CN1113978C - 用于沉积薄膜的双频等离子激发 - Google Patents

用于沉积薄膜的双频等离子激发 Download PDF

Info

Publication number
CN1113978C
CN1113978C CN98809989A CN98809989A CN1113978C CN 1113978 C CN1113978 C CN 1113978C CN 98809989 A CN98809989 A CN 98809989A CN 98809989 A CN98809989 A CN 98809989A CN 1113978 C CN1113978 C CN 1113978C
Authority
CN
China
Prior art keywords
frequency
shower nozzle
substrate
low
frequency power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CN98809989A
Other languages
English (en)
Other versions
CN1274395A (zh
Inventor
坎姆·S·劳
罗伯特·M·罗伯森
上泉元
杰弗·奥尔森
卡尔·索伦森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AKT Inc
Original Assignee
Applied Komatsu Technology Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=25487591&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=CN1113978(C) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Applied Komatsu Technology Inc filed Critical Applied Komatsu Technology Inc
Publication of CN1274395A publication Critical patent/CN1274395A/zh
Application granted granted Critical
Publication of CN1113978C publication Critical patent/CN1113978C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32137Radio frequency generated discharge controlling of the discharge by modulation of energy
    • H01J37/32155Frequency modulation
    • H01J37/32165Plural frequencies
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • C23C16/4586Elements in the interior of the support, e.g. electrodes, heating or cooling devices
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/505Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges
    • C23C16/509Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using radio frequency discharges using internal electrodes
    • C23C16/5096Flat-bed apparatus
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • C23C16/517Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges using a combination of discharges covered by two or more of groups C23C16/503 - C23C16/515

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明涉及一种在反应器中的透明衬底上沉积高质量薄膜的设备。透明衬底可以由玻璃、石英或聚合物如塑料等制成。在处理室中加热透明衬底并将处理气流通入处理室中。该设备分别从高频和低频电源中产生高频电源输出和低频电源输出。高频电源输出的频率等于或大于约13兆赫兹,功率在约1到5千瓦之间,而低频电源输出的频率等于或小于约2兆赫兹,功率在约300瓦到2千瓦之间。高频电源输出和低频电源输出叠加在一起,从处理气流中激发等离子,在约0.4到3乇的压力下、和约250到450℃的温度下,在透明衬底上沉积光滑的薄膜。

