CN111403283A - 嵌入式锗硅制作方法及嵌入式锗硅结构 - Google Patents

嵌入式锗硅制作方法及嵌入式锗硅结构 Download PDF

Info

Publication number
CN111403283A
CN111403283A CN202010138897.XA CN202010138897A CN111403283A CN 111403283 A CN111403283 A CN 111403283A CN 202010138897 A CN202010138897 A CN 202010138897A CN 111403283 A CN111403283 A CN 111403283A
Authority
CN
China
Prior art keywords
silicon
germanium
grid
embedded
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010138897.XA
Other languages
English (en)
Inventor
李中华
朱轶铮
李润领
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huali Integrated Circuit Manufacturing Co Ltd
Original Assignee
Shanghai Huali Integrated Circuit Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huali Integrated Circuit Manufacturing Co Ltd filed Critical Shanghai Huali Integrated Circuit Manufacturing Co Ltd
Priority to CN202010138897.XA priority Critical patent/CN111403283A/zh
Publication of CN111403283A publication Critical patent/CN111403283A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/823418MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type with a particular manufacturing method of the source or drain structures, e.g. specific source or drain implants or silicided source or drain structures or raised source or drain structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7842Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate
    • H01L29/7848Field effect transistors with field effect produced by an insulated gate means for exerting mechanical stress on the crystal lattice of the channel region, e.g. using a flexible substrate the means being located in the source/drain region, e.g. SiGe source and drain

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明公开了一种嵌入式锗硅制作方法,包括在半导体衬底上依次生成有源区、栅极、栅极绝缘层和锗硅硬掩膜刻蚀阻挡层;在两栅极之间的有源区形中刻蚀成截面为坛形的浅沟槽,所述浅沟槽侧壁的一部分位于所述锗硅硬掩膜刻蚀阻挡层和栅极侧墙正下方;清洗去除刻蚀残留物;刻蚀所述浅沟槽形成sigma型深沟槽,所述sigma型深沟槽顶部的一部分与所述锗硅硬掩膜刻蚀阻挡层或栅极侧墙相邻,所述sigma型深沟槽两侧分别形成有向外延伸的尖端,所述尖端位于栅极正下方的有源区中;在sigma型深沟槽内生长锗硅外延形成嵌入式锗硅区。本发明还公开了一种嵌入式锗硅结构。本发明提升了锗硅对沟道的应力,增大了锗硅的体积,进一步的提升了锗硅对沟道的应力,从而提高PMOS器件性能。

