CN111366841B - A kind of FPGA programmable logic unit testing equipment and using method - Google Patents
A kind of FPGA programmable logic unit testing equipment and using method Download PDFInfo
- Publication number
- CN111366841B CN111366841B CN202010264339.8A CN202010264339A CN111366841B CN 111366841 B CN111366841 B CN 111366841B CN 202010264339 A CN202010264339 A CN 202010264339A CN 111366841 B CN111366841 B CN 111366841B
- Authority
- CN
- China
- Prior art keywords
- test
- fpga
- module
- tested
- clb
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/31718—Logistic aspects, e.g. binning, selection, sorting of devices under test, tester/handler interaction networks, Test management software, e.g. software for test statistics or test evaluation, yield analysis
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/317—Testing of digital circuits
- G01R31/3181—Functional testing
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B23/00—Testing or monitoring of control systems or parts thereof
- G05B23/02—Electric testing or monitoring
- G05B23/0205—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults
- G05B23/0208—Electric testing or monitoring by means of a monitoring system capable of detecting and responding to faults characterized by the configuration of the monitoring system
- G05B23/0213—Modular or universal configuration of the monitoring system, e.g. monitoring system having modules that may be combined to build monitoring program; monitoring system that can be applied to legacy systems; adaptable monitoring system; using different communication protocols
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- General Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Tests Of Electronic Circuits (AREA)
Abstract
Description
技术领域technical field
本发明属于FPGA测试领域,具体涉及一种FPGA可编程逻辑单元测试设备及使用方法。The invention belongs to the field of FPGA testing, and in particular relates to a FPGA programmable logic unit testing device and a using method.
背景技术Background technique
FPGA中90%以上的逻辑功能都是由CLB完成的。可编程逻辑单元测试包括功能测试和性能测试,CLB的功能测试包括: SLICEM中的LUT(16位寄存器,SRLC16)功能测试、SLICEM中的分布式RAM和存储器(单端口32X1位RAM,双端口16X2位 RAM)功能测试、只读存储器(ROM128X1)功能测试、触发器(D触发器/电平锁存器)、进位链测试、SRL级联测试等。性能测试包括直流参数,交流参数测试,所有功能正常工作的极限参数测试。More than 90% of the logic functions in FPGA are completed by CLB. Programmable logic unit test includes functional test and performance test. The functional test of CLB includes: LUT (16-bit register, SRLC16) functional test in SLICEM, distributed RAM and memory in SLICEM (single-port 32X1-bit RAM, dual-port 16X2 Bit RAM) function test, read-only memory (ROM128X1) function test, flip-flop (D flip-flop/level latch), carry chain test, SRL cascade test, etc. The performance test includes DC parameter, AC parameter test, and limit parameter test for all functions to work normally.
通常FPGA芯片流片回来后需要对FPGA芯片进行功能和性能的全覆盖测试,芯片的测试是FPGA芯片设计生产中相当重要的环节,芯片的测试有多种方案,例如搭建电路板连接专项测试仪器进行特定方面的功能和性能测试,使用专业的自动测试仪ATE 进行测试,或者利用FPGA 与芯片连接测试等等。Usually, after the FPGA chip is taped out, it is necessary to perform a full coverage test of the function and performance of the FPGA chip. The chip test is a very important part in the design and production of the FPGA chip. There are various schemes for the chip test, such as building a special test instrument for circuit board connection. Carry out functional and performance testing of specific aspects, use professional automatic tester ATE for testing, or use FPGA to connect with chips and so on.