Description

用于沉积薄膜的双频等离子激发
本发明涉及沉积薄膜的系统和方法,更具体地,涉及在大面积透明衬底上快速沉积高质量薄膜的改进系统和方法。
近年来,研制出了用于重量轻、耗电少的高质量显示器的液晶元件。液晶元件一般包括两个玻璃衬底和夹在中间的一层液晶材料。导电薄膜在两层衬底上构图形成如薄膜晶体管(TFT)等电路元件。衬底可以与电源连接以改变液晶材料的取向,从而可以利用薄膜晶体管有选择地为液晶显示器的各个区域通电。
与硅衬底相比,在玻璃衬底上沉积电路元件需要在玻璃衬底上生成一层半导体沟道材料。然后在玻璃衬底上沉积通往栅极的导电通路。特别地,对于后通道装置,TFT需要在构图的栅极金属层上沉积一层栅极介电层。连续地,可以在栅极介电层上部沉积非晶体硅层(a-Si)。在该非晶硅层上可以沉淀金属接触层,非晶体硅层上可以沉积一薄层掺杂的非晶体硅用于提高与覆盖的金属的接触能力。也可以在非晶体硅层上沉积氮化硅(SiN)或氧化硅(SiO)层作为蚀刻阻止层。
将薄膜沉积到大面积玻璃衬底上的反应室,通常采用等离子增强化学汽相沉积方法,该反应室采用单一高频电源引发处理室中的气体分解。尽管高频电源产生的高能量能够充分加热薄膜顶层,但是产生的离子能量不足以生成高度平坦的薄膜。另外,由于玻璃衬底通常比硅衬底大的多,电极的尺寸会接近该电源频率下的波长。这会使得玻璃衬底表面的放电强度分布不均匀。这种不均匀分布将导致衬底表面上薄膜的沉积不均匀。
由于以上原因,沉积在玻璃衬底上的薄膜表面明显粗糙。而粗糙的薄膜将降低薄膜质量。而且,沉积薄膜的粗糙会影响电子迁移率,从而最终导致显示器性能的降低。
本发明提供一种在反应室中在透明衬底上沉积高质量薄膜的设备。所述透明衬底可以由玻璃、石英或聚合物如塑料等构成。在处理室中将透明衬底加热并且在处理室中通入处理气流。所述设备分别从高频和低频电源中产生高频电源输出和低频电源输出。高频电源输出和低频电源输出叠加在一起,从处理气流中激发等离子在压力大约为0.4乇到3乇、温度大约为250℃到450℃的条件下在透明衬底上沉积光滑的薄膜。
根据本明的一个方面,本发明中的高频电源和低频电源都包括阻抗匹配电路和与该阻抗匹配电路连接的滤波器。
根据本明的另一方面,本发明中的高频输出在约13兆赫兹或更高的频率产生,功率大约在1到5千瓦之间。而且,低频输出在约为2兆赫兹或更低的频率下产生,功率为大约300瓦到2千瓦。
根据本明的另一方面,处理气体可以是硅烷和氧气、硅烷和氧化氮、TEOS和氧气或TEOS和氧化氮的混合气体。也可以用硅烷、氮气和氨气的结合物作为处理气体。
根据本明的又一方面,衬底置于其中间区域接地的感受器上。也可以将感受器四个角接地。
根据本明的再一方面,衬底位于感受器和可将气体通入处理室的喷头之间。感受器有选择地与低频和高频电源中的一个连接,而喷头与低频和高频电源中的另一个连接。
本发明的优点如下。用双频等离子激发生成的薄膜非常光滑。光滑的薄膜为随后的沉积提供了更好的界面从而提高了电子的迁移率。电子迁移率的提高也提高了显示器的电气性能。最终生成的薄膜更加稳定。其他的薄膜特性如密度和应力也得以改善,从而使沉积速率提高。
本发明的其他特点和优点从下面的描述(包括附图和权利要求)中可以看出。
图1为本发明中反应室的横截面图。
图2为采用双频电源在大面积透明衬底上沉积薄膜的工艺流程图。
图3A、3B和3C为反应室中双频电源电路各种连接方式的布局结构简图。
图4A、4B和4C为双频电源反应室和各种单频电源反应室在大面积透明衬底上所沉积薄膜的三维透视图性能比较。
一般地,在本发明的操作中,透明衬底放在真空沉积处理室中,加热到几百摄氏度(℃)。向处理室中注入沉积气体,并由双频电源系统激发产生等离子增强化学气相沉积(PECVD)反应从而在透明衬底上沉积薄膜层。沉积的薄膜层可以是介电层(如SiN或SiO)或半导体层(如a-Si)。
本发明可以采用由加利福尼亚Santa Clara的Applied KomatsuTechnology(AKT)公司制造的PECVD系统,也可以采用其他市场上可买到的沉积系统。透明衬底可以用玻璃、石英或聚合物如塑料等制成。常用衬底尺寸为大约550×650毫米(mm)。
如图1中所示,PECVD装置130包含具有杆137的感受器135。感受器135位于真空沉积处理室133的中央。感受器135将透明衬底38如玻璃板支撑在衬底处理或反应区域141内,有一升降机构(图中没画出)将感受器135升高或降低。升降机构按照控制器(没有画出)发出的指令动作。用自动锯条(robot blade)(没有画出)通过室133的侧壁134上的开口142把衬底38送进送出室133。衬底38由加热器70加热到大约250到400℃,加热器可以是嵌在感受器135中的电阻加热器。也可以采用电子管加热器(lamp heater)或其他本领域内公知的合适加热器。
沉积处理气体通过气源集合管161和气体入口集合管126流入室133。气源集合管61从可以供应硅烷(SiH4)、原硅酸四乙酯(TEOS)、氧气(O2)、氧化氮(N2O)、氮气(N2)和氨气(NH3)的气源56-59接收气体。气体集合管61可以产生硅烷和氧气、硅烷和氧化氮(N2O)、TEOS和氧气或TEOS和氧化氮的混合气作为处理气体。另外,处理气体也可以采用硅烷、氮气和氨气的结合物。处理气体流过钻孔的预锻模板124、和处理气体分配面板或喷头122中的许多孔121。可以采用各种形式的喷头,包括此处引用的美国专利No.4,854.263、5,611.865和5,366.585中所述的喷头。电极间隔或衬底表面和面板122流出表面之间的距离约为400到1500密耳。处理气流用图1中衬底处理区域141中的小箭头所示。在处理过程中,室133通常保持压力在大约0.4乇到3乇之间,温度为大约250到450℃之间。
如图1所示的室中,采用了等离子以增强沉积工艺。相应地,需要合适的等离子触发电路,采用双频射频(RF)电源系统比较好。双频RF电源系统包含低频(LF)RF电源50和高频(HF)RF电源60在气体分布面板122和感应器135之间供电以激发混合处理气体生成等离子。低频RF电源50频率范围大约等于或小于2MHz,最好在大约200kHz到500kHz之间。高频RF电源60电源范围大约等于或大于13MHz,最好为大约13.56MHz或其谐波频率。RF电源可以是固定频率,或采用可调频率从而可以对装置130调谐。
