an indium tin oxide deposition layer.
Example 4:
a method for improving light efficiency by laterally coating a high-reflection film on a metal electrode is characterized in that the process flow of the method comprises MSA, CB L, TC L, PAD, NDBR and PSV, and the method comprises the following specific steps:
1) MSA, L ED chip pattern size is defined on GAN;
2) CB L deposition of a layer of SiO2A current blocking layer;
3) TC L depositing a conductive layer;
4) PAD: plating a metal electrode for conducting operation;
5) NDBR: plating a high-reflection DBR layer on the side surface of the metal electrode;
6) PSV: finally, a layer of SiO is plated2As chip protection layer.
Step 5) the high reflectivity DBR layer is made of SiO2And Ti3O5And the high-reflection DBR layer is 5.0um in thickness.
SiO in high reflection DBR layer2With Ti3O5The thickness ratio of (1): 1.
and 4), selecting any one of a gold electrode, a silver electrode or a copper electrode as the metal electrode in the step 4).
The conducting layer in the step 3) is an indium tin oxide deposition layer.
Performance testing
Under the condition of K070491, an L ED chip prepared by the technical scheme in the example 1 is marked as K070491_06GV, and a L ED chip prepared by the prior technical scheme is marked as K070491_08 GV.
Under the condition of K220276, L ED chips prepared by the technical scheme in the example 2 are respectively marked as K220276_29ZV and K220276_31ZV, and L ED chips prepared by the technical scheme are respectively marked as K220276_24ZV and K220276_30 ZV.
Under the condition of K390106, L ED chips prepared by the technical scheme in example 3 are marked as K390106_02GA, and L ED chips prepared by the technical scheme are marked as K220276_01 GA.
Under the condition of K400099, the L ED chip prepared by the technical scheme in example 3 was designated as K400099_26GA, and the L ED chip prepared by the technical scheme was designated as K400099_24 GA.
The voltage and brightness measurements were performed on the L ED chips thus obtained, and the results are shown in FIGS. 3 and 4.
Wherein, POR is the prior art scheme (the process flow of the prior art scheme is MSA → CB L → TC L → PAD → PSV), and experiment is the technical scheme of the invention.
Under different conditions, the average values of the voltage and the brightness of the L ED chip prepared by the technical scheme of the invention and the L ED chip prepared by the prior technical scheme are as follows:
Figure DEST_PATH_IMAGE002
the test result shows that: after the chip is manufactured by the technical scheme, the tested VF has no difference, and the average brightness is higher than that of the prior art by about 1.2 percent.
The above examples are only intended to illustrate the technical solution of the present invention, but not to limit it; although the present invention has been described in detail with reference to the foregoing embodiments, it will be understood by those of ordinary skill in the art that: the technical solutions described in the foregoing embodiments may still be modified, or some technical features may be equivalently replaced; and such modifications or substitutions do not depart from the spirit and scope of the corresponding technical solutions of the embodiments of the present invention.

Claims (6)

1. A method for improving light efficiency by laterally coating a high-reflection film on a metal electrode is characterized in that the process flow of the method comprises MSA, CB L, TC L, PAD, NDBR and PSV, and the method comprises the following specific steps:
1) MSA, L ED chip pattern size is defined on GAN;
2) CB L deposition of a layer of SiO2A current blocking layer;
3) TC L depositing a conductive layer;
4) PAD: plating a metal electrode for conducting operation;
5) NDBR: plating a high-reflection DBR layer on the side surface of the metal electrode;
6) PSV: finally, a layer of SiO is plated2As chip protection layer.
2. The method of claim 1, wherein the metal electrode is coated with a high reflective film to improve the light efficiency, further comprising: the high reflection DBR layer in the step 5) is made of SiO2And Ti3O5And the thickness of the high-reflection DBR layer is 3.0-6.0 um.
3. The method of claim 2, wherein the metal electrode is coated with a high reflective film to improve the light efficiency, further comprising: the thickness of the high reflection DBR layer is 3.5 um.
4. A method as claimed in claim 2 or 3, wherein the metal electrode is coated with a high reflective film laterally to improve the light efficiency, the method comprising: SiO in the high-reflection DBR layer2With Ti3O5The thickness ratio of (1): 1.
5. the method of claim 1, wherein the metal electrode is coated with a high reflective film to improve the light efficiency, further comprising: in the step 4), the metal electrode is any one of a gold electrode, a silver electrode or a copper electrode.
6. The method of claim 1, wherein the metal electrode is coated with a high reflective film to improve the light efficiency, further comprising: in the step 3), the conducting layer is an indium tin oxide deposition layer.
CN201910010353.2A 2019-01-07 2019-01-07 Method for improving light efficiency by laterally coating high-reflection film on metal electrode Pending CN111416023A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910010353.2A CN111416023A (en) 2019-01-07 2019-01-07 Method for improving light efficiency by laterally coating high-reflection film on metal electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910010353.2A CN111416023A (en) 2019-01-07 2019-01-07 Method for improving light efficiency by laterally coating high-reflection film on metal electrode