Description

嵌入式锗硅制作方法及嵌入式锗硅结构
技术领域
本发明涉及半导体领域,特别是涉及一种用于半导体器件生产中的嵌入式锗硅制作方法。本发明还涉及一种用于半导体器件生产中的嵌入式锗硅结构。
背景技术
在半导体制造工艺中,为提高PMOS器件载流子迁移率,业界普通采用锗硅沉积技术。现有技术中制作SIGMA型锗硅沟槽的方法包括以下步骤:在衬底上形成有源层;在有源层上形成晶硅栅极层;形成晶硅栅极侧墙;形成锗硅硬掩模层;锗硅光刻;锗硅干法刻蚀形成U型沟槽;光刻胶干法剥离和湿法清洗;TMAH处理形成SIGMA型锗硅沟槽;锗硅外延沉积,参考图1至图3所示。
现有的PMOS嵌入式锗硅尖端距离沟道之间的距离T2G(tip to gate)受限于硅到栅极之间的距离S2G(silicon to gate)以及沟槽深度,导致T2G不能现继续缩小,这就限制了锗硅对沟道的应力的提升。
发明内容
在发明内容部分中引入了一系列简化形式的概念,该简化形式的概念均为本领域现有技术简化,这将在具体实施方式部分中进一步详细说明。本发明的发明内容部分并不意味着要试图限定出所要求保护的技术方案的关键特征和必要技术特征,更不意味着试图确定所要求保护的技术方案的保护范围。
本发明要解决的技术问题是提供一种保持嵌入式锗硅结构侧墙厚度、锗硅硬掩膜刻蚀阻挡层厚度和锗硅沟槽最终深度等参数都不变的情况下,能减小到栅极之间的距离(S2G)的嵌入式锗硅制作方法。
本发明要解决的另一技术问题是提供一种保持嵌入式锗硅结构侧墙厚度、锗硅硬掩膜刻蚀阻挡层厚度和锗硅沟槽最终深度等参数都不变的情况下,能提高锗硅对沟道的应力,并能增大锗硅体积的嵌入式锗硅结构。
为解决上述技术问题,本发明提供一种用于包括但不限于PMOS器件制作工艺的嵌入式锗硅制作方法,包括以下步骤:
S1,在半导体衬底上依次生成有源区、栅极、栅极绝缘层和锗硅硬掩膜刻蚀阻挡层;其中,步骤S1中生成有源区、栅极、栅极绝缘层和锗硅硬掩膜刻蚀阻挡层的工艺均可以采用现有工艺技术实现;
可选择的,所述锗硅硬掩膜刻蚀阻挡层自上而下依次包含原子层沉积氮化硅、原子层氧化硅薄膜;
可选择的,所述栅极两侧形成侧墙以及顶部的化学气相沉积氮化硅薄膜;
可选择的,有源区带有P型浅掺杂的N离子阱;
S2,执行刻蚀,在两栅极之间的有源区中形成截面为坛形的浅沟槽,所述浅沟槽侧壁的一部分位于所述锗硅硬掩膜刻蚀阻挡层和栅极侧墙正下方;其中,所述坛形包括但不限于中间大两端小的常见坛形。
可选择的,步骤S2包括以下子步骤;
S2.1,第一次刻蚀,形成所述浅沟槽的上半部,使L1<T1+T2,L1是浅沟槽侧壁顶点与栅极之间距离,T1是栅极侧墙厚度,T2是锗硅硬掩膜刻蚀阻挡层厚度;
S2.2,第二次刻蚀,形成所述浅沟槽的下半部。
可选择的,所述浅沟槽的上半部为一倒置的碗形结构,所述浅沟槽的下半部为一正置碗形结构,所述倒置的碗形结构和正置碗形结构的碗口相接形成所述坛形浅沟槽。
可选择的,所述第一次刻蚀采用各向同性等离子体对所述有源区进行横向和纵向刻蚀;
所述第二次刻蚀采用各向异性等离子体对所述有源区进行纵向刻蚀。
可选择的,所述第一次刻蚀参数范围为5~20mt/3~600w/T/Bias0~300V/5~150CF4/5~10s;
所述第二次刻蚀参数范围为20~50mt/200~500w/200~600v/2~10O2/150~350HBr/150~300He/30~50s。
S3,清洗去除刻蚀残留物;