高频RF电源输出进入阻抗匹配网络62,阻抗匹配网络62与滤除噪音的滤波器64连接。当只使用高频电源60时,产生的离子能量不足以形成非常光滑的薄膜。增加低频RF电源50和相关的阻抗匹配网络52、滤波器54,可以增加离子能量。离子能量的增加可以改进沉积薄膜表面形态。
在面板122上供应功率为大约1到5千瓦的高频RF电源和功率为大约300瓦到2千瓦的低频RF电源以产生等离子。低频和高频电源50和60一起使等离子成分反应,在透明衬底38上沉积薄膜。
需要指出不同大小的衬底需要的RF功率不同。因此,上述特定电源功率适用于尺寸为大约550×650毫米的衬底。更大衬底需要的功率更大。例如,在同样的电源频率,更大面积的衬底需要增加两个电源。沉积处理气体可以从处理室中通过围绕衬底处理区域141的槽型孔131排入排气室150。排气室150中的气流经过真空关闭阀154进入与外部真空泵(未画出)连接的排气出口152。
压力计63测量处理室133中的气体压力。当然,压力计可以用许多其他类型的压力传感器来代替。例如,可以使用离子测量计。可以在排气流中放置调节器136来调节处理室133中的总压力。压力计63的信号可以作为调节器136的电控制器的输入以保持总的室压力恒定。
图2所示为采用双频电源50和60在透明衬底38上沉积薄膜的工艺流程图。首先,将透明衬底38放在感受器135上(步骤200);然后,用衬底加热器70将透明衬底38加热(步骤202);随后,处理气源产生的处理气体在反应室中达到平衡(步骤204);接通高频电源60和低频电源50,在反应室内部激发等离子,使得透明衬底38上沉积薄膜(步骤206)。最好先接通高频电源60。但是,也可以同时接通高频和低频电源,或者也可根据需要首先接通低频电源。将薄膜沉积到透明衬底上之后,关闭高频和低频电源,最好同时关闭(步骤208)。
图3A、3B和3C示意地说明了双频电源与喷头122及感受器135的各种电气连接方式。图3A中低频和高频电源的输出叠加在一起用电压源210表示。电压源210连接到喷头122上的一点。将与感受器135电气连接并支撑感受器135的杆137接地,以形成使感受器135上聚集的电子流出的电了返回途径。
对于大衬底,最好采用图3B的连接方式。这种连接方式中,低频和高频电源叠加输出的电压源220加载在喷头122的中心。在感受器135的角230和232处,和杆137处设置多个电子返回途径,而且,在四边形感受器的其余两个角(没有画出)处也设置了电子返回途径。因此,感受器135的所有四个角都接地。多个电子返回途径使得电子从感受器135上彻底流出。
尽管图3A和3B中采用叠加电压源连接到喷头122上,本发明还考虑了可以在喷头122和感受器上135分别连接不同电源的情形。图3C中,具有第一频率的电源240连接到阻抗匹配电路242上。匹配电路242又连接到与喷头122连接的滤波器244上。相应地,具有第二频率的电源250连接到阻抗匹配电路252上,匹配电路252又连接到与感受器135连接的滤波器254上。如果第一频率为高频,那么第二频率为低频;如果第一频率为低频,那么第二频率为高频。
因此,高频和低频电源可以叠加连接到喷头122上。另外,也可以将高频和低频电源的其中之一连接到喷头122,而将剩余的一个连接到感受器135上。
根据本发明沉积的薄膜比常规用单一高频电源的感应器沉积的薄膜质量好,如表1所示。表1中前两列表示采用功率分别为4000W和4800W的单一高频(HF)电源,温度大约为320℃,压力为大约20乇时得到的氮化硅薄膜的特性。最后一列为采用本发明中低频和高频电源系统并且采取图3B所示连接方式,高频和低频电源频率分别为大约400kHz和大约13.6MHz,电源总功率为4700W,温度为大约320℃,压力大约为2.0乇的条件下得到的结果。
表1
    4000W高频     4800W高频     4000W高频和700W低频
  沉积速度     3700埃/分钟     4000埃/分钟     4000埃/分钟
    应用   -0.8E9达因/厘米2   -4.5E9达因/厘米2  -6.5E9达因/厘米2
    WER      512埃/分钟      344埃/分钟      234埃/分钟
  粗糙度(rms)      1.0纳米      1.74纳米      0.73纳米
如表中所示,采用双频电源系统的反应器的沉积速率与采用功率为4800W的单一高频电源的沉积速率相同,都为4000埃/分钟。在这些特殊例子中,采用双频电源系统产生的薄膜测得的应力比采用功率分别为4000W和4800W的单频电源系统所产生的薄膜的应力大。这样的应力值以及采用双频电源系统沉积薄膜所具有的低湿蚀刻速率(WER)和高光滑度,表明薄膜是稳定的、高质量的。
重要的是,采用双频电源系统沉积得到的薄膜以均方根(rms)平均值测得的粗糙度优于采用单频电源系统所得到的薄膜的粗糙度。粗糙度越大,电子通过沉积的栅极的阻力越大。因此,采用双频电源系统沉积得到的光滑薄膜具有更高的电子迁移率,从而具有更好的显示性能。
采用各种反应器沉积得到的薄膜的表面粗糙度三维示意图如图4A-4C所示。图4A和4B分别为表1中所示采用功率为4000W和4800W的单一高频电源系统的反应器所沉积薄膜的三维示意图。图4A表面比较粗糙,其均方根粗糙度为1.00nm。图4B更不平整,其均方根粗糙度为1.74nm。
相反,如图4C所示,采用总功率为4700W的双频电源系统沉积得到的薄膜表面均方根粗糙度为0.73nm。因此,尽管总功率与4800W电源的功率接近,双频电源反应器产生的薄膜比采用4800W单一频率电源得到的薄膜光滑50%以上。
采用双频激发等离子得到的光滑薄膜使随后的沉积层结合更好,从而提高了电子迁移率。电子迁移率的提高改善了显示器的电气性能。所得到的薄膜也更加稳定。
尽管上面根据特定实施例和顺序对本发明进行了说明,但是,只要不偏离本发明的实质就可以进行各种改动。本发明可以用于各种类型的CVD系统和其他采用不同沉积方法的系统。混合气体、温度和压力都可以改变。对于电源,可以不改变电源频率而对阻抗匹配电路进行调整。此外,尽管上述电极间隔在400到1500密耳之间,也可以采用其他合适的间隔。而且根据薄膜和沉积顺序需要,可以采用各种不同的加热顺序和电源周期。
上述各种改变对于本领域技术人员是很清楚的,本发明的保护范围由随后的权利要求限定。

Claims (7)

1.一种用于沉积薄膜的设备,包括:可以放置待处理衬底的真空室;喷头;通过所述喷头与所述真空室连接的、将气流通入处理室的处理气源;与喷头相对放置、用于支撑衬底并且具有四个角的感受器,该感受器的中间部分和所述四个角分别通过分离的接地路径接地;以等于或大于13MHz的频率输出振荡电信号到喷头的高频电源;以及以等于或小于2MHz的频率输出振荡电信号到喷头的低频电源,该高频和低频电源的输出叠加,以从处理室中的处理气体中激发等离子,将薄膜沉积到衬底上。
2.如权利要求1中所述的设备,其中所述高频电源和低频电源都包括:阻抗匹配电路;以及与该阻抗匹配电路连接的滤波器。
3.如权利要求1中所述的设备,其中,所述喷头具有一个中间区域,且该喷头在靠近该中间区域处与所述高频电源和低频电源的输出连接。
4.如权利要求1中所述的设备,其中,所述处理室中的压力可以控制在0.4到3乇之间,且还包括用于将处理室中的衬底加热到大约250到450℃之间的加热器。
5.一种用于沉积薄膜的设备,包括:可以放置待处理衬底的真空室;喷头;通过喷头与真空室连接、将气流通入处理室的处理气源;与喷头相对放置、用于支撑衬底并具有四个角的感受器,该感受器的中间部分和所述四个角分别通过分离的接地路径接地;以及至少一个与喷头连接、用于从处理室中的处理气中激发等离子以在衬底上沉积薄膜的振荡电源。
6.如权利要求5所述的设备,其中所述至少一个振荡电源包括可以分别输出频率为等于或大于13MHz的振荡信号和等于或小于2MHz的振荡信号的高频电源和低频振荡电源。
7.如权利要求6中所述设备,其中所述高频振荡电源的频率为13.56MHz或其谐波频率,所述低频振荡电源的频率为200~500kHz。
CN98809989A 1997-10-09 1998-10-06 用于沉积薄膜的双频等离子激发 Expired - Lifetime CN1113978C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US08/948,279 1997-10-09
US08/948,279 US6024044A (en) 1997-10-09 1997-10-09 Dual frequency excitation of plasma for film deposition

Publications (2)

Publication Number Publication Date
CN1274395A CN1274395A (zh) 2000-11-22
CN1113978C true CN1113978C (zh) 2003-07-09

Family

ID=25487591

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98809989A Expired - Lifetime CN1113978C (zh) 1997-10-09 1998-10-06 用于沉积薄膜的双频等离子激发

Country Status (7)

Country Link
US (1) US6024044A (zh)
EP (1) EP1019563A1 (zh)
JP (1) JP4371576B2 (zh)
KR (2) KR100557666B1 (zh)
CN (1) CN1113978C (zh)
TW (1) TW438901B (zh)
WO (1) WO1999019537A1 (zh)