在FPGA的CLB测试中包括的测试项目有:移位寄存器、D触发器、最大工作频率,模块功耗,每个项目需要对功能和性能两个方面进行测试,除去功能测试外,性能测试中的交流参数,如上升时间、下降时间、传输延迟时间是设计人员更关心的,由于ATE测试交直流参数设计原理是采用比较器的方式来对测试参数进行判决,并不能够满足CLB交直流参数测试的需求,ATE是比较器,给定的是一个空间范围,输出的是判据结果,不是直接测量出来的一个确定数值,所以不能够直接测试CLB的直接交直流参数。 此阶段采用分离测试仪器可以完全覆盖CLB 全功能和全性能测试。但与此同时为了完整的测试CLB功能和性能,需要重复下载FPGA用例,测试不同的参数,需要选用不同的测试仪器进行测试。这种测试方式导致CLB测试时存在测试时间过长,接线复杂,测试成本过高的问题。The test items included in the CLB test of the FPGA are: shift register, D flip-flop, maximum operating frequency, and module power consumption. Each item needs to test both functions and performance. Except for the functional test, in the performance test The AC parameters, such as rise time, fall time, transmission delay time, are more concerned by designers, because the design principle of ATE test AC and DC parameters is to use the comparator to judge the test parameters, which cannot meet the CLB AC and DC parameters. The test requirements, ATE is a comparator, given a spatial range, the output is the criterion result, not a definite value directly measured, so the direct AC and DC parameters of the CLB cannot be directly tested. The use of separate test instruments at this stage can completely cover the full-function and full-performance testing of the CLB. But at the same time, in order to completely test the function and performance of the CLB, it is necessary to repeatedly download the FPGA use case to test different parameters, and it is necessary to select different test instruments for testing. This test method leads to the problems of long test time, complicated wiring and high test cost during CLB test.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种FPGA可编程逻辑单元测试设备及使用方法,用于对FPGA芯片中的CLB进行功能和性能的全覆盖测试且实现测试系统的低成本、小型化。The purpose of the present invention is to provide an FPGA programmable logic unit testing device and a method for using it, which are used to perform a full coverage test of the function and performance of the CLB in the FPGA chip and realize the low cost and miniaturization of the testing system.
本发明解决其技术问题的技术方案为:一种FPGA可编程逻辑单元测试设备,包括NI PCIE 工控机、用于CLB电源拉偏测试、动态、静态功耗测试的电源模块、用于CLB交流时间参数测试的示波器模块、CLB测试板载硬件平台、板上电源、激励FPGA、有源晶振、DDR3缓存,待测FPGA,所述NI PCIE 工控机的输出端与CLB测试板载硬件平台的输入端连接,所述板上电源、激励FPGA、有源晶振、DDR3缓存、待测FPGA设置在CLB测试板载硬件平台上与CLB测试板载硬件平台连接,所述板上电源为除去待测试FPGA的整个CLB测试板载硬件平台上的电路提供电源,所述电源模块的输入端与NI PCIE 工控机的输出端连接,所述电源模块的输出端与待测FPGA的输入端连接,所述示波器模块的输入端与待测FPGA的输出端连接,所述示波器模块的输出端与NI PCIE 工控机的输入端连接。The technical solution of the present invention to solve the technical problem is as follows: an FPGA programmable logic unit testing device, including an NI PCIE industrial computer, a power supply module for CLB power supply bias testing, dynamic and static power consumption testing, and a power supply module for CLB AC time Oscilloscope module for parametric test, CLB test onboard hardware platform, onboard power supply, excitation FPGA, active crystal oscillator, DDR3 cache, FPGA to be tested, the output end of the NI PCIE industrial computer and the input end of the CLB test onboard hardware platform Connection, the on-board power supply, excitation FPGA, active crystal oscillator, DDR3 cache, and the FPGA to be tested are arranged on the CLB test on-board hardware platform to be connected to the CLB test on-board hardware platform, and the on-board power supply is to remove the FPGA to be tested. The circuit on the entire CLB test onboard hardware platform provides power, the input end of the power module is connected to the output end of the NI PCIE industrial computer, the output end of the power module is connected to the input end of the FPGA to be tested, and the oscilloscope module The input end of the oscilloscope module is connected with the output end of the FPGA to be tested, and the output end of the oscilloscope module is connected with the input end of the NI PCIE industrial computer.
为了不局限于工控机内部空间,方便测试,所述NI PCIE 工控机的输出端通过PCIE延长线与CLB测试板载硬件平台的输入端连接。In order not to be limited to the internal space of the industrial computer and to facilitate testing, the output end of the NI PCIE industrial computer is connected to the input end of the CLB test onboard hardware platform through a PCIE extension line.
为了同时对多块被测FPGA进行测试,所述NI PCIE 工控机的输出端与多块CLB测试板载硬件平台的输入端连接,最多同时支持4个CLB测试平台。In order to test multiple FPGAs under test at the same time, the output end of the NI PCIE industrial computer is connected to the input end of multiple CLB test onboard hardware platforms, and supports up to 4 CLB test platforms at the same time.
为了同时对多块被测FPGA进行测试,所述CLB测试板载硬件平台同时与多块待测FPGA连接,最多一个测试平台上安装4个测试夹具。In order to test multiple FPGAs under test at the same time, the CLB test onboard hardware platform is connected with multiple FPGAs under test at the same time, and at most four test fixtures are installed on one test platform.