可选择的,采用湿法清洗去除刻蚀残留物。
S4,刻蚀所述浅沟槽形成sigma型深沟槽,所述sigma型深沟槽顶部的一部分与所述硅硬掩膜刻蚀阻挡层或栅极侧墙相邻,所述sigma型深沟槽两侧分别形成有向外延伸的尖端,所述尖端位于栅极正下方的有源区中;
可选择的,采用湿法刻蚀所述坛形浅沟槽形成sigma型深沟槽,湿法刻蚀采用四甲基氢氧化铵溶液。
S5,在sigma型深沟槽内生长锗硅外延形成嵌入式锗硅区。所述sigma型深沟槽两侧的尖端经锗硅外延生长形成锗硅尖端;
可选择的,所述嵌入式锗硅区两侧分别形成有向外延伸的锗硅尖端,所述锗硅尖端与其上方栅极竖直方向距离范围为100埃~200埃;
所述嵌入式锗硅尖端与其上方栅极水平方向距离范围为-10埃~30埃;
所述嵌入式锗硅区深度范围为550埃~850埃。
本发明提供一种用于包括但不限于PMOS器件制作工艺的嵌入式锗硅结构,包括:衬底上方形成的有源区,有源区上形成有栅极,栅极两侧形成有栅极侧墙,栅极顶部形成有栅极绝缘层,锗硅硬掩膜刻蚀阻挡层覆盖在栅极绝缘层和栅极侧墙上;
其中,两栅极之间的有源区中形成有嵌入式锗硅区,所述嵌入式锗硅区顶部的一部分与所述硅硬掩膜刻蚀阻挡层或栅极侧墙相邻,所述嵌入式锗硅区两侧分别形成有向外延伸的锗硅尖端,所述锗硅尖端位于栅极正下方的有源区中。
可选择的,L2<T1+T2,L2是嵌入式锗硅区侧壁顶点与栅极之间距离,T1是栅极侧墙厚度,T2是锗硅硬掩膜刻蚀阻挡层厚度。
可选择的,所述锗硅尖端与其上方栅极之间距离范围为100埃~200埃。
所述嵌入式锗硅区深度范围为550埃~850埃。
本发明提供的嵌入式锗硅制作方法及嵌入式锗硅结构。在栅极侧墙及锗硅硬掩膜刻蚀阻挡层正下方有锗硅相邻,所述锗硅尖端到沟道的距离H2比现有的锗硅尖端到沟道的距离h2更小,所述锗硅尖端到栅极的距离T2G比现有的锗硅尖端到栅极的距离t2g更小。因此,所述锗硅的体积比现有的锗硅更大,所述锗硅的应力比现有的锗硅更大。本发明一方面提升了锗硅对沟道的应力,另一方面还增大了锗硅的体积,进一步的提升了锗硅对沟道的应力,从而提高PMOS器件性能。
附图说明
本发明附图旨在示出根据本发明的特定示例性实施例中所使用的方法、结构和/或材料的一般特性,对说明书中的描述进行补充。然而,本发明附图是未按比例绘制的示意图,因而可能未能够准确反映任何所给出的实施例的精确结构或性能特点,本发明附图不应当被解释为限定或限制由根据本发明的示例性实施例所涵盖的数值或属性的范围。下面结合附图与具体实施方式对本发明作进一步详细的说明:
图1是现有技术嵌入式锗硅制作方法示意图一,其显示形成U形浅沟槽。
图2是现有技术嵌入式锗硅制作方法示意图二,其显示形成sigma型深沟槽。
图3是现有技术嵌入式锗硅制作方法示意图三,其显示形成嵌入式锗硅区。
图4是本发明嵌入式锗硅制作方法流程示意图。
图5是本发明嵌入式锗硅制作方法示意图一,其显示形成浅沟槽上半部分。
图6是本发明嵌入式锗硅制作方法示意图二,其显示形成坛形浅沟槽。
图7是本发明嵌入式锗硅制作方法示意图三,其显示形成sigma型深沟槽。
图8是本发明嵌入式锗硅制作方法示意图三,其显示形成嵌入式锗硅外延区。
附图标记说明
1 是衬底
2 是有源区
3 是栅极
4 是锗硅硬掩膜刻蚀阻挡层
5 是栅极侧墙
6 是栅极绝缘层
7 是现有技术U形浅沟槽
8 是现有技术sigma型深沟槽
9 是现有技术锗硅外延区
10 是本发明浅沟槽的上半部
11 是本发明锗硅外延区