Families Citing this family (121)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6030288A (en) * 1997-09-02 2000-02-29 Quixotic Solutions Inc. Apparatus and process for verifying honest gaming transactions over a communications network
JP3066007B2 (ja) * 1998-06-24 2000-07-17 株式会社日立製作所 プラズマ処理装置およびプラズマ処理方法
US6642149B2 (en) * 1998-09-16 2003-11-04 Tokyo Electron Limited Plasma processing method
JP3818561B2 (ja) 1998-10-29 2006-09-06 エルジー フィリップス エルシーディー カンパニー リミテッド シリコン酸化膜の成膜方法および薄膜トランジスタの製造方法
US6772827B2 (en) * 2000-01-20 2004-08-10 Applied Materials, Inc. Suspended gas distribution manifold for plasma chamber
US6857387B1 (en) 2000-05-03 2005-02-22 Applied Materials, Inc. Multiple frequency plasma chamber with grounding capacitor at cathode
US7087179B2 (en) * 2000-12-11 2006-08-08 Applied Materials, Inc. Optical integrated circuits (ICs)
US6770166B1 (en) * 2001-06-29 2004-08-03 Lam Research Corp. Apparatus and method for radio frequency de-coupling and bias voltage control in a plasma reactor
KR100415944B1 (ko) * 2001-10-09 2004-01-24 주성엔지니어링(주) 유도결합형 플라즈마 발생소스
JP4129855B2 (ja) * 2001-12-13 2008-08-06 東京エレクトロン株式会社 プラズマ処理装置
US6901808B1 (en) * 2002-02-12 2005-06-07 Lam Research Corporation Capacitive manometer having reduced process drift
US7252011B2 (en) * 2002-03-11 2007-08-07 Mks Instruments, Inc. Surface area deposition trap
KR100915231B1 (ko) * 2002-05-17 2009-09-02 삼성전자주식회사 저유전율 절연막의 증착방법, 이를 이용한 박막트랜지스터및 그 제조방법
US20040025791A1 (en) * 2002-08-09 2004-02-12 Applied Materials, Inc. Etch chamber with dual frequency biasing sources and a single frequency plasma generating source
JP3917508B2 (ja) * 2002-12-05 2007-05-23 東京エレクトロン株式会社 プラズマ成膜装置
US7022611B1 (en) * 2003-04-28 2006-04-04 Lam Research Corporation Plasma in-situ treatment of chemically amplified resist
US8372205B2 (en) * 2003-05-09 2013-02-12 Applied Materials, Inc. Reducing electrostatic charge by roughening the susceptor
US20040221959A1 (en) * 2003-05-09 2004-11-11 Applied Materials, Inc. Anodized substrate support
US7083702B2 (en) * 2003-06-12 2006-08-01 Applied Materials, Inc. RF current return path for a large area substrate plasma reactor
US7107125B2 (en) * 2003-10-29 2006-09-12 Applied Materials, Inc. Method and apparatus for monitoring the position of a semiconductor processing robot
JP4698251B2 (ja) * 2004-02-24 2011-06-08 アプライド マテリアルズ インコーポレイテッド 可動又は柔軟なシャワーヘッド取り付け
US7079740B2 (en) * 2004-03-12 2006-07-18 Applied Materials, Inc. Use of amorphous carbon film as a hardmask in the fabrication of optical waveguides
US7358192B2 (en) * 2004-04-08 2008-04-15 Applied Materials, Inc. Method and apparatus for in-situ film stack processing
JP4550507B2 (ja) * 2004-07-26 2010-09-22 株式会社日立ハイテクノロジーズ プラズマ処理装置
US7534301B2 (en) * 2004-09-21 2009-05-19 Applied Materials, Inc. RF grounding of cathode in process chamber
CN100452945C (zh) * 2007-06-20 2009-01-14 中微半导体设备(上海)有限公司 包含多个处理平台的去耦合反应离子刻蚀室
US7641762B2 (en) * 2005-09-02 2010-01-05 Applied Materials, Inc. Gas sealing skirt for suspended showerhead in process chamber
US7695633B2 (en) * 2005-10-18 2010-04-13 Applied Materials, Inc. Independent control of ion density, ion energy distribution and ion dissociation in a plasma reactor
US8173228B2 (en) * 2006-01-27 2012-05-08 Applied Materials, Inc. Particle reduction on surfaces of chemical vapor deposition processing apparatus
US20070202636A1 (en) * 2006-02-22 2007-08-30 Applied Materials, Inc. Method of controlling the film thickness uniformity of PECVD-deposited silicon-comprising thin films
US20070245958A1 (en) * 2006-04-24 2007-10-25 Applied Materials, Inc. Dual plasma source process using a variable frequency capacitively coupled source for controlling ion radial distribution
US20070246163A1 (en) * 2006-04-24 2007-10-25 Applied Materials, Inc. Plasma reactor apparatus with independent capacitive and inductive plasma sources
US20070246443A1 (en) * 2006-04-24 2007-10-25 Applied Materials, Inc. Process using combined capacitively and inductively coupled plasma process for controlling plasma ion dissociation
US20070246161A1 (en) * 2006-04-24 2007-10-25 Applied Materials, Inc. Plasma reactor apparatus with a toroidal plasma source and a VHF capacitively coupled plasma source with variable frequency
US20070245960A1 (en) * 2006-04-24 2007-10-25 Applied Materials, Inc. Process using combined capacitively and inductively coupled plasma sources for controlling plasma ion density
US7780864B2 (en) * 2006-04-24 2010-08-24 Applied Materials, Inc. Process using combined capacitively and inductively coupled plasma sources for controlling plasma ion radial distribution
US20070245961A1 (en) * 2006-04-24 2007-10-25 Applied Materials, Inc. Dual plasma source process using a variable frequency capacitively coupled source for controlling plasma ion dissociation
US7727413B2 (en) * 2006-04-24 2010-06-01 Applied Materials, Inc. Dual plasma source process using a variable frequency capacitively coupled source to control plasma ion density
US7645357B2 (en) * 2006-04-24 2010-01-12 Applied Materials, Inc. Plasma reactor apparatus with a VHF capacitively coupled plasma source of variable frequency
US7498273B2 (en) * 2006-05-30 2009-03-03 Applied Materials, Inc. Formation of high quality dielectric films of silicon dioxide for STI: usage of different siloxane-based precursors for harp II—remote plasma enhanced deposition processes
US7825038B2 (en) * 2006-05-30 2010-11-02 Applied Materials, Inc. Chemical vapor deposition of high quality flow-like silicon dioxide using a silicon containing precursor and atomic oxygen
US7790634B2 (en) * 2006-05-30 2010-09-07 Applied Materials, Inc Method for depositing and curing low-k films for gapfill and conformal film applications
US20070277734A1 (en) * 2006-05-30 2007-12-06 Applied Materials, Inc. Process chamber for dielectric gapfill
US20070281106A1 (en) * 2006-05-30 2007-12-06 Applied Materials, Inc. Process chamber for dielectric gapfill
US7902080B2 (en) * 2006-05-30 2011-03-08 Applied Materials, Inc. Deposition-plasma cure cycle process to enhance film quality of silicon dioxide
KR101197020B1 (ko) * 2006-06-09 2012-11-06 주성엔지니어링(주) 균일한 플라즈마 방전을 위한 기판처리장치 및 이를이용하여 플라즈마 방전세기를 조절하는 방법
US8232176B2 (en) * 2006-06-22 2012-07-31 Applied Materials, Inc. Dielectric deposition and etch back processes for bottom up gapfill
US7776178B2 (en) * 2006-10-25 2010-08-17 Applied Materials, Inc. Suspension for showerhead in process chamber
US8004293B2 (en) * 2006-11-20 2011-08-23 Applied Materials, Inc. Plasma processing chamber with ground member integrity indicator and method for using the same
US20080131622A1 (en) * 2006-12-01 2008-06-05 White John M Plasma reactor substrate mounting surface texturing
US8381677B2 (en) * 2006-12-20 2013-02-26 Applied Materials, Inc. Prevention of film deposition on PECVD process chamber wall
US7959735B2 (en) * 2007-02-08 2011-06-14 Applied Materials, Inc. Susceptor with insulative inserts
US7972470B2 (en) * 2007-05-03 2011-07-05 Applied Materials, Inc. Asymmetric grounding of rectangular susceptor
US7745352B2 (en) * 2007-08-27 2010-06-29 Applied Materials, Inc. Curing methods for silicon dioxide thin films deposited from alkoxysilane precursor with harp II process
US7541297B2 (en) * 2007-10-22 2009-06-02 Applied Materials, Inc. Method and system for improving dielectric film quality for void free gap fill
US7867923B2 (en) * 2007-10-22 2011-01-11 Applied Materials, Inc. High quality silicon oxide films by remote plasma CVD from disilane precursors
US7943531B2 (en) * 2007-10-22 2011-05-17 Applied Materials, Inc. Methods for forming a silicon oxide layer over a substrate
US7803722B2 (en) * 2007-10-22 2010-09-28 Applied Materials, Inc Methods for forming a dielectric layer within trenches
US20090120584A1 (en) * 2007-11-08 2009-05-14 Applied Materials, Inc. Counter-balanced substrate support
US7964040B2 (en) * 2007-11-08 2011-06-21 Applied Materials, Inc. Multi-port pumping system for substrate processing chambers
US20090120368A1 (en) * 2007-11-08 2009-05-14 Applied Materials, Inc. Rotating temperature controlled substrate pedestal for film uniformity
US20090208668A1 (en) * 2008-02-19 2009-08-20 Soo Young Choi Formation of clean interfacial thin film solar cells
US8153348B2 (en) * 2008-02-20 2012-04-10 Applied Materials, Inc. Process sequence for formation of patterned hard mask film (RFP) without need for photoresist or dry etch
US8467224B2 (en) * 2008-04-11 2013-06-18 Sandisk 3D Llc Damascene integration methods for graphitic films in three-dimensional memories and memories formed therefrom
FR2930561B1 (fr) * 2008-04-28 2011-01-14 Altatech Semiconductor Dispositif et procede de traitement chimique en phase vapeur.
US8357435B2 (en) * 2008-05-09 2013-01-22 Applied Materials, Inc. Flowable dielectric equipment and processes
US20090277587A1 (en) * 2008-05-09 2009-11-12 Applied Materials, Inc. Flowable dielectric equipment and processes
WO2010009364A1 (en) * 2008-07-18 2010-01-21 Sandisk 3D, Llc Carbon-based resistivity-switching materials and methods of forming the same
US20100081293A1 (en) * 2008-10-01 2010-04-01 Applied Materials, Inc. Methods for forming silicon nitride based film or silicon carbon based film
KR101641130B1 (ko) * 2008-10-09 2016-07-20 어플라이드 머티어리얼스, 인코포레이티드 대형 플라즈마 처리 챔버를 위한 rf 복귀 경로
US20100136261A1 (en) * 2008-12-03 2010-06-03 Applied Materials, Inc. Modulation of rf returning straps for uniformity control
US9382621B2 (en) * 2009-02-04 2016-07-05 Applied Materials, Inc. Ground return for plasma processes
TW201037100A (en) * 2009-03-16 2010-10-16 Alta Devices Inc Vapor deposition reactor system and methods thereof
US8980382B2 (en) * 2009-12-02 2015-03-17 Applied Materials, Inc. Oxygen-doping for non-carbon radical-component CVD films
US7935643B2 (en) * 2009-08-06 2011-05-03 Applied Materials, Inc. Stress management for tensile films
US8741788B2 (en) * 2009-08-06 2014-06-03 Applied Materials, Inc. Formation of silicon oxide using non-carbon flowable CVD processes
US7989365B2 (en) * 2009-08-18 2011-08-02 Applied Materials, Inc. Remote plasma source seasoning
US20110136347A1 (en) * 2009-10-21 2011-06-09 Applied Materials, Inc. Point-of-use silylamine generation
US8449942B2 (en) * 2009-11-12 2013-05-28 Applied Materials, Inc. Methods of curing non-carbon flowable CVD films
US20110318502A1 (en) * 2009-12-24 2011-12-29 Spp Process Technology Systems Uk Limited Methods of depositing sio2 films
SG181670A1 (en) 2009-12-30 2012-07-30 Applied Materials Inc Dielectric film growth with radicals produced using flexible nitrogen/hydrogen ratio
US8329262B2 (en) * 2010-01-05 2012-12-11 Applied Materials, Inc. Dielectric film formation using inert gas excitation
US8647992B2 (en) 2010-01-06 2014-02-11 Applied Materials, Inc. Flowable dielectric using oxide liner
JP2013516788A (ja) 2010-01-07 2013-05-13 アプライド マテリアルズ インコーポレイテッド ラジカル成分cvd用のインサイチュオゾン硬化
JP2013521650A (ja) * 2010-03-05 2013-06-10 アプライド マテリアルズ インコーポレイテッド ラジカル成分cvdによる共形層
US8236708B2 (en) 2010-03-09 2012-08-07 Applied Materials, Inc. Reduced pattern loading using bis(diethylamino)silane (C8H22N2Si) as silicon precursor
CN102834930A (zh) 2010-03-30 2012-12-19 应用材料公司 在扩散p型区域上方形成负电荷钝化层的方法
US7994019B1 (en) 2010-04-01 2011-08-09 Applied Materials, Inc. Silicon-ozone CVD with reduced pattern loading using incubation period deposition
KR101141070B1 (ko) * 2010-04-06 2012-05-04 신웅철 배치형 원자층 증착장치
KR101158289B1 (ko) * 2010-04-08 2012-06-19 세메스 주식회사 플라즈마 처리 장치 및 방법
US8476142B2 (en) 2010-04-12 2013-07-02 Applied Materials, Inc. Preferential dielectric gapfill
US8524004B2 (en) 2010-06-16 2013-09-03 Applied Materials, Inc. Loadlock batch ozone cure
US8318584B2 (en) 2010-07-30 2012-11-27 Applied Materials, Inc. Oxide-rich liner layer for flowable CVD gapfill
EP2426737A1 (en) 2010-09-03 2012-03-07 Applied Materials, Inc. Thin-film solar fabrication process, deposition method for solar cell precursor layer stack, and solar cell precursor layer stack
CN103201845A (zh) * 2010-09-22 2013-07-10 道康宁公司 电子制品及形成方法
EP2439792A1 (en) 2010-10-05 2012-04-11 Applied Materials, Inc. Thin-film solar cell fabrication process, deposition method for solar cell precursor layer stack, and solar cell precursor layer stack
US9285168B2 (en) 2010-10-05 2016-03-15 Applied Materials, Inc. Module for ozone cure and post-cure moisture treatment
US8664127B2 (en) 2010-10-15 2014-03-04 Applied Materials, Inc. Two silicon-containing precursors for gapfill enhancing dielectric liner
US20120180954A1 (en) 2011-01-18 2012-07-19 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US10283321B2 (en) 2011-01-18 2019-05-07 Applied Materials, Inc. Semiconductor processing system and methods using capacitively coupled plasma
US8450191B2 (en) 2011-01-24 2013-05-28 Applied Materials, Inc. Polysilicon films by HDP-CVD
WO2012113441A1 (en) 2011-02-21 2012-08-30 Applied Materials, Inc. Thin-film solar fabrication process, deposition method for a layer stack of a solar cell, and solar cell precursor
US8716154B2 (en) 2011-03-04 2014-05-06 Applied Materials, Inc. Reduced pattern loading using silicon oxide multi-layers
US8445078B2 (en) 2011-04-20 2013-05-21 Applied Materials, Inc. Low temperature silicon oxide conversion
EP2523227A1 (en) 2011-05-13 2012-11-14 Applied Materials, Inc. Thin-film solar fabrication process, deposition method for TCO layer, and solar cell precursor layer stack
US8466073B2 (en) 2011-06-03 2013-06-18 Applied Materials, Inc. Capping layer for reduced outgassing
US9404178B2 (en) 2011-07-15 2016-08-02 Applied Materials, Inc. Surface treatment and deposition for reduced outgassing
US8617989B2 (en) 2011-09-26 2013-12-31 Applied Materials, Inc. Liner property improvement
US8551891B2 (en) 2011-10-04 2013-10-08 Applied Materials, Inc. Remote plasma burn-in
US9030101B2 (en) * 2012-02-22 2015-05-12 Lam Research Corporation Frequency enhanced impedance dependent power control for multi-frequency RF pulsing
US8889566B2 (en) 2012-09-11 2014-11-18 Applied Materials, Inc. Low cost flowable dielectric films
US9018108B2 (en) 2013-01-25 2015-04-28 Applied Materials, Inc. Low shrinkage dielectric films
JP6054249B2 (ja) * 2013-05-27 2016-12-27 住友重機械工業株式会社 成膜装置
JP2015029004A (ja) * 2013-07-30 2015-02-12 株式会社アルバック プラズマcvd装置及び成膜方法
JP6277398B2 (ja) * 2013-08-27 2018-02-14 株式会社ユーテック プラズマcvd装置及び配管内の成膜方法
US9412581B2 (en) 2014-07-16 2016-08-09 Applied Materials, Inc. Low-K dielectric gapfill by flowable deposition
US20160225652A1 (en) 2015-02-03 2016-08-04 Applied Materials, Inc. Low temperature chuck for plasma processing systems
US20170127506A1 (en) * 2016-01-23 2017-05-04 Hamid Reza Ghomi Marzdashty Generation of dielectric barrier discharge plasma using a modulated voltage
US10435789B2 (en) * 2016-12-06 2019-10-08 Asm Ip Holding B.V. Substrate treatment apparatus
US20200098562A1 (en) * 2018-09-26 2020-03-26 Lam Research Corporation Dual frequency silane-based silicon dioxide deposition to minimize film instability
US20210159048A1 (en) * 2019-11-25 2021-05-27 Applied Materials, Inc. Dual rf for controllable film deposition

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5930130B2 (ja) * 1979-09-20 1984-07-25 富士通株式会社 気相成長方法
US4854263B1 (en) * 1987-08-14 1997-06-17 Applied Materials Inc Inlet manifold and methods for increasing gas dissociation and for PECVD of dielectric films
JP2851765B2 (ja) * 1992-03-31 1999-01-27 松下電器産業株式会社 プラズマ発生方法およびその装置
US5356722A (en) * 1992-06-10 1994-10-18 Applied Materials, Inc. Method for depositing ozone/TEOS silicon oxide films of reduced surface sensitivity
US5286297A (en) * 1992-06-24 1994-02-15 Texas Instruments Incorporated Multi-electrode plasma processing apparatus
US5271972A (en) * 1992-08-17 1993-12-21 Applied Materials, Inc. Method for depositing ozone/TEOS silicon oxide films of reduced surface sensitivity
EP0605980A3 (en) * 1993-01-07 1995-08-02 Ramtron Int Corp Layering process for depositing silicon nitride and silicon oxynitride.
JP2875945B2 (ja) * 1993-01-28 1999-03-31 アプライド マテリアルズ インコーポレイテッド Cvdにより大面積のガラス基板上に高堆積速度でシリコン窒化薄膜を堆積する方法
US5352294A (en) * 1993-01-28 1994-10-04 White John M Alignment of a shadow frame and large flat substrates on a support
US5366585A (en) * 1993-01-28 1994-11-22 Applied Materials, Inc. Method and apparatus for protection of conductive surfaces in a plasma processing reactor
JP2662365B2 (ja) * 1993-01-28 1997-10-08 アプライド マテリアルズ インコーポレイテッド 改良された排出システムを有する単一基板式の真空処理装置
US5571571A (en) * 1993-06-16 1996-11-05 Applied Materials, Inc. Method of forming a thin film for a semiconductor device
TW262566B (zh) * 1993-07-02 1995-11-11 Tokyo Electron Co Ltd
JP3174438B2 (ja) * 1993-08-03 2001-06-11 松下電器産業株式会社 プラズマcvd方法
JP2641385B2 (ja) * 1993-09-24 1997-08-13 アプライド マテリアルズ インコーポレイテッド 膜形成方法
US5565036A (en) * 1994-01-19 1996-10-15 Tel America, Inc. Apparatus and method for igniting plasma in a process module
US5441768A (en) * 1994-02-08 1995-08-15 Applied Materials, Inc. Multi-step chemical vapor deposition method for thin film transistors
JPH07254592A (ja) * 1994-03-16 1995-10-03 Fujitsu Ltd 半導体装置の製造方法
US5558717A (en) * 1994-11-30 1996-09-24 Applied Materials CVD Processing chamber
JPH08162291A (ja) * 1994-12-08 1996-06-21 Mitsubishi Electric Corp プラズマ装置
JPH08306670A (ja) * 1995-05-09 1996-11-22 Sony Corp プラズマアッシング装置
JPH1079350A (ja) * 1996-09-04 1998-03-24 Kokusai Electric Co Ltd プラズマ処理装置

Also Published As

Publication number Publication date
EP1019563A1 (en) 2000-07-19
KR100783200B1 (ko) 2007-12-06
KR100557666B1 (ko) 2006-03-10
JP2001520457A (ja) 2001-10-30
JP4371576B2 (ja) 2009-11-25
US6024044A (en) 2000-02-15
WO1999019537A9 (en) 1999-07-29
TW438901B (en) 2001-06-07
CN1274395A (zh) 2000-11-22
KR20060007448A (ko) 2006-01-24
WO1999019537A1 (en) 1999-04-22
KR20010030991A (ko) 2001-04-16

Similar Documents

Publication Publication Date Title
CN1113978C (zh) 用于沉积薄膜的双频等离子激发
US6359250B1 (en) RF matching network with distributed outputs
US6383896B1 (en) Thin film forming method and thin film forming apparatus
US8097120B2 (en) Process tuning gas injection from the substrate edge
US8297225B2 (en) Capacitive CVD reactor and methods for plasma CVD process
US20010003014A1 (en) Plasma CVD apparatus and plasma CVD method
JP5659225B2 (ja) プラズマ堆積ソースおよび薄膜を堆積させるための方法
CN1313640C (zh) 等离子体增强式化学气相沉积处理方法
CN116568862A (zh) 陈化处理腔室的方法
JPH1116843A (ja) 電子デバイス製造装置
KR200490445Y1 (ko) 분리된 가스 피드 라인들을 갖는 플라즈마 프로세스 챔버
JP3143649U (ja) スロット電極
JPS6369981A (ja) プラズマ化学処理によって層を形成する方法および装置
US20200098549A1 (en) Heat conductive spacer for plasma processing chamber
JPH0590939U (ja) プラズマcvd装置
US20230272530A1 (en) Large-area high-density plasma processing chamber for flat panel displays
JPH0891987A (ja) プラズマ化学蒸着装置
Alexandrov et al. A study of remote plasma enhanced CVD of silicon nitride films
JP2018076604A (ja) プラズマcvd装置及びプラズマcvd法
JPH0620978A (ja) グロー放電方法及びグロー放電装置
JP2000306910A (ja) 層間絶縁膜の作製方法
JPH09172010A (ja) 層間絶縁膜
JPS61216435A (ja) プラズマcvd装置
JPH06283436A (ja) プラズマcvd法及びプラズマcvd装置
JP2000311896A (ja) 層間絶縁膜の作製方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20030709