Publications (1)

Publication Number Publication Date
CN111416023A true CN111416023A (en) 2020-07-14

Family

ID=71494084

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910010353.2A Pending CN111416023A (en) 2019-01-07 2019-01-07 Method for improving light efficiency by laterally coating high-reflection film on metal electrode

Country Status (1)

Country Link
CN (1) CN111416023A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031540A (en) * 1999-06-18 2000-01-28 Toyoda Gosei Co Ltd Manufacture of gallium nitride based compound semiconductor light emitting element
US20060081858A1 (en) * 2004-10-14 2006-04-20 Chung-Hsiang Lin Light emitting device with omnidirectional reflectors
CN101872823A (en) * 2010-06-07 2010-10-27 厦门市三安光电科技有限公司 Gallium nitride-based light-emitting diode (LED) with distributed Bragg reflectors on side walls and preparation method thereof
CN104112801A (en) * 2010-03-10 2014-10-22 Lg伊诺特有限公司 Light emitting device
CN108336200A (en) * 2018-03-27 2018-07-27 湘能华磊光电股份有限公司 LED chip structure and preparation method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000031540A (en) * 1999-06-18 2000-01-28 Toyoda Gosei Co Ltd Manufacture of gallium nitride based compound semiconductor light emitting element
US20060081858A1 (en) * 2004-10-14 2006-04-20 Chung-Hsiang Lin Light emitting device with omnidirectional reflectors
CN104112801A (en) * 2010-03-10 2014-10-22 Lg伊诺特有限公司 Light emitting device
CN101872823A (en) * 2010-06-07 2010-10-27 厦门市三安光电科技有限公司 Gallium nitride-based light-emitting diode (LED) with distributed Bragg reflectors on side walls and preparation method thereof
CN108336200A (en) * 2018-03-27 2018-07-27 湘能华磊光电股份有限公司 LED chip structure and preparation method thereof

Similar Documents

Publication Publication Date Title
TW437104B (en) Semiconductor light-emitting device and method for manufacturing the same
CN102709420B (en) GaN-based LED
CN100386899C (en) Efficient full-bright all-reflection light-emitting-diode and making method
CN102150272A (en) Light emitting diodes with smooth surface for reflective electrode
JP2009537982A (en) Low optical loss electrode structure for LED
CN101859861A (en) GaN-based flip-chip light-emitting diode with double reflecting layers and preparation method thereof
CN108231966B (en) A kind of LED chip and preparation method thereof with reflecting mirror
CN102169943A (en) Light-emitting diode (LED) with indium tin oxide (ITO)/zinc oxide based composite transparent electrode and preparation method of LED
CN101771119B (en) LED (light-emitting diode) of zinc-oxide based transparent electrode and manufacturing method thereof
CN109638131B (en) Manufacturing method of DBR flip chip
CN108470809A (en) LED chip and preparation method thereof with transparency conducting layer composite membrane group
CN103187499A (en) Light-emitting diode and manufacturing method thereof
CN102185074A (en) Light emitting diode of Ag/zinc-oxide-based composite transparent electrode and preparation method thereof
CN104900772A (en) Preparation method of light emitting diode
CN102983233B (en) The manufacture method of gallium nitride based light emitting diode
CN108336197B (en) Vertical structure LED chip for preparing Ag reflector by two-step method and preparation method thereof
CN103811608B (en) A kind of manufacture method of light emitting diode
CN102983231B (en) There is the manufacture method of the light-emitting diode in cubic circulus reflector
CN101777616A (en) Zinc oxide-based transparent electrode light emitting diode and preparation method thereof
CN111416023A (en) Method for improving light efficiency by laterally coating high-reflection film on metal electrode
CN102983232B (en) The manufacture method of vertical type light emitting diode
CN102169944B (en) Light-emitting diode of Ag/ITO/zinc oxide base composite transparent electrode and preparation method thereof
TW201642497A (en) Semiconductor light emitting structure and manufacturing method thereof
CN102610726B (en) Light-emitting assembly
CN210607305U (en) Embedded electrode structure LED chip for optimizing current distribution

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20200714