12 是本发明嵌入式锗硅区顶部与所述硅硬掩膜刻蚀阻挡层或栅极侧墙相邻的位置
13 是本发明锗硅尖端
l1 是现有技术U形浅沟槽侧壁顶点与其旁侧栅极水平方向距离
d1 是现有技术U形浅沟槽深度
d2 是现有技术sigma型深沟槽深度
h2 是现有技术锗硅尖端与其上方栅极竖直方向距离
t2g 是现有技术锗硅尖端与其上方栅极水平方向距离
L1 是本发明浅沟槽侧壁顶点与其上方栅极水平方向距离
L2 是本发明嵌入式锗硅区侧壁顶点与其上方栅极水平方向距离
D1 是本发明坛形浅沟槽深度
D2 是本发明sigma型深沟槽深度
H2 是本发明锗硅尖端与其上方栅极竖直方向距离
T2G 是本发明锗硅尖端与其上方栅极水平方向距离。
具体实施方式
以下通过特定的具体实施例说明本发明的实施方式,本领域技术人员可由本说明书所公开的内容充分地了解本发明的其他优点与技术效果。本发明还可以通过不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点加以应用,在没有背离发明总的设计思路下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。本发明下述示例性实施例可以多种不同的形式来实施,并且不应当被解释为只限于这里所阐述的具体实施例。应当理解的是,提供这些实施例是为了使得本发明的公开彻底且完整,并且将这些示例性具体实施例的技术方案充分传达给本领域技术人员。
如图4所示,本发明提供一种用于包括但不限于PMOS器件制作工艺的嵌入式锗硅制作方法第一实施例,包括以下步骤:
S1,在半导体衬底上依次生成有源区、栅极、栅极绝缘层和锗硅硬掩膜刻蚀阻挡层;其中,步骤S1中生成有源区、栅极、栅极绝缘层和锗硅硬掩膜刻蚀阻挡层的工艺均可以采用现有工艺技术实现,本发明不再赘述;
可选择的,所述锗硅硬掩膜刻蚀阻挡层自上而下依次包含原子层沉积氮化硅、原子层氧化硅薄膜;
可选择的,所述栅极两侧形成侧墙以及顶部的化学气相沉积氮化硅薄膜;
可选择的,有源区带有P型浅掺杂的N离子阱;
S2,执行刻蚀,在两栅极之间的有源区中形成截面为坛形的浅沟槽,所述浅沟槽侧壁的一部分位于所述硅硬掩膜刻蚀阻挡层和栅极侧墙正下方;
S3,清洗去除刻蚀残留物;
S4,刻蚀所述浅沟槽形成sigma型深沟槽,所述sigma型深沟槽顶部的一部分与所述硅硬掩膜刻蚀阻挡层或栅极侧墙相邻,所述sigma型深沟槽两侧分别形成有向外延伸的尖端,所述尖端位于栅极正下方的有源区中;
S5,在sigma型深沟槽内生长锗硅外延形成嵌入式锗硅区,所述sigma型深沟槽两侧的尖端经锗硅外延生长形成锗硅尖端。
本发明提供一种用于包括但不限于PMOS器件制作工艺的嵌入式锗硅制作方法第二实施例,包括以下步骤:
S1,在半导体衬底上依次生成有源区、栅极、栅极绝缘层和锗硅硬掩膜刻蚀阻挡层;其中,步骤S1中生成有源区、栅极、栅极绝缘层和锗硅硬掩膜刻蚀阻挡层的工艺均可以采用现有工艺技术实现;
可选择的,所述锗硅硬掩膜刻蚀阻挡层自上而下依次包含原子层沉积氮化硅、原子层氧化硅薄膜;所述栅极两侧形成侧墙以及顶部的化学气相沉积氮化硅薄膜;有源区带有P型浅掺杂的N离子阱;
S2,执行刻蚀,在两栅极之间的有源区中形成截面为坛形的浅沟槽,所述浅沟槽侧壁的一部分位于所述锗硅硬掩膜刻蚀阻挡层和栅极侧墙正下方;其中,所述坛形包括但不限于中间大两端小的常见坛形。
其中,步骤S2包括以下子步骤;