所述电源模块为3U PCIE 4X电源模块,为CLB测试板载硬件平台上的待测FPGA提供所需要的电源,包括1.2V,1.0V,3.3V,2.5V,通过软件配置控制待测试FPGA的电源加电顺序,调整电源偏离,对不同电源进行拉偏测试,可以测试CLB模块的正常电源工作范围。并可用于测试模块电路的漏流、静态和动态功耗,电源模块通过安防连接线与待测试FPGA模块电源接口连接。The power supply module is a 3U PCIE 4X power supply module, which provides the required power supply for the FPGA to be tested on the CLB test onboard hardware platform, including 1.2V, 1.0V, 3.3V, 2.5V, and controls the FPGA to be tested through software configuration. The power supply sequence, adjustment of the power supply deviation, and pull-off test for different power supplies can test the normal power supply working range of the CLB module. It can be used to test the leakage current, static and dynamic power consumption of the module circuit, and the power module is connected to the power interface of the FPGA module to be tested through a security cable.
所述示波器模块为3U PCIE 4X示波器模块,实现对交流参数的测试,通过编程实现CLB在各种逻辑组合功能下的传输时延,信号上升,下降时间等时域方面的特性参数等测试。The oscilloscope module is a 3U PCIE 4X oscilloscope module, which realizes the test of AC parameters, and realizes the test of time domain characteristic parameters such as CLB transmission delay, signal rise and fall time under various logic combination functions through programming.
为了降低损耗以及便于阻抗匹配,所述示波器模块通过SMA低损耗同轴线缆与CLB测试板载硬件平台连接。In order to reduce loss and facilitate impedance matching, the oscilloscope module is connected to the CLB test onboard hardware platform through an SMA low-loss coaxial cable.
所述激励FPGA包括用于产生并处理传输层数据包,流控制管理,初始化、电源管理,数据保护,错误检查及重试,串行化,去串行化功能的PCIE IP核模块、用于事物层数据传输内容以及配置空间信息的PCIE APP模块、用于对PCIE APP模块的地址总线进行译码,产生不同的地址片选信号的地址编码模块、利用激励FPGA内部的时钟硬核资源产生频率可调的激励时钟的时钟模块、用于解析CPU控制命令的CLB测试FPGA状态机模块、用于控制DDR3缓存,实现对待测试FPGA测试用例的缓存的DDR3控制模块、用于发生误码和接收误码的误码测试模块,所述误码测试模块包括误码发生模块和误码接收模块、用于节省激励FPGA的IO脚的主串配置控制器模块、用于产生测试用例所需输入测试向量的测试向量发生模块。The excitation FPGA includes a PCIE IP core module for generating and processing transport layer data packets, flow control management, initialization, power management, data protection, error checking and retry, serialization, and deserialization functions. The PCIE APP module for the data transmission content of the transaction layer and the configuration space information, the address encoding module for decoding the address bus of the PCIE APP module and generating different address chip select signals, and the use of the clock hard core resources to stimulate the FPGA to generate frequency The clock module for the adjustable excitation clock, the CLB test FPGA state machine module for parsing the CPU control commands, the DDR3 control module for controlling the DDR3 cache, and the DDR3 control module for implementing the cache of the FPGA test case to be tested, for bit errors and receiving errors A code error test module, the code error test module includes a code error generation module and a code error receiving module, a main string configuration controller module for saving the IO pins of the excitation FPGA, and an input test vector for generating test cases. The test vector generation module.
一种FPGA可编程逻辑单元测试设备的使用方法,其特征在于,包括以下步骤:A method of using FPGA programmable logic unit testing equipment, comprising the following steps:
S1:将NI PCIE 工控机初始化,初始化电源模块,关闭待测试FPGA的电源,初始化示波器模块,将示波器模块设置为直流耦合、输入阻抗为1M、自动测试方式,将激励FPGA上电后通过配置芯片完成配置过程,在激励FPGA内部通过PCIE IP核模块与工控机进行交互工作,完成整个系统的初始化过程;S1: Initialize the NI PCIE industrial computer, initialize the power supply module, turn off the power supply of the FPGA to be tested, initialize the oscilloscope module, set the oscilloscope module to DC coupling, input impedance to 1M, and automatic test mode. Complete the configuration process, and interact with the industrial computer through the PCIE IP core module inside the excitation FPGA to complete the initialization process of the entire system;
S2:设定需要测试的项目,选择对应测试用例下载到激励FPGA的DDR3芯片中;S2: Set the items to be tested, select the corresponding test case and download it to the DDR3 chip that motivates the FPGA;
S3:设置电源模块输出待测试FPGA所需要的1.2V,1.0V,1.8V,3.3V,2.5V电源,设置示波器模块的触发电平、采样频率;S3: Set the 1.2V, 1.0V, 1.8V, 3.3V, 2.5V power required by the power supply module to output the FPGA to be tested, and set the trigger level and sampling frequency of the oscilloscope module;
S4:对被测FPGA进行所选项目的测试;S4: Test the selected item on the FPGA under test;
S4.1:对被测FPGA进行所选项目的功能测试,激励FPGA以串行方式配置DDR3缓存中的测试用例到待测FPGA芯片中,然后通过NI PCIE 工控机发送控制命令,控制激励FPGA中时钟模块根据测试需求产生特定频率时钟,在该时钟频率下,误码测试模块的误码发生模块产生的PRBS序列作为待测试FPGA的激励输入,该序列在待测试FPGA的测试用例中处理后,输出串行序列,串行序列输出到误码测试模块的误码接收模块,通过在用户定义时间段内误码测试模块有无误码来确定是否通过该频率下的功能测试;S4.1: Perform the functional test of the selected item on the FPGA under test, stimulate the FPGA to configure the test cases in the DDR3 cache to the FPGA chip under test in serial mode, and then send control commands through the NI PCIE industrial computer to control and stimulate the FPGA chip. The clock module generates a specific frequency clock according to the test requirements. At this clock frequency, the PRBS sequence generated by the error generation module of the error test module is used as the excitation input of the FPGA to be tested. After the sequence is processed in the test case of the FPGA to be tested, The serial sequence is output, and the serial sequence is output to the error receiving module of the error test module, and whether the function test at the frequency is passed is determined by whether the error test module has errors within the user-defined time period;
S4.2:对被测FPGA进行所选项目的性能测试;S4.2: Perform the performance test of the selected item on the FPGA under test;
S4.2.1:对被测FPGA进行所选项目的最大工作频率方面的性能测试,激励FPGA以串行方式配置DDR3缓存中测试用例到待测试FPGA中,然后通过NI PCIE 工控机发送控制命令,控制激励FPGA中时钟模块根据测试需求产生不同时钟,时钟按照最大频率设计指标进行折半发生,在该时钟频率下,误码测试模块的误码发生模块产生PRBS序列作为待测试FPGA的激励输入,该序列在待测试FPGA测试用例处理后,输出到误码测试模块的误码接收模块,通过在用户定义时间段内误码测试模块有无误码来确定是否通过该频率下的功能测试;S4.2.1: Perform the performance test on the maximum operating frequency of the selected item on the FPGA under test, motivate the FPGA to serially configure the test cases in the DDR3 cache to the FPGA to be tested, and then send control commands through the NI PCIE industrial computer to control The clock module in the FPGA is stimulated to generate different clocks according to the test requirements, and the clock is generated in half according to the maximum frequency design index. At this clock frequency, the error generation module of the error test module generates a PRBS sequence as the excitation input of the FPGA to be tested. After the FPGA test case to be tested is processed, it is output to the bit error receiving module of the bit error test module, and whether the function test at the frequency is passed is determined by whether the bit error test module has bit errors within the user-defined time period;
S4.2.2: 对被测FPGA进行所选项目的输出延迟时间、占空比、输出上升、下降时间方面的性能测试,激励FPGA以串行方式配置DDR3缓存中测试用例到待测试FPGA中,然后通过NI PCIE 工控机发送控制命令,控制激励FPGA中时钟模块根据测试需求产生50M时钟作为待测试FPGA的激励输入,将待测试FPGA的测试用例通过SMA连接线发送至到示波器模块,读取示波器模块上的时间参数;S4.2.2: Perform the performance test on the output delay time, duty cycle, output rise and fall time of the selected item on the FPGA under test, motivate the FPGA to serially configure the test cases in the DDR3 cache to the FPGA under test, and then Send control commands through the NI PCIE industrial computer to control and stimulate the clock module in the FPGA to generate a 50M clock as the excitation input of the FPGA to be tested according to the test requirements, send the test case of the FPGA to be tested to the oscilloscope module through the SMA cable, and read the oscilloscope module. The time parameter on;
S5:根据测试项目和测试项目对应的判决标准,判断测试过程为正常或异常,正常时,继续测试,异常时,根据判决标准确定退出或忽略;S5: According to the test item and the judgment standard corresponding to the test item, judge whether the test process is normal or abnormal, when it is normal, continue the test, and when it is abnormal, decide to quit or ignore it according to the judgment standard;
S6:保存测试记录,跳转到第2步,继续下一个项目直至测试全部完成。S6: Save the test record, jump to step 2, and continue to the next item until the test is all completed.
本发明的有益效果为:基于PCIE工控机平台,在工控机内部集成3U PCIE电源模块作为待测FPGA的CLB测试时候的可控电源用于电源方面参数测试;3U PCIE示波器模块测试CLB交直流模拟参数;在CLB测试板载硬件平台上的激励FPGA内部集成误码测试模块以满足CLB功能测试需求;利用激励FPGA内部的时钟模块产生可变时钟,满足CLB测试时对参考时钟的需求从而完成对FPGA上CLB的全功能、全性能测试,实现测试的低成本、小型化。The beneficial effects of the invention are as follows: based on the PCIE industrial computer platform, a 3U PCIE power supply module is integrated in the industrial computer as a controllable power supply during the CLB test of the FPGA to be tested for power supply parameter testing; 3U PCIE oscilloscope module tests CLB AC and DC simulation Parameters; the error test module is integrated in the excitation FPGA on the CLB test onboard hardware platform to meet the CLB function test requirements; the clock module inside the excitation FPGA is used to generate a variable clock to meet the reference clock requirements during the CLB test to complete the test. The full-function and full-performance test of CLB on FPGA realizes the low-cost and miniaturization of the test.
附图说明Description of drawings
图1是本发明的硬件结构图。FIG. 1 is a hardware structure diagram of the present invention.
图2是本发明的测试流程图。Fig. 2 is the test flow chart of the present invention.
具体实施方式Detailed ways
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。The technical solutions in the embodiments of the present invention will be clearly and completely described below with reference to the accompanying drawings in the embodiments of the present invention. Based on the embodiments of the present invention, all other embodiments obtained by those of ordinary skill in the art without creative efforts shall fall within the protection scope of the present invention.
如图1所示,本发明包括NI PCIE 工控机、用于CLB电源拉偏测试、动态、静态功耗测试的电源模块、用于CLB交流时间参数测试的示波器模块、CLB测试板载硬件平台、板上电源、激励FPGA、有源晶振、DDR3缓存,待测FPGA,所述NI PCIE 工控机的输出端与CLB测试板载硬件平台的输入端连接,所述板上电源、激励FPGA、有源晶振、DDR3缓存、待测FPGA设置在CLB测试板载硬件平台上与CLB测试板载硬件平台连接,所述板上电源为除去待测试FPGA的整个CLB测试板载硬件平台上的电路提供电源,所述电源模块的输入端与NI PCIE 工控机的输出端连接,所述电源模块的输出端与待测FPGA的输入端连接,所述示波器模块的输入端与待测FPGA的输出端连接,所述示波器模块的输出端与NI PCIE 工控机的输入端连接。As shown in FIG. 1, the present invention includes NI PCIE industrial computer, power supply module for CLB power supply bias test, dynamic and static power consumption test, oscilloscope module for CLB AC time parameter test, CLB test onboard hardware platform, On-board power supply, excitation FPGA, active crystal oscillator, DDR3 cache, FPGA to be tested, the output end of the NI PCIE industrial computer is connected to the input end of the CLB test onboard hardware platform, the on-board power supply, excitation FPGA, active The crystal oscillator, the DDR3 cache, and the FPGA to be tested are arranged on the CLB test onboard hardware platform to be connected to the CLB test onboard hardware platform, and the on-board power supply provides power for circuits on the entire CLB test onboard hardware platform except the FPGA to be tested, The input end of the power supply module is connected with the output end of the NI PCIE industrial computer, the output end of the power supply module is connected with the input end of the FPGA to be tested, and the input end of the oscilloscope module is connected to the output end of the FPGA to be tested, so the The output end of the oscilloscope module is connected to the input end of the NI PCIE industrial computer.
为了不局限于工控机内部空间,方便测试,所述NI PCIE 工控机的输出端通过PCIE延长线与CLB测试板载硬件平台的输入端连接,PCIE延长线为两端都为 1X的PCIE 金手指接口的半柔性高速线缆。In order not to be limited to the internal space of the industrial computer and to facilitate testing, the output end of the NI PCIE industrial computer is connected to the input end of the CLB test onboard hardware platform through a PCIE extension cable. The PCIE extension cable is a PCIE gold finger with 1X at both ends. A semi-flexible high-speed cable with an interface.
为了同时对多块被测FPGA进行测试,所述NI PCIE 工控机的输出端与多块CLB测试板载硬件平台的输入端连接,最多支持4块CLB测试板载硬件平台。In order to test multiple FPGAs under test at the same time, the output end of the NI PCIE industrial computer is connected to the input end of multiple CLB test onboard hardware platforms, and supports up to 4 CLB test onboard hardware platforms.
为了同时对多块被测FPGA进行测试,所述CLB测试板载硬件平台同时与多块待测FPGA连接,最多支持4块FPGA芯片。In order to test multiple FPGAs to be tested at the same time, the CLB test onboard hardware platform is connected to multiple FPGAs to be tested at the same time, and supports up to 4 FPGA chips.
所述电源模块为3U PCIE 4X电源模块,为CLB测试板载硬件平台上的待测FPGA提供所需要的电源,包括1.2V,1.0V,3.3V,2.5V,通过软件配置控制待测试FPGA的电源加电顺序,调整电源偏离,对不同电源进行拉偏测试,可以测试CLB模块的正常电源工作范围。并可用于测试模块电路的漏流、静态和动态功耗,电源模块通过安防连接线与待测试FPGA模块电源接口连接。The power supply module is a 3U PCIE 4X power supply module, which provides the required power supply for the FPGA to be tested on the CLB test onboard hardware platform, including 1.2V, 1.0V, 3.3V, 2.5V, and controls the FPGA to be tested through software configuration. The power supply sequence, adjustment of the power supply deviation, and pull-off test for different power supplies can test the normal power supply working range of the CLB module. It can be used to test the leakage current, static and dynamic power consumption of the module circuit, and the power module is connected to the power interface of the FPGA module to be tested through a security cable.
所述示波器模块为3U PCIE 4X示波器模块,实现对交流参数的测试,通过编程实现CLB在各种逻辑组合功能下的传输时延,信号上升,下降时间等时域方面的特性参数等测试。The oscilloscope module is a 3U PCIE 4X oscilloscope module, which realizes the test of AC parameters, and realizes the test of time domain characteristic parameters such as CLB transmission delay, signal rise and fall time under various logic combination functions through programming.
为了降低损耗以及便于阻抗匹配,所述示波器模块通过SMA低损耗同轴线缆与CLB测试板载硬件平台连接。In order to reduce loss and facilitate impedance matching, the oscilloscope module is connected to the CLB test onboard hardware platform through an SMA low-loss coaxial cable.
本发明中CLB测试板载硬件平台采用16层FR4基材制造实现测试PCB上的板上电源、激励FPGA、有源晶振、DDR3缓存、待测FPGA之间的布线和电气连接或电绝缘,提供所要求的电气特性,板上电源为整个CLB测试板载硬件平台上的电路(除去待测试FPGA)提供所需要的各种电源,板上电源由PCIE 1X总线上的12V电源提供总的电源输入,经变压后产生1.0V,1.5V,2.5V电源,12V输入由CLB测试板载硬件平台上的TPS56121_DQP_22提供1.0V 电源,TPS54231DR提供1.5V电源,TPS54620RGY提供2.5V电源,PCIE 1X总线提供3.3V电源。In the present invention, the CLB test on-board hardware platform adopts 16-layer FR4 base material to manufacture the on-board power supply, excitation FPGA, active crystal oscillator, DDR3 cache, FPGA to be tested, wiring and electrical connection or electrical insulation on the test PCB, and provides The required electrical characteristics, the on-board power supply provides the various power supplies required for the circuits on the entire CLB test on-board hardware platform (excluding the FPGA to be tested), and the on-board power supply is provided by the 12V power supply on the PCIE 1X bus. The total power input , 1.0V, 1.5V, 2.5V power is generated after transformation, 12V input is provided by TPS56121_DQP_22 on the CLB test onboard hardware platform to provide 1.0V power, TPS54231DR provides 1.5V power, TPS54620RGY provides 2.5V power, and PCIE 1X bus provides 3.3 V power supply.
实际应用中,本CLB测试板载硬件平台上包括四套待测FPGA夹具。In practical applications, this CLB test onboard hardware platform includes four sets of FPGA fixtures to be tested.
还包括外部电源接口电路,外部电源接口电路提供待测试FPGA电源,由3U PCIE电源模块直接供给,包括1.2V,1.0V,3.3V,2.5V,使用电平软件进行调节。It also includes an external power interface circuit. The external power interface circuit provides the FPGA power to be tested, which is directly supplied by the 3U PCIE power module, including 1.2V, 1.0V, 3.3V, and 2.5V, and is adjusted by level software.
有源晶振采用25M有源晶振,提供给激励FPGA作为系统时钟。The active crystal oscillator uses a 25M active crystal oscillator, which is provided to stimulate the FPGA as a system clock.
所述激励FPGA包括用于产生并处理传输层数据包,流控制管理,初始化、电源管理,数据保护,错误检查及重试,串行化,去串行化功能的PCIE IP核模块、用于事物层数据传输内容以及配置空间信息的PCIE APP模块、用于对PCIE APP模块的地址总线进行译码,产生不同的地址片选信号的地址编码模块、利用激励FPGA内部的时钟硬核资源产生频率可调的激励时钟的时钟模块、用于解析CPU控制命令的CLB测试FPGA状态机模块、用于控制DDR3缓存,实现对待测试FPGA测试用例的缓存的DDR3控制模块、用于发生误码和接收误码的误码测试模块,所述误码测试模块包括误码发生模块和误码接收模块、用于节省激励FPGA的IO脚的主串配置控制器模块、用于产生测试用例所需输入测试向量的测试向量发生模块。The excitation FPGA includes a PCIE IP core module for generating and processing transport layer data packets, flow control management, initialization, power management, data protection, error checking and retry, serialization, and deserialization functions. The PCIE APP module for the data transmission content of the transaction layer and the configuration space information, the address encoding module for decoding the address bus of the PCIE APP module and generating different address chip select signals, and the use of the clock hard core resources to stimulate the FPGA to generate frequency The clock module for the adjustable excitation clock, the CLB test FPGA state machine module for parsing the CPU control commands, the DDR3 control module for controlling the DDR3 cache, and the DDR3 control module for implementing the cache of the FPGA test case to be tested, for bit errors and receiving errors A code error test module, the code error test module includes a code error generation module and a code error receiving module, a main string configuration controller module for saving the IO pins of the excitation FPGA, and an input test vector for generating test cases. The test vector generation module.
PCIE IP核模块,基于硬核的设计思想,在激励FPGA内部,基于XC7K325TFFG900内部的PCIE硬核资源,与硬核位置相连的高速SERDES口,完整地实现PCIe中的物理层和数据链路层的协议,PCIE IP核模块包含以下功能:产生并处理传输层数据包(TLPs),流控制管理,初始化及电源管理,数据保护,错误检查及重试,串行化,去串行化等功能。根据PCIE协议,PCIE IP核包括三层:PCIE IP core module, based on the design idea of hard core, inside the excitation FPGA, based on the PCIE hard core resources inside the XC7K325TFFG900, and the high-speed SERDES port connected to the hard core position, it completely realizes the physical layer and data link layer in PCIe. Protocol, PCIE IP core module contains the following functions: generation and processing of transport layer packets (TLPs), flow control management, initialization and power management, data protection, error checking and retry, serialization, deserialization and other functions. According to the PCIE protocol, the PCIE IP core includes three layers:
传输层(处理层,事务层):传输层是PCIE IP的最上层,它的首要功能是接收、缓存和传输传输层数据包,并负责处理层数据包的合成与分解,进行流量控制管理,数据包队列管理以及利用对虚拟通道提供服务质量功能。Transport layer (processing layer, transaction layer): The transport layer is the top layer of PCIE IP. Its primary function is to receive, buffer and transmit transport layer packets, and is responsible for the synthesis and decomposition of processing layer packets, and for flow control management. Packet queue management and use of virtual channels to provide quality of service functions.
数据链路层:数据链路层如同联系传输层和物理层的媒介,它的首要功能是为TLPs在两层之间的传输提供可靠性支持,他可以进行错误检查以及恢复,产生并解析数据链路层包(DLLP),DLLP被用来在两个互联的PCIE的数据链路层之间传输信息,从而实现电源管理,流量控制以及TLP确认等功能。Data link layer: The data link layer is like a medium connecting the transport layer and the physical layer. Its primary function is to provide reliability support for the transmission of TLPs between the two layers. It can perform error checking and recovery, and generate and parse data. Link Layer Packet (DLLP), DLLP is used to transmit information between the data link layers of two interconnected PCIEs, thereby realizing functions such as power management, flow control, and TLP confirmation.
物理层:物理层分为逻辑物理层和电气物理层,逻辑物理层完成对PLP的合成和分解,并串转换和串并转换。电气物理层负责所有通道的数据差分驱动传输与接收。Physical layer: The physical layer is divided into a logical physical layer and an electrical physical layer. The logical physical layer completes the synthesis and decomposition of PLP, parallel-to-serial conversion and serial-to-parallel conversion. The electrical physical layer is responsible for the data differential drive transmission and reception of all channels.
PCIE APP模块是用户自行设计事物层数据传输内容以及配置空间信息,接收和发送时候都采用DPRAM(Dual Port RAM),两个DPRAM分别设置为接收DPRAM和发送DPRAM。接收时PCIE IP核从一侧以64bits 方式写入接收DPRAM,激励FPGA内部逻辑从另一侧以32 bits方式读出。发送时,激励FPGA 内部逻辑以32 bits方式写入发送DPRAM,PCIE IP核从另一侧以64bits 方式读出。The PCIE APP module is a user-designed transaction layer data transmission content and configuration space information. Both receiving and sending use DPRAM (Dual Port RAM), and the two DPRAMs are respectively set to receive DPRAM and send DPRAM. When receiving, the PCIE IP core writes to the receiving DPRAM in 64bits mode from one side, and stimulates the internal logic of the FPGA to read out in 32bits mode from the other side. When sending, the internal logic of the FPGA is stimulated to write to the sending DPRAM in 32 bits mode, and the PCIE IP core reads out in 64 bits mode from the other side.
地址译码模块是根据PCIE APP模块的地址总线进行译码,产生不同的地址片选信号,在本发明中,CLB测试板载硬件平台上的PCIE测试板卡本地物理空间为1M字节大小,采用四字节方式进行地址译码,即地址总线的A2位为译码最低位,控制寄存器数据单元为32bits。The address decoding module decodes according to the address bus of the PCIE APP module to generate different address chip select signals. In the present invention, the local physical space of the PCIE test board on the CLB test onboard hardware platform is 1M bytes in size, The address decoding is carried out in a four-byte manner, that is, the A2 bit of the address bus is the lowest bit of decoding, and the data unit of the control register is 32 bits.
时钟模块是利用型号为XC7K325TFFG900的激励FPGA内部的时钟硬核资源,产生频率可调的激励时钟,用于待测FPGA芯片组测试用例的同步时钟。The clock module uses the clock hard core resources inside the excitation FPGA with the model XC7K325TFFG900 to generate an excitation clock with adjustable frequency, which is used for the synchronization clock of the test case of the FPGA chipset to be tested.
CLB测试FPGA状态机模块是用于解析CPU控制命令,根据当前FPGA状态,FPGA进入相应工作状态,包括:复位,启动误码测试,改变时钟输出,读下载例程,配置下载例程,回读测试结果,空闲等状态,激励FPGA上电配置后缺省处于空闲工作状态。The CLB test FPGA state machine module is used to parse the CPU control commands. According to the current FPGA state, the FPGA enters the corresponding working state, including: reset, start the error test, change the clock output, read the download routine, configure the download routine, read back Test results, idle and other states, the FPGA is in an idle working state by default after power-on configuration.
DDR3控制模块用于控制外部的DDR3缓存,实现对待测试FPGA组测试用例的缓存,测试用例通常在几十兆大小,在测试时候,通过PCIE接口将下几个测试用例缓存到DDR3中,上一个测试完成后即可以通过并串测试控制器配置FPGA2组 ,节约下载配置时间,提高测试效率。The DDR3 control module is used to control the external DDR3 cache to realize the cache of the test cases of the FPGA group to be tested. The test cases are usually tens of megabytes in size. During the test, the next test cases are cached into DDR3 through the PCIE interface. After the test is completed, the FPGA2 group can be configured through the parallel-serial test controller, which saves the download configuration time and improves the test efficiency.
误码测试模块,包括误码发生模块和误码接收模块,误码发生模块产生不同速率PRBS序列,用户设定模式等,发生模块输出信号作为待测FPGA测试用例激励输入,该序列在待测FPGA芯片组测试用例处理后输出到误码接收模块的输入端,在用户定义时间段内误码接收模块无误码,则认为该测试用例下CLB测试通过,当测试用例被配置为移位寄存器SRLC16,D触发器和SRL移位寄存器级联模式的时候,码型发生器产生串行测试PRBS向量序列。Error testing module, including error generating module and error receiving module. The error generating module generates PRBS sequences of different rates, user-set modes, etc. The output signal of the generating module is used as the stimulus input of the FPGA test case to be tested, and the sequence is under test. After the FPGA chipset test case is processed, it is output to the input end of the error receiving module. If the error receiving module has no error within the user-defined time period, the CLB test under this test case is considered to pass. When the test case is configured as a shift register SRLC16 , D flip-flop and SRL shift register cascade mode, the pattern generator generates serial test PRBS vector sequence.
主串配置控制器模块是为了节省激励FPGA的IO脚,采用串行配置方式,在激励FPGA1内部产生待测FPGA组的主串配置时序电路,使用较少IO脚,实现4个待测FPGA的串行方式配置,将配置缓存区中的测试用例串行下载到待测FPGA组中,并判断配置状态成功与否。The main serial configuration controller module is