CN111370194A - 一种铁硅铝软磁粉末的制备方法 - Google Patents

一种铁硅铝软磁粉末的制备方法 Download PDF

Info

Publication number
CN111370194A
CN111370194A CN201911294975.9A CN201911294975A CN111370194A CN 111370194 A CN111370194 A CN 111370194A CN 201911294975 A CN201911294975 A CN 201911294975A CN 111370194 A CN111370194 A CN 111370194A
Authority
CN
China
Prior art keywords
soft magnetic
magnetic powder
powder
iron
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911294975.9A
Other languages
English (en)
Other versions
CN111370194B (zh
Inventor
李军华
孙永阳
金志洪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hengdian Group DMEGC Magnetics Co Ltd
Original Assignee
Hengdian Group DMEGC Magnetics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hengdian Group DMEGC Magnetics Co Ltd filed Critical Hengdian Group DMEGC Magnetics Co Ltd
Priority to CN201911294975.9A priority Critical patent/CN111370194B/zh
Publication of CN111370194A publication Critical patent/CN111370194A/zh
Application granted granted Critical
Publication of CN111370194B publication Critical patent/CN111370194B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • H01F1/14766Fe-Si based alloys
    • H01F1/14791Fe-Si-Al based alloys, e.g. Sendust
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/20Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder
    • H01F1/22Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys in the form of particles, e.g. powder pressed, sintered, or bound together
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及金属基软磁材料技术领域,为解决传统铁硅铝软磁粉末制备工艺要求苛刻、路线复杂、能耗高、磁粉综合性能不佳的问题,提供了一种铁硅铝软磁粉末的制备方法,包括以下步骤:(1)在铁红和硅铁粉中加入分散剂和弥散剂,混合均匀,得料浆;(2)喷雾造粒;(3)热处理;(4)还原热处理;(5)加入铝粒、金属钙和溃散剂,高温烧结,得铁硅铝合金块;(6)水中一次洗涤,磷酸溶液中二次洗涤,真空干燥,退火,冷却、过筛,即得铁硅铝软磁粉末。本发明的制备工艺成本低、对设备无特殊要求、工艺条件易于控制、能耗低;铁硅铝软磁粉末具有粒径细、粒径分布好、综合磁性能好的优点,损耗性能尤佳,是制造磁粉芯的理想原料粉。