S2.1,参考图5所示,采用各向同性等离子体对所述有源区进行横向和纵向刻蚀形成所述浅沟槽的上半部,刻蚀参数范围为5~20mt/3~600w/T/Bias0~300V/5~150CF4/5~10s,使L1<T1+T2,L1是浅沟槽侧壁顶点与栅极之间距离,T1是栅极侧墙厚度,T2是锗硅硬掩膜刻蚀阻挡层厚度;
S2.2,参考图6所示,采用各向异性等离子体对所述有源区进行纵向刻蚀形成所述浅沟槽的下半部,刻蚀参数范围为20~50mt/200~500w/200~600v/2~10O2/150~350HBr/150~300He/30~50s。
所述浅沟槽的上半部为一倒置的碗形结构,所述浅沟槽的下半部为一正置碗形结构,所述倒置的碗形结构和正置碗形结构的碗口相接形成所述坛形浅沟槽。
S3,采用湿法清洗去除刻蚀残留物。
S4,参考图7所示,采用四甲基氢氧化铵溶液刻蚀所述浅沟槽形成sigma型深沟槽,所述sigma型深沟槽顶部的一部分与所述锗硅硬掩膜刻蚀阻挡层或栅极侧墙相邻,所述sigma型深沟槽两侧分别形成有向外延伸的尖端,所述尖端位于栅极正下方的有源区中;
S5,参考图8所示,在sigma型深沟槽内生长锗硅外延形成嵌入式锗硅区。所述sigma型深沟槽两侧的尖端经锗硅外延生长形成锗硅尖端;
其中,所述嵌入式锗硅区两侧分别形成有向外延伸的锗硅尖端,所述锗硅尖端与其上方栅极竖直方向距离范围为100埃~200埃;
所述嵌入式锗硅尖端与其上方栅极水平方向距离范围为-10埃~30埃;
所述嵌入式锗硅区深度范围为550~850埃。
参考图8所示,本发明提供一种用于包括但不限于PMOS器件制作工艺的嵌入式锗硅结构第一实施例,包括:衬底上方形成的有源区,有源区上形成有栅极,栅极两侧形成有栅极侧墙,栅极顶部形成有栅极绝缘层,锗硅硬掩膜刻蚀阻挡层覆盖在栅极绝缘层和栅极侧墙上;
其中,两栅极之间的有源区中形成有嵌入式锗硅区,所述嵌入式锗硅区顶部的一部分与所述硅硬掩膜刻蚀阻挡层或栅极侧墙相邻,所述嵌入式锗硅区两侧分别形成有向外延伸的锗硅尖端,所述锗硅尖端位于栅极正下方的有源区中。
其中,L2<T1+T2,L2是嵌入式锗硅区侧壁顶点与栅极之间距离,T1是栅极侧墙厚度,T2是锗硅硬掩膜刻蚀阻挡层厚度。
所述锗硅尖端与其上方栅极竖直方向距离范围为100埃~200埃;
所述嵌入式锗硅尖端与其上方栅极水平方向距离范围为-10埃~30埃;
所述嵌入式锗硅区深度范围为550埃~850埃。
在此,参照作为示例性实施例的优选实施例(和中间结构)的示意性剖面图来描述根据本发明的示例性实施例。这样,预计会出现例如由制造技术和/或容差引起的示出的形状的变化。因此,示例性实施例不应当被解释为仅限于在此示出的区域的具体形状,而是还可以包含例如由制造所导致的形状偏差。因此,图所示出的区域实质上是示意性的,它们的形状并非意图示出器件中的各区域的实际形状,而且也并非意图限制根据本发明的示例性实施例的范围。除非另有定义,否则这里所使用的全部术语(包括技术术语和科学术语)都具有与本发明所属领域的普通技术人员通常理解的意思相同的意思。还将理解的是,除非这里明确定义,否则诸如在通用字典中定义的术语这类术语应当被解释为具有与它们在相关领域语境中的意思相一致的意思,而不以理想的或过于正式的含义加以解释。
以上通过具体实施方式和实施例对本发明进行了详细的说明,但这些并非构成对本发明的限制。在不脱离本发明原理的情况下,本领域的技术人员还可做出许多变形和改进,这些也应视为本发明的保护范围。

Claims (10)

1.一种嵌入式锗硅制作方法,其特征在于,包括以下步骤:
S1,在半导体衬底上依次生成有源区、栅极、栅极绝缘层和锗硅硬掩膜刻蚀阻挡层;
S2,执行刻蚀,在两栅极之间的有源区中形成截面为坛形的浅沟槽,所述浅沟槽侧壁的一部分位于所述锗硅硬掩膜刻蚀阻挡层和栅极侧墙正下方;
S3,清洗去除刻蚀残留物;
S4,刻蚀所述浅沟槽形成sigma型深沟槽,所述sigma型深沟槽顶部的一部分与所述锗硅硬掩膜刻蚀阻挡层或栅极侧墙相邻,所述sigma型深沟槽两侧分别形成有向外延伸的尖端,所述尖端位于栅极正下方的有源区中;
S5,在sigma型深沟槽内生长锗硅外延形成嵌入式锗硅区。
2.如权利要求1所述的嵌入式锗硅制作方法,其特征在于:步骤S2包括以下子步骤;
S2.1,第一次刻蚀,形成所述浅沟槽的上半部,使L1<T1+T2,L1是浅沟槽侧壁顶点与栅极之间距离,T1是栅极侧墙厚度,T2是锗硅硬掩膜刻蚀阻挡层厚度;
S2.2,第二次刻蚀,形成所述浅沟槽的下半部。
3.如权利要求2所述的嵌入式锗硅制作方法,其特征在于:
所述浅沟槽的上半部为一倒置的碗形结构,所述浅沟槽的下半部为一正置碗形结构,所述倒置的碗形结构和正置碗形结构的碗口相接形成所述截面为坛形的浅沟槽。
4.如权利要求2所述的嵌入式锗硅制作方法,其特征在于:
所述第一次刻蚀采用各向同性等离子体对所述有源区进行横向和纵向刻蚀;
所述第二次刻蚀采用各向异性等离子体对所述有源区进行纵向刻蚀。
5.如权利要求4所述的嵌入式锗硅制作方法,其特征在于:
所述第一次刻蚀参数范围为5~20mt/3~600w/T/Bias0~300V/5~150CF4/5~10s;
所述第二次刻蚀参数范围为20~50mt/200~500w/200~600v/2~10O2/150~350HBr/150~300He/30~50s。
6.如权利要求1所述的嵌入式锗硅制作方法,其特征在于:实施步骤S4时,采用湿法刻蚀所述坛形浅沟槽形成sigma型深沟槽。
7.如权利要求1所述的嵌入式锗硅制作方法,其特征在于:
所述嵌入式锗硅区两侧分别形成有向外延伸的锗硅尖端,所述锗硅尖端与其上方栅极竖直方向距离范围为100埃~200埃;
所述嵌入式锗硅尖端与其上方栅极水平方向距离范围为-10埃~30埃;
所述嵌入式锗硅区深度范围为550埃~850埃。
8.一种嵌入式锗硅结构,包括:衬底上方形成的有源区,有源区上形成有栅极,栅极两侧形成有栅极侧墙,栅极顶部形成有栅极绝缘层,锗硅硬掩膜刻蚀阻挡层覆盖在栅极绝缘层和栅极侧墙上,其特征在于:
两栅极之间的有源区中形成有嵌入式锗硅区,所述嵌入式锗硅区顶部的一部分与所述锗硅硬掩膜刻蚀阻挡层或栅极侧墙相邻,所述嵌入式锗硅区两侧分别形成有向外延伸的锗硅尖端,所述锗硅尖端位于栅极正下方的有源区中。
9.如权利要求8所述的嵌入式锗硅结构,其特征在于:
L2<T1+T2,L2是嵌入式锗硅区侧壁顶点与栅极之间距离,T1是栅极侧墙厚度,T2是锗硅硬掩膜刻蚀阻挡层厚度。
10.如权利要求8所述的嵌入式锗硅结构,其特征在于:
所述锗硅尖端与其上方栅极竖直方向距离范围为100埃~200埃;
所述嵌入式锗硅尖端与其上方栅极水平方向距离范围为-10埃~30埃;
所述嵌入式锗硅区深度范围为550埃~850埃。
CN202010138897.XA 2020-03-03 2020-03-03 嵌入式锗硅制作方法及嵌入式锗硅结构 Pending CN111403283A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010138897.XA CN111403283A (zh) 2020-03-03 2020-03-03 嵌入式锗硅制作方法及嵌入式锗硅结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010138897.XA CN111403283A (zh) 2020-03-03 2020-03-03 嵌入式锗硅制作方法及嵌入式锗硅结构

Publications (1)

Publication Number Publication Date
CN111403283A true CN111403283A (zh) 2020-07-10

Family

ID=71430515

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010138897.XA Pending CN111403283A (zh) 2020-03-03 2020-03-03 嵌入式锗硅制作方法及嵌入式锗硅结构

Country Status (1)

Country Link
CN (1) CN111403283A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103187277A (zh) * 2011-12-28 2013-07-03 中芯国际集成电路制造(上海)有限公司 一种半导体器件的制造方法
CN103187285A (zh) * 2011-12-29 2013-07-03 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
CN104716042A (zh) * 2013-12-12 2015-06-17 中芯国际集成电路制造(上海)有限公司 一种半导体器件的制造方法
US20160056261A1 (en) * 2014-08-22 2016-02-25 Globalfoundries Inc. Embedded sigma-shaped semiconductor alloys formed in transistors

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103187277A (zh) * 2011-12-28 2013-07-03 中芯国际集成电路制造(上海)有限公司 一种半导体器件的制造方法
CN103187285A (zh) * 2011-12-29 2013-07-03 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
CN104716042A (zh) * 2013-12-12 2015-06-17 中芯国际集成电路制造(上海)有限公司 一种半导体器件的制造方法
US20160056261A1 (en) * 2014-08-22 2016-02-25 Globalfoundries Inc. Embedded sigma-shaped semiconductor alloys formed in transistors

Similar Documents

Publication Publication Date Title
US6991991B2 (en) Method for preventing to form a spacer undercut in SEG pre-clean process
US11088253B2 (en) Gate structure of semiconductor device and manufacturing method therefor
US6599803B2 (en) Method for fabricating semiconductor device
US6537885B1 (en) Transistor and method of manufacturing a transistor having a shallow junction formation using a two step EPI layer
US20150123144A1 (en) Semiconductor Structures and Methods with High Mobility and High Energy Bandgap Materials
CN103594370B (zh) 一种半导体器件的制造方法
US20110057259A1 (en) Method for forming a thick bottom oxide (tbo) in a trench mosfet
TWI480951B (zh) 用於半導體元件之寬溝渠終端結構
CN102832128B (zh) 一种半导体器件的制造方法
CN105551958B (zh) 晶体管的形成方法
US11127840B2 (en) Method for manufacturing isolation structure for LDMOS
KR100611076B1 (ko) 스택형 반도체 장치 및 그 제조 방법
US11024708B1 (en) Semiconductor device and method for manufacturing the same
CN103681333B (zh) 一种半导体器件的制造方法
CN103151264A (zh) 一种半导体器件的制造方法
US7910447B1 (en) System and method for providing a self aligned bipolar transistor using a simplified sacrificial nitride emitter
CN102856199A (zh) 一种半导体器件的制造方法
CN107658227B (zh) 源/漏的形成方法以及半导体器件的形成方法
CN111403283A (zh) 嵌入式锗硅制作方法及嵌入式锗硅结构
CN110729360B (zh) 一种纳米管器件及其制造方法
CN109767986B (zh) 半导体器件及其制造方法
US7645666B2 (en) Method of making a semiconductor device
US20020109208A1 (en) Method of forming an NPN device
CN104979291A (zh) 一种半导体器件的制造方法
CN102956486B (zh) 半导体器件结构及其制作方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination