CN111370783A - 一种高性能水系氯离子电池及其制备方法 - Google Patents

一种高性能水系氯离子电池及其制备方法 Download PDF

Info

Publication number
CN111370783A
CN111370783A CN202010268938.7A CN202010268938A CN111370783A CN 111370783 A CN111370783 A CN 111370783A CN 202010268938 A CN202010268938 A CN 202010268938A CN 111370783 A CN111370783 A CN 111370783A
Authority
CN
China
Prior art keywords
ion battery
chloride ion
electrolyte
performance
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010268938.7A
Other languages
English (en)
Other versions
CN111370783B (zh
Inventor
李明强
李彤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Xingyuan Liquid Flow Battery Co ltd
Original Assignee
Dalian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian University of Technology filed Critical Dalian University of Technology
Priority to CN202010268938.7A priority Critical patent/CN111370783B/zh
Publication of CN111370783A publication Critical patent/CN111370783A/zh
Application granted granted Critical
Publication of CN111370783B publication Critical patent/CN111370783B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/365Zinc-halogen accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/36Accumulators not provided for in groups H01M10/05-H01M10/34
    • H01M10/38Construction or manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2220/00Batteries for particular applications
    • H01M2220/10Batteries in stationary systems, e.g. emergency power source in plant
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明提供一种高性能水系氯离子电池及其制备方法,属于电池领域。所述高性能水系氯离子电池的正极活性物质为石墨烯、碳纳米管或炭黑,负极材料为锌箔,电解液是饱和四甲基氯化铵水溶液。本发明首次提出将碳材料(石墨烯、碳纳米管、炭黑)作为氯离子电池的正极材料,并将盐包水电解质概念应用到氯离子电池中,当使用金属锌箔作为负极组装成新型的氯离子电池时,电池具有高达2.7V的放电平台。相比于传统的氯离子电池,新型的氯离子电池不存在电极材料在电解质中溶解的问题,电池的寿命有了极大的提高。同时,新型氯离子电池的电极片和电解液制备简单,电解液绿色、安全,具有很大的应用价值和市场前景。

Description

一种高性能水系氯离子电池及其制备方法
技术领域
本发明属于电池领域,提供一种高性能水系氯离子电池及其制备方法。
背景技术
随着电化学储能技术的快速发展,锂离子电池的能量密度逐渐接近其理论值,再加上地球上的锂资源有限,需要开发新的电池技术以满足大规模储能的需求。氯离子电池由于具有高达2500Wh/L的理论体积能量密度,同时地球上的氯资源储量丰富,而被视为下一代电池的有力竞争者。目前所研究的氯离子电池主要由金属氯化物和金属氯化物正极,离子液体和金属负极组成。其存在电极材料在电解液中溶解的问题,这导致了电池循环稳定性差,电池寿命低,从而制约了其在储能领域的发展。因此,开发性能优异的正极材料以及与其兼容的电解质是氯离子电池发展的关键。
发明内容
基于上述问题,我们提出使用碳材料(石墨烯,碳纳米管和炭黑)作为氯离子电池的正极,金属锌做负极,并应用“盐包水”的概念来扩大氯离子水性电解质的稳定性窗口。在这种“盐包水”电解质体系下,电池的放电平台高达2.7V。同时,碳正极表现出良好的循环稳定性和电化学性能,当炭黑与碳纳米管作为正极材料时,电池的循环寿命为1000次,当石墨烯作为正极材料时,电池在2000次循环后没有明显的容量衰减。其充放电机理为,电池充电时,Cl-离子嵌入到正极碳材料中,发生插层反应;电池放电时,Cl-离子则正极碳材料中脱出并沉积到负极金属锌表面。
为达到上述目的,本发明采用的技术方案是:
一种高性能水系氯离子电池,所述高性能水系氯离子电池的正极活性物质为石墨烯、碳纳米管或炭黑,负极材料为锌箔,电解液是饱和四甲基氯化铵水溶液。
一种高性能水系氯离子电池的制备方法,步骤如下:
(1)用石墨箔做集流体,将正极活性物质和粘结剂按照一定的质量比混合,然后缓慢滴入N-甲基吡咯烷酮(NMP),研磨成均匀的浆料并将其涂抹在石墨箔上,然后放在真空干燥箱中干燥,制得正极片。其中,所述的粘结剂包括聚偏氟乙烯(PVDF)、聚乙烯醇(PVA)、聚四氟乙烯(PTFE);正极活性物质与粘结剂的质量比为10~15:1;正极活性物质与N-甲基吡咯烷酮的质量比为1:5~10;所述的正极活性物质为石墨烯、碳纳米管或炭黑;
(2)用去离子水做溶剂,四甲基氯化铵做溶质,制备的饱和四甲基氯化铵水溶液作为电解液;
(3)用锌箔作为负极片,组装成软包电池。
所述的真空干燥箱中干燥的条件为:温度为50℃~80℃,时间为6~15h。
本发明的有益效果是:本发明首次提出将碳材料(石墨烯、碳纳米管、炭黑)作为氯离子电池的正极材料,并将盐包水电解质概念应用到氯离子电池中,当使用金属锌箔作为负极组装成新型的氯离子电池时,电池具有高达2.7V的放电平台。相比于传统的氯离子电池,新型的氯离子电池不存在电极材料在电解质中溶解的问题,电池的寿命有了极大的提高。同时,新型氯离子电池的电极片和电解液制备简单,电解液绿色、安全,具有很大的应用价值和市场前景。
附图说明
图1为电池的充放电曲线。
图2为石墨烯作为正极材料时,电池的循环寿命。
图3为电池充电完全状态下,氯离子插层正极炭黑材料的X射线光电子能谱分析(XPS)图。其中(a)为主图,(b)、(c)、(d)分别为氯、炭、氧三种元素分峰图。
具体实施方式
以下对本发明做进一步说明。
实施例1
将10mg石墨烯和1mg聚偏氟乙烯(PVDF)均匀混合,然后缓慢滴入50mgN-甲基吡咯烷酮(NMP),研磨成均匀的浆料。最后将浆料涂抹在50微米厚,面积为2.5cm*2.5cm的石墨箔上,放在真空干燥箱中60℃干燥12h,制得正极片。将6g四甲基氯化铵溶于10ml去离子水中,配制成饱和溶液作为电解液,选取面积为2.5cm*2.5cm、厚度为50微米的锌箔作为电池的负极,组装成软包电池。
实施例2
将12mg碳纳米管和1mg聚偏氟乙烯(PVDF)均匀混合,然后缓慢滴入60mg N-甲基吡咯烷酮(NMP),研磨成均匀的浆料。最后将浆料涂抹在50微米厚,面积为2.5cm*2.5cm的石墨箔上,放在真空干燥箱中70℃干燥10h,制得正极片。将6g四甲基氯化铵溶于10ml去离子水中,配制成饱和溶液作为电解液,选取面积为2.5cm*2.5cm、厚度为50微米的锌箔作为电池的负极,组装成软包电池。
实施例3
将10mg炭黑和1mg聚偏氟乙烯(PVDF)均匀混合,然后缓慢滴入60mg N-甲基吡咯烷酮(NMP),研磨成均匀的浆料。最后将浆料涂抹在50微米厚,面积为2.5cm*2.5cm的石墨箔上,放在真空干燥箱中60℃干燥12h,制得正极片。将6g四甲基氯化铵溶于10ml去离子水中,配制成饱和溶液作为电解液,选取面积为2.5cm*2.5cm、厚度为50微米的锌箔作为电池的负极,组装成软包电池。

Claims (9)

1.一种高性能水系氯离子电池,其特征在于,所述高性能水系氯离子电池的正极活性物质为石墨烯、碳纳米管或炭黑,负极材料为锌箔,电解液是饱和四甲基氯化铵水溶液。
2.一种高性能水系氯离子电池的制备方法,其特征在于,步骤如下:
(1)用石墨箔做集流体,将正极活性物质和粘结剂按照一定的质量比混合,然后缓慢滴入N-甲基吡咯烷酮,研磨成均匀的浆料并将其涂抹在石墨箔上,然后放在真空干燥箱中干燥,制得正极片;所述的正极活性物质为石墨烯、碳纳米管或炭黑;
(2)用去离子水做溶剂,四甲基氯化铵做溶质,制备的饱和四甲基氯化铵水溶液作为电解液;
(3)用锌箔作为负极片,组装成软包电池。
3.根据权利要求2所述的一种高性能水系氯离子电池的制备方法,其特征在于,所述的粘结剂包括聚偏氟乙烯、聚乙烯醇、聚四氟乙烯。
4.根据权利要求2或3所述的一种高性能水系氯离子电池的制备方法,其特征在于,正极活性物质与粘结剂的质量比为10~15:1。
5.根据权利要求2或3所述的一种高性能水系氯离子电池的制备方法,其特征在于,正极活性物质与N-甲基吡咯烷酮的质量比为1:5~10。
6.根据权利要求4所述的一种高性能水系氯离子电池的制备方法,其特征在于,正极活性物质与N-甲基吡咯烷酮的质量比为1:5~10。
7.根据权利要求2、3或6所述的一种高性能水系氯离子电池的制备方法,其特征在于,所述的真空干燥箱中干燥的条件为:温度为50℃~80℃,时间为6~15h。
8.根据权利要求4所述的一种高性能水系氯离子电池的制备方法,其特征在于,所述的真空干燥箱中干燥的条件为:温度为50℃~80℃,时间为6~15h。
9.根据权利要求5所述的一种高性能水系氯离子电池的制备方法,其特征在于,所述的真空干燥箱中干燥的条件为:温度为50℃~80℃,时间为6~15h。
CN202010268938.7A 2020-04-08 2020-04-08 一种高性能水系氯离子电池及其制备方法 Active CN111370783B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010268938.7A CN111370783B (zh) 2020-04-08 2020-04-08 一种高性能水系氯离子电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010268938.7A CN111370783B (zh) 2020-04-08 2020-04-08 一种高性能水系氯离子电池及其制备方法

Publications (2)

Publication Number Publication Date
CN111370783A true CN111370783A (zh) 2020-07-03
CN111370783B CN111370783B (zh) 2021-04-20

Family

ID=71207180

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010268938.7A Active CN111370783B (zh) 2020-04-08 2020-04-08 一种高性能水系氯离子电池及其制备方法

Country Status (1)

Country Link
CN (1) CN111370783B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112151795A (zh) * 2020-09-07 2020-12-29 中国科学院深圳先进技术研究院 正极活性材料、正极和二次电池
CN113140809A (zh) * 2021-04-22 2021-07-20 大连理工大学 一种基于二维材料MoS2下的高性能可充电溴离子电池及其制备方法
CN115101831A (zh) * 2022-07-05 2022-09-23 大连理工大学 一种基于盐包水电解质的长寿命水系氟离子电池及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61218060A (ja) * 1985-03-25 1986-09-27 Kanebo Ltd 有機電解質電池
CN2063298U (zh) * 1990-03-31 1990-10-03 刘聚斌 水电池
WO2011137239A1 (en) * 2010-04-28 2011-11-03 Flexel, Llc A thin flexible electrochemical energy cell
WO2017070340A1 (en) * 2015-10-21 2017-04-27 Research Foundation Of The City University Of New York Additive for increasing lifespan of rechargeable zinc-anode batteries
CN106981371A (zh) * 2016-01-15 2017-07-25 黄潮 一种水系电解质超级电容电池
CN108807910A (zh) * 2018-06-13 2018-11-13 深圳市寒暑科技新能源有限公司 一种水系锌离子电池
CN109155444A (zh) * 2014-10-06 2019-01-04 Eos能源储存有限责任公司 用于可再充电电化学电池的电解质
CN110534726A (zh) * 2019-08-26 2019-12-03 大连理工大学 一种碘钾双离子电池及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61218060A (ja) * 1985-03-25 1986-09-27 Kanebo Ltd 有機電解質電池
CN2063298U (zh) * 1990-03-31 1990-10-03 刘聚斌 水电池
WO2011137239A1 (en) * 2010-04-28 2011-11-03 Flexel, Llc A thin flexible electrochemical energy cell
CN102959769A (zh) * 2010-04-28 2013-03-06 弗莱克赛尔有限责任公司 薄的柔性电化学能量电池
CN109155444A (zh) * 2014-10-06 2019-01-04 Eos能源储存有限责任公司 用于可再充电电化学电池的电解质
WO2017070340A1 (en) * 2015-10-21 2017-04-27 Research Foundation Of The City University Of New York Additive for increasing lifespan of rechargeable zinc-anode batteries
US20180316064A1 (en) * 2015-10-21 2018-11-01 Research Foundation Of The City University Of New New York Additive for Increasing Lifespan of Rechargeable Zinc-Anode Batteries
CN106981371A (zh) * 2016-01-15 2017-07-25 黄潮 一种水系电解质超级电容电池
CN108807910A (zh) * 2018-06-13 2018-11-13 深圳市寒暑科技新能源有限公司 一种水系锌离子电池
CN110534726A (zh) * 2019-08-26 2019-12-03 大连理工大学 一种碘钾双离子电池及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FABIENNE GSCHWIND ET AL.: "Facile Preparation of Chloride-Conducting Membranes:First Step towards a Room-Temperature Solid-State Chloride-Ion Battery", 《CHEMISTRYOPEN》 *
FABIENNE GSCHWIND,HOLGER EUCHNER,GONZALO RODRIGUEZ-GARCIA: "Chloride Ion Battery Review: Theoretical Calculations, State of the Art, Safety, Toxicity, and an Outlook towards Future Developments", 《 EUROPEAN JOURNAL OF INORGANIC CHEMISTRY》 *
赵相玉,沈晓冬: "基于氯离子传导的新型二次电池", 《中国材料进展》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112151795A (zh) * 2020-09-07 2020-12-29 中国科学院深圳先进技术研究院 正极活性材料、正极和二次电池
CN113140809A (zh) * 2021-04-22 2021-07-20 大连理工大学 一种基于二维材料MoS2下的高性能可充电溴离子电池及其制备方法
CN115101831A (zh) * 2022-07-05 2022-09-23 大连理工大学 一种基于盐包水电解质的长寿命水系氟离子电池及其制备方法
CN115101831B (zh) * 2022-07-05 2024-05-14 大连理工大学 一种基于盐包水电解质的长寿命水系氟离子电池及其制备方法

Also Published As

Publication number Publication date
CN111370783B (zh) 2021-04-20

Similar Documents

Publication Publication Date Title
CN111384381B (zh) 一种锂离子电池用硅@碳/MXene三元复合材料及其制备方法
CN106229498B (zh) 一种适用于水系金属离子电池的负极材料及其制备方法
CN111370783B (zh) 一种高性能水系氯离子电池及其制备方法
CN108269978B (zh) 量子点/碳管载硫复合正极材料及其制备方法与应用
WO2012146046A1 (zh) 一种聚酰亚胺电容电池及其制作方法
CN113594415B (zh) 抑制锂硫电池穿梭效应的三明治独立正极及其制备方法
CN109103399A (zh) 一种锂硫电池用功能性隔膜及其制备方法和在锂硫电池中的应用
CN112687865A (zh) 一种锂离子电池负极浆料、其制备方法和用途
CN111129489B (zh) 一种石墨烯基硫化锑负极材料及其制备方法和应用
US20240063361A1 (en) Negative electrode, preparation method therefor, and application thereof
CN111934020B (zh) 一种耐高压全固态锂电池界面层及其原位制备方法和应用
CN212907803U (zh) 一种高倍率充放电的锂离子电池
CN108400292A (zh) 一种铋单质纳米片复合电极的制备方法及其应用
CN107978736B (zh) 金属合金/碳管/石墨烯载硫复合正极材料及其制备方法与应用
CN112259927A (zh) 一种复合氧化还原石墨烯的锂硫电池隔膜及其制备方法
CN111081971B (zh) 水系锌离子电池的电极的制备方法、电极与电池
CN107331830B (zh) 一种锂硫电池的复合正极及其制备方法
CN111082161A (zh) 一种混合系钠二氧化碳二次电池及其制备方法
CN108666533B (zh) 一种锂硫电池硫电极的制备方法及应用
CN113285050A (zh) 一种Li-M-X基固态锂电池正极及其制备方法
CN114094096B (zh) 在磷酸钛钠负极材料表面形成保护性聚合物膜方法及其制品、应用
CN109659475A (zh) 一种高性能高压锂离子电池的制备方法
CN112002934B (zh) 一种可充电硫离子电池及其制备方法
CN117613250B (zh) 三维导电铅碳复合材料及其制备方法、负极、铅酸电池
CN113140809B (zh) 一种基于二维材料MoS2下的高性能可充电溴离子电池及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20240512

Address after: 116011 No.106, Building 57A-1, Tongqing Street, Xigang District, Dalian City, Liaoning Province

Patentee after: Dalian Xingyuan Liquid Flow Battery Co.,Ltd.

Country or region after: China

Address before: 116024 No. 2 Ling Road, Ganjingzi District, Liaoning, Dalian

Patentee before: DALIAN University OF TECHNOLOGY

Country or region before: China