Description

一种铁硅铝软磁粉末的制备方法
技术领域
本发明涉及金属基软磁材料技术领域,尤其涉及一种铁硅铝软磁粉末的制备方法。
背景技术
软磁材料是现代经济社会发展中一类重要的基础性功能材料,软磁材料在器件中起到能量传递转换和耦合的作用,具备电磁转换功能,因而广泛用于通讯、电力设备、信息技术、自动控制等领域。软磁材料又可以分为金属软磁材料、软磁复合材料、铁氧体软磁材料。其中软磁复合材料即由金属软磁粉末颗粒经过绝缘包覆、退火、压制成型等工艺制备成不同形状的磁粉芯。因此金属软磁粉末的制造技术是制备性能良好的磁粉芯的基础。
铁硅铝软磁材料金属软磁材料的一种,一定比例成分的铁硅铝合金的磁致伸缩系数和磁晶各项异性系数都近乎接近于零,合金矫顽力低,具有较小的磁滞损耗。铁硅铝软磁材料在一定频率内具有恒磁导率并且无噪音,不含有贵金属,具有很高的性价比。因此在线路滤波器、噪音滤波器、储能电感等领域应用十分广泛,是一类十分重要的金属软磁材料。
目前制备铁硅铝软磁粉的方法主要有铸锭法、水雾化法、气雾化法、速冷法。铸锭法是铸锭好的块状合金通过多级破碎将合金细粉碎化得到合金粉末,该方法工艺周期长、工艺成本高。水雾化法利用高压水流作用于熔融的金属合金,发生喷射雾化,使得金属合金形成细粉,该法生产周期较短,成本较铸锭法低,但制备的合金粉形状不够规则、直流偏置性能较差、损耗较高。气雾化法是利用具有一定气压及流速的惰性气流作用于熔融的金属合金流,气流的动能转化为液态金属合金的表面能,使得金属合金破碎能细小的金属液滴而快速冷却凝固得到合金粉末。该法制备的合金粉末呈规则的球形,损耗较水雾化法低,但粉末磁导率较水雾化法低。速冷法是将熔融后的母合金浇铸在水冷的铜棍上得到薄片的微晶带材,再经过球磨细粉碎得到合金粉末,该法工艺复杂,成本较高。目前使用较为广泛的是气雾化法和水雾化法。铁硅铝磁芯具有较的高饱和磁感应强度、高磁导率、良好的直流叠加特性,且在高频条件下损耗较低、温升小等特点是金属软磁材料中用量较大的一类。
中国专利文献上公开了“一种μ40铁硅铝磁粉芯的制造方法”,其申请公布号为CN102303116A,该发明利用真空中频感应炉铸锭成铁硅铝合金,将合金破碎成20mm以下的料块,进行热处理后再用颚式破碎机破碎后用振磨机破碎成80目以下铁硅铝合金粉末,经过退火处理、粉末分级、粉末绝缘、压制成型、二次热处理、涂层后得到铁硅铝磁粉芯。该法是采用铸锭法制备的铁硅铝合金粉末,粉末呈现不规则形状,边角尖锐影响后面粉末绝缘工艺进而影响磁粉芯的磁性能,该法工艺设备复杂成本也较高。
中国专利文献上公开了“一种气雾化铁硅铝粉的制备方法”,其申请公布号为CN109317688A,该发明利用两台熔炼炉分别熔炼一定比例的铁硅合金和铝,熔炼到一定温度后在浇注的一个中间包中,混合熔体通过漏嘴导入气化室,利用高压氮气将金属熔体击碎并冷却制备成铁硅铝粉末。该法是利用气雾化制备铁硅铝粉,并且用了非真空中频熔炼炉,制得的粉氧含量还是较高了,需用的多台熔炼炉,工艺成本高,两种熔体混合较难控制成本均匀一致性,对磁性能产生影响。
中国专利文献上公开了“一种高磁导率低功耗磁粉芯用铁硅铝合金粉末的制造方法”,其申请公布号为CN103060677A,该发明采用一种保护剂覆盖非真空中频感应电炉,熔炼铁硅铝合金后利用超高压水雾化装置雾化成合金粉末,经过退火处理后得到合金粉末。该法是属于水雾化制备铁硅铝粉,氧含量还是较高,损耗不够理想。
发明内容
本发明为了克服传统铁硅铝软磁粉末制备工艺要求苛刻、路线复杂、能耗高、磁粉综合性能不佳的问题,提供了一种成本低、对设备无特殊要求、工艺条件易于控制、能耗低、磁粉性能好的铁硅铝软磁粉末的制备方法。
为了实现上述目的,本发明采用以下技术方案:
一种铁硅铝软磁粉末的制备方法,包括以下步骤:
(1)在铁红和硅铁粉中加入分散剂和弥散剂,混合均匀,得料浆;该步骤所述混合是将原料通过研磨混合均匀,混合设备可以为砂磨机或球磨机;硅源优选为硅铁粉,一方面基于材料成本,另一方面由于硅铁的熔点大大低于硅熔点,有利于在较低的烧结温度下进行固相扩散反应,有利于降低能耗;
(2)将料浆进行喷雾造粒,得造粒料;
(3)将造粒料于惰性气氛中进行热处理;热处理是为了将混合均匀后的两种物相更好的结合,促进晶粒相互融合,热处理设备可以是钟罩炉或者推板窑,能进行惰性气体保护的设备即可;
(4)将步骤(3)处理后的造粒料于还原气体气氛中还原热处理,得粉料;还原热处理是将混合均匀的料中的氧化铁还原成金属铁,还原介质可以是纯氢气、一氧化碳、氨气分解气等还原性气体;还原设备可以是能够通还原气氛的回转窑也可以是真空管式炉;
(5)在粉料中加入铝粒、金属钙和溃散剂,混合均匀后进行高温烧结,冷却后,得铁硅铝合金块;高温烧结是将还原后的金属铁、硅、铝进行固相扩散合金化反应,利用金属钙还原剂对剩余未还原完成的氧化铁进行还原扩散反应;溃散剂的加入是为了高温烧结后的多孔块状合金在溃散剂放入水中后与水快速反应使得块合金能迅速溃散变为细粉末颗粒;
(6)将铁硅铝合金块投入水中一次洗涤,然后投入到磷酸溶液中二次洗涤,真空干燥后,退火,冷却、过筛,即得铁硅铝软磁粉末;洗涤的作用是将高温固相扩散反应后的还原剂去除,金属钙还原后变成氧化钙,一次洗涤时,氧化钙遇水变成氢氧化钙而与粉末相互分离,溃散后形成的浆料反复用水洗涤并除去上层氢氧化物,可以将大部分氢氧化物去除掉,再将上述浆料投入磷酸溶液中二次洗涤,既可以除去剩余的氢氧化物又可以对铁硅铝合金起到预钝化的作用,避免粉料的氧化。洗涤过程重复进行以下步骤:将混合液搅拌,静置后除去上层白色液体。
本发明提供一种新颖的制备铁硅铝软磁粉末的方法,相比现有的制粉方法,本方法具有所需装备简单,无需熔炼设备,工艺成本更低,制备的磁粉既非雾化法的球形也非铸锭法的尖锐不规则形,而是介于两者之间,既能满足压制成型高密度制造高磁导率的需求,又能避免绝缘包覆时尖锐形刺破包覆层所带来的电阻率下降影响磁性能,同时该法制备的粉料具有更细的粒度,因此损耗性能尤佳,是制造磁粉芯的理想原料粉。
作为优选,步骤(1)中,所述铁红的粒径D50为3~10μm,纯度≥99%。
作为优选,步骤(1)中,所述硅铁粉的铁含量为15~75%;所述硅铁粉中硅铁总含量≥99%。
步骤(6)中,所述铁硅铝软磁粉末由以下质量百分含量的组分组成:9.0~9.6%硅,铝5.0~5.5%,铁余量;所述铁红、硅铁粉和铝粒的添加量按照铁硅铝软磁粉末的成分比例确定。
作为优选,步骤(1)中,所述硅铁粉的目数为500~1000目;更优选为1000目,该目数与铁红的粒度相匹配。
作为优选,步骤(1)中,所述料浆的粒径D50为1~3μm。
作为优选,步骤(1)中,所述分散剂选自葡萄糖酸钙、山梨糖醇、聚丙烯酸中的一种或两种。
作为优选,步骤(1)中,所述分散剂在料浆中的添加量为0.1~1wt%。分散剂的添加量过多,在烧结工序中可能会存在部分残留在分散剂粉体中,影响磁性能;分散剂的添加量过少,会降低浆料粉体的表面能,起不到助磨效果。
作为优选,步骤(1)中,所述弥散剂选自水和乙醇中的一种或两种。弥散剂在反应体系中作为混合介质使用。
作为优选,步骤(1)中,所述弥散剂的添加量为料浆总质量的1~3倍。
作为优选,步骤(3)中,热处理过程中控制体系氧含量≦500PPM。
作为优选,步骤(3)中,热处理过程按照以下温度曲线进行:
室温~100℃升温时间10~60min,100℃保温10~100min;
100~300℃升温时间10~100min,300℃保温10~100min;
300~1200℃升温时间200~500min,1200℃保温时间10~120min,1200℃降温至室温。
作为优选,步骤(4)中,还原热处理的温度为400~600℃,温度太低还原作用弱,氧化铁还原成金属的还原率低,温度过高,晶粒长大程度会加剧,不利于最后粉料的粒度控制;氧化铁的还原率可以通过氧含量测试仪进行测试,还原热处理后所得粉料的氧含量≦10wt%。
作为优选,步骤(5)中,高温烧结的温度为1000~1500℃,时间为1~10h。
作为优选,步骤(5)中,所述铝粒的粒径为1~8mm;所述金属钙的使用量为反应当量的1.1~1.5倍,该使用量是基于金属钙有一定的挥发量,钙加入过多造成浪费,增加经济成本,过少则不能完全将剩余的氧化铁还原为金属铁。
作为优选,步骤(5)中,所述溃散剂为氧化钙或氯化钙;所述溃散剂在粉料中的添加量为0.1~5wt%。
作为优选,步骤(6)中,直接将铁硅铝合金块投入磷酸溶液洗涤,无一次洗涤工序,直接利用磷酸溶液中的水与氧化钙反应,节约用水量,降低生产成本。
作为优选,步骤(6)中,将铁硅铝合金块于磷酸溶液、水、磷酸溶液中交替洗涤。交替洗涤,洗涤效果更佳。
作为优选,步骤(6)中,所述磷酸溶液的浓度为0.1~1.5wt%;磷酸溶液浓度过低会导致氢氧化物反应不完全,带入杂质影响合金粉末磁性能,磷酸溶液浓度过高,反应剧烈,会大量消耗合金粉末,产率低。将合金块投入上述浓度范围内的低浓度的磷酸溶液中,可以边钝化,边反应掉氢氧化物,同时有效防止粉末在水中缓慢氧化。
因此,本发明具有如下有益效果:
(1)本发明的制备工艺成本低、对设备无特殊要求、工艺条件易于控制、能耗低,十分适合大批量生产;
(2)采用本发明的制备工艺制得的铁硅铝软磁粉末具有粒径细、粒径分布好、综合磁性能好的优点,损耗性能尤佳,是制造铁硅铝磁粉芯的理想原料粉。
具体实施方式
下面通过具体实施例,对本发明的技术方案作进一步具体的说明。
在本发明中,若非特指,所有设备和原料均可从市场购得或是本行业常用的,下述实施例中的方法,如无特别说明,均为本领域常规方法。
实施例1
(1)将纯度99%、粒径D50为3μm的氧化铁红和1000目的铁含量75%SiFe粉末(硅铁总含量≥99%)按照最终铁硅铝软磁粉末(9.6%硅,铝5.0%,剩余为铁)成分的比例称重后加入砂磨机中,另外再加入料浆总质量0.8%的山梨糖醇作为分散剂,加入砂磨机容积60%的水作为弥散剂,砂磨5h后,得粒径D50为1μm的料浆;
(2)将料浆通过泵打入喷雾塔中进行喷雾造粒,得造粒料;
(3)将造粒料装入匣钵放入钟罩炉中,钟罩炉抽除空气后充入氮气进行热处理,处理温度曲线为室温-100℃升温时间50min,100℃保温10min,100℃-300℃升温时间60min,300℃保温60min,300℃-1200℃升温时间400min,1200℃保温时间100min,1200℃保温后至室温随炉冷却;热处理过程中控制体系氧含量≦500PPM;
(4)将热处理得到的粉末放入回转窑中,抽真空后充入氢气,窑转速1转/min,还原热处理温度500℃,处理5h后得粉料,将粉料随炉冷后取出,检测氧含量为8%;
(5)将粉料、1.2倍反应当量的钙、占粉料0.5wt%的氧化钙,粒径为2mm的铝粒,用混料机混合均匀后放入真空炉内进行高温固相扩散反应,真空炉设置温度为1300℃,保温时间5h,然后随炉冷却,得铁硅铝合金块;
(6)将铁硅铝合金块投入0.1%磷酸水溶液中,溃散后形成的浆料反复用水洗涤并除去上层氢氧化物,去掉大部分氢氧化物,然后再将其放入0.9%的磷酸溶液中去除剩余的氢氧化物,并在合金粉末表面形成钝化层,经真空干燥后,将粉在氢气气氛真空炉内600℃还原2h退火去应力,将粉过100目筛后,得到铁硅铝软磁粉末。
实施例2
(1)将纯度99%、粒径D50为10μm的氧化铁红和500目的铁含量15%SiFe粉末(硅铁总含量≥99%)按照最终铁硅铝软磁粉末(9.0%硅,铝5.5%,剩余为铁)成分的比例称重后加入砂磨机中,另外再加入料浆总质量0.8%的聚丙烯酸和0.2%的葡萄糖酸钙作为分散剂,加入砂磨机容积60%的水作为弥散剂,砂磨5h后,得粒径D50为3μm的料浆;
(2)将料浆通过泵打入喷雾塔中进行喷雾造粒,得造粒料;
(3)将造粒料装入匣钵放入钟罩炉中,钟罩炉抽除空气后充入氮气进行热处理,处理温度曲线为室温-100℃升温时间50min,100℃保温60min,100℃-300℃升温时间100min,300℃保温10min,300℃-1200℃升温时间400min,1200℃保温时间10min,1200℃保温后至室温随炉冷却;热处理过程中控制体系氧含量≦500PPM;
(4)将热处理的粉末放入回转窑中,抽真空后充入氢气,窑转速1转/min,热处理温度400℃,处理5h后,得粉料;将粉料随炉冷后取出检测氧含量为10%;
(5)将粉料、1.3倍反应当量的钙、占粉料5%的氧化钙、粒径为8mm的铝粒用混料机混合均匀后放入真空炉内进行高温固相扩散反应,真空炉设置温度为1000℃,保温时间10h,然后随炉冷却,得铁硅铝合金块;
(6)将铁硅铝合金块投入水中一次洗涤,氧化钙遇水变成氢氧化钙而与粉末相互分离,溃散后形成的浆料反复用水洗涤并除去上层氢氧化物,可以将大部分氢氧化物去除掉,然后投入到1.0wt%磷酸溶液中二次洗涤,去除剩余的氢氧化物,并在合金粉末表面形成钝化层,经真空干燥后将粉在氢气气氛真空炉内600℃还原2h退火去应力,将粉过100目筛后,得到铁硅铝软磁粉末。
实施例3
(1)将纯度99%、粒径D50为8μm的氧化铁红和800目的55%SiFe粉末(硅铁总含量≥99%)按照最终铁硅铝软磁粉末(9.4%硅,铝5.4%,剩余为铁)成分的比例称重后加入砂磨机中,另外再加入料浆总质量0.1%的聚丙烯酸作为分散剂,加入砂磨机容积20%的乙醇和40%的水作为弥散剂,砂磨5h后,得粒径D50为2μm的料浆;
(2)将料浆通过泵打入喷雾塔中进行喷雾造粒,得造粒料;
(3)将造粒料装入匣钵放入钟罩炉中,钟罩炉抽除空气后充入氮气进行热处理,处理温度曲线为室温-100℃升温时间50min,100℃保温30min,100℃-300℃升温时间10min,300℃保温100min,300℃-1200℃升温时间500min,1200℃保温时间120min,1200℃保温后至室温随炉冷却;热处理过程中控制体系氧含量≦500PPM;
(4)将热处理的粉末放入回转窑中还原热处理,抽真空后充入氢气,窑转速1转/min,还原热处理温度600℃,处理5h后得粉料,将粉料随炉冷后取出检测氧含量为7.5%;
(5)将粉料、1.5倍反应当量的钙、占粉料0.1%的氯化钙、粒径为1mm的铝粒,用混料机混合均匀后放入真空炉内进行高温固相扩散反应,真空炉设置温度为1500℃,保温时间1h,然后随炉冷却,得铁硅铝合金块;
(6)将铁硅铝合金块投入1.5%磷酸水溶液洗涤,经真空干燥后将粉在氢气气氛真空炉内600℃还原2h退火去应力,将粉过100目筛后,得到铁硅铝软磁粉末。
对比例1
将工业纯铁块、多晶铁、铝块投入真空感应炉内冶炼,浇铸的硅铁合金成分为9.6%硅,铝5.4%,剩余为铁,熔炼温度为1450℃,熔炼时间1.5h,将熔炼好的合金块先进行粗破碎成小块后用颚式破碎机进行细破碎,再用振磨机破碎后在氢气气氛真空炉内1100℃还原5h退火去应力,将粉过60目筛后,得到铁硅铝软磁粉末。
对比例2
将工业纯铁块、多晶铁块、铝块投入真空感应炉内冶炼,浇铸的硅铁合金成分为9.6%硅,铝5.4%,剩余为铁,熔炼温度为1500℃,熔炼时间2h,将熔炼成液态的金属合金浇注雾化,雾化采用高纯氮气,在高压氮气的作用下浇注下来的合金液细化成小液滴,下落过程中迅速凝结成变成粉末,将雾化得到的粉在氢气气氛真空炉内1100℃还原5h退火去应力,将粉过60目筛后,得到铁硅铝软磁粉末。
将实施例1-3和对比例1-2的铁硅铝软磁粉末的性能做检测,结果如表1所示:
表1.各实施例和对比例的铁硅铝软磁粉末的性能检测结果
Figure BDA0002320268610000071
将实施例1-3和对比例1-2的铁硅铝软磁粉末通过筛分配比、表面处理、绝缘包覆、压制成型、热处理、表面涂层等工序后制得μ60的铁硅铝软磁磁粉芯,测试磁粉芯的磁性能,结果如表2所示。
表2.各实施例和对比例的所得铁硅铝软磁磁粉芯的性能检测结果
Figure BDA0002320268610000072
以上所述仅为本发明的较佳实施例,并非对本发明作任何形式上的限制,在不超出权利要求所记载的技术方案的前提下还有其它的变体及改型。

Claims (10)

1.一种铁硅铝软磁粉末的制备方法,其特征在于,包括以下步骤:
(1)在铁红和硅铁粉中加入分散剂和弥散剂,混合均匀,得料浆;
(2)将料浆进行喷雾造粒,得造粒料;
(3)将造粒料于惰性气氛中进行热处理;
(4)将步骤(3)处理后的造粒料于还原气体气氛中还原热处理,得粉料;
(5)在粉料中加入铝粒、金属钙和溃散剂,混合均匀后进行高温烧结,冷却后,得铁硅铝合金块;
(6)将铁硅铝合金块投入水中一次洗涤,然后投入到磷酸溶液中二次洗涤,真空干燥后,退火,冷却、过筛,即得铁硅铝软磁粉末。
2.根据权利要求1所述的一种铁硅铝软磁粉末的制备方法,其特征在于,步骤(1)中,所述铁红的粒径D50为3~10μm,纯度≥99%;所述硅铁粉的铁含量为15~75%;所述硅铁粉中硅铁总含量≥99%;所述硅铁粉的目数为500~1000目;所述料浆的粒径D50为1~3μm;步骤(6)中,所述铁硅铝软磁粉末由以下质量百分含量的组分组成:9.0~9.6%硅,铝5.0~5.5%,铁余量。
3.根据权利要求1所述的一种铁硅铝软磁粉末的制备方法,其特征在于,步骤(1)中,所述分散剂选自葡萄糖酸钙、山梨糖醇、聚丙烯酸中的一种或两种;所述分散剂在料浆中的添加量为0.1~1wt%。
4.根据权利要求1所述的一种铁硅铝软磁粉末的制备方法,其特征在于,步骤(1)中,所述弥散剂选自水和乙醇中的一种或两种。
5.根据权利要求1所述的一种铁硅铝软磁粉末的制备方法,其特征在于,步骤(3)中,热处理过程中控制体系氧含量≦500PPM;热处理过程按照以下温度曲线进行:
室温~100℃升温时间10~60min,100℃保温10~100min;
100~300℃升温时间10~100min,300℃保温10~100min;
300~1200℃升温时间200~500min,1200℃保温时间10~120min,1200℃降温至室温。
6.根据权利要求1所述的一种铁硅铝软磁粉末的制备方法,其特征在于,步骤(4)中,还原热处理的温度为400~600℃;所述粉料的氧含量≦10wt%。
7.根据权利要求1所述的一种铁硅铝软磁粉末的制备方法,其特征在于,步骤(5)中,高温烧结的温度为1000~1500℃,时间为1~10h;所述铝粒的粒径为1~8mm;所述金属钙的使用量为反应当量的1.1~1.5倍;所述溃散剂为氧化钙或氯化钙;所述溃散剂在粉料中的添加量为0.1~5wt%。
8.根据权利要求1所述的一种铁硅铝软磁粉末的制备方法,其特征在于,步骤(6)中,直接将铁硅铝合金块投入磷酸溶液洗涤,无一次洗涤工序。
9.根据权利要求1所述的一种铁硅铝软磁粉末的制备方法,其特征在于,步骤(6)中,将铁硅铝合金块于磷酸溶液、水、磷酸溶液中交替洗涤。
10.根据权利要求1-8任一所述的一种铁硅铝软磁粉末的制备方法,其特征在于,步骤(6)中,所述磷酸溶液的浓度为0.1~1.5wt%。
CN201911294975.9A 2019-12-16 2019-12-16 一种铁硅铝软磁粉末的制备方法 Active CN111370194B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911294975.9A CN111370194B (zh) 2019-12-16 2019-12-16 一种铁硅铝软磁粉末的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911294975.9A CN111370194B (zh) 2019-12-16 2019-12-16 一种铁硅铝软磁粉末的制备方法

Publications (2)

Publication Number Publication Date
CN111370194A true CN111370194A (zh) 2020-07-03
CN111370194B CN111370194B (zh) 2021-02-09

Family

ID=71207952

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911294975.9A Active CN111370194B (zh) 2019-12-16 2019-12-16 一种铁硅铝软磁粉末的制备方法

Country Status (1)

Country Link
CN (1) CN111370194B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113292755A (zh) * 2021-05-27 2021-08-24 浙江工业大学 一种基于蒸发自组装制备膜片的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5585656A (en) * 1978-12-22 1980-06-27 Hitachi Denshi Ltd Wear-resistant high-permeability alloy, heat treating method therefor and magnetic head using said alloy
CN86102344A (zh) * 1986-03-04 1987-09-16 住友特殊金属株式会社 生产稀土合金的方法
CN1081279A (zh) * 1992-07-07 1994-01-26 上海跃龙有色金属有限公司 稀土磁性合金粉末及其制造方法
US5482572A (en) * 1992-11-05 1996-01-09 Th. Goldschmidt Ag Method for the preparation of alloys of the rare earth metals of the SE.sub. Fe17-x TMx Ny type
CN103785847A (zh) * 2014-02-26 2014-05-14 江门市新会区宇宏科技有限责任公司 还原扩散法制造1︰12型Nd-Fe(M)-N永磁合金粉末的方法
CN104008844A (zh) * 2014-01-20 2014-08-27 横店集团东磁股份有限公司 一种软磁合金材料的制备加工方法
CN104183350A (zh) * 2014-09-10 2014-12-03 河北工程大学 单分散核/壳结构稀土永磁纳米颗粒及其制备方法
CN109680210A (zh) * 2018-12-18 2019-04-26 横店集团东磁股份有限公司 一种μ=150~250铁硅铝软磁磁粉芯的制备方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5585656A (en) * 1978-12-22 1980-06-27 Hitachi Denshi Ltd Wear-resistant high-permeability alloy, heat treating method therefor and magnetic head using said alloy
CN86102344A (zh) * 1986-03-04 1987-09-16 住友特殊金属株式会社 生产稀土合金的方法
CN1081279A (zh) * 1992-07-07 1994-01-26 上海跃龙有色金属有限公司 稀土磁性合金粉末及其制造方法
US5482572A (en) * 1992-11-05 1996-01-09 Th. Goldschmidt Ag Method for the preparation of alloys of the rare earth metals of the SE.sub. Fe17-x TMx Ny type
CN104008844A (zh) * 2014-01-20 2014-08-27 横店集团东磁股份有限公司 一种软磁合金材料的制备加工方法
CN103785847A (zh) * 2014-02-26 2014-05-14 江门市新会区宇宏科技有限责任公司 还原扩散法制造1︰12型Nd-Fe(M)-N永磁合金粉末的方法
CN104183350A (zh) * 2014-09-10 2014-12-03 河北工程大学 单分散核/壳结构稀土永磁纳米颗粒及其制备方法
CN109680210A (zh) * 2018-12-18 2019-04-26 横店集团东磁股份有限公司 一种μ=150~250铁硅铝软磁磁粉芯的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113292755A (zh) * 2021-05-27 2021-08-24 浙江工业大学 一种基于蒸发自组装制备膜片的方法

Also Published As

Publication number Publication date
CN111370194B (zh) 2021-02-09

Similar Documents

Publication Publication Date Title
WO2013075468A1 (zh) 粘结La(Fe,Si)13基磁热效应材料及其制备方法和用途
CN108274016B (zh) 一种喷雾热分解还原法直接制备钐铁合金粉末的方法
CN112530655B (zh) 一种低功耗软磁合金材料及其制备方法和应用
CN100431745C (zh) 一种软磁合金粉的制造方法
CN102280241A (zh) 一种铁硅铝软磁粉末的制造工艺
CN110963515B (zh) 一种从粉煤灰中回收氧化铝的方法
CN113528983B (zh) 铁基非晶软磁合金及其制备方法
WO2011082595A1 (zh) 一种微细球形nd-fe-b粉的制备方法
CN112582124A (zh) 烧结钐钴磁体的制备方法
CN103537684B (zh) 一种钐钴合金粉末的制备方法
CN110534282A (zh) 高磁导率铁硅铝合金粉末制备方法
CN111370194B (zh) 一种铁硅铝软磁粉末的制备方法
CN110571009A (zh) 一种铁基球化微纳磁粉芯及其制备方法
CN111375782B (zh) 一种铁镍钼软磁粉末的制备方法
CN111872414B (zh) 一种微纳米预合金粉的制备方法
CN110453156B (zh) 铁基微纳磁粉材料及其制备方法
CN111370197B (zh) 一种铁硅软磁粉末的制备方法
CN111518976A (zh) 一种利用低品位铁矿粉生产硅铝铁合金的方法
CN101710520A (zh) 高温度稳定性掺钴抗emi软磁材料及其制备方法
CN101445276B (zh) 用碳锰合金一步法生产低硒和高比表面积四氧化三锰的方法
WO2019056643A1 (zh) 一种钕铁硼复合磁性材料的生产方法
CN108409316A (zh) 一种低磁损耗磁性材料的制备方法
CN111014714B (zh) 一种集喷雾热分解与铁氧化物还原于一步的钐铁合金粉末制备方法
CN113860896A (zh) 高温精密铸造低蠕变刚玉莫来石及其制造方法
CN114284055B (zh) 一种非晶粉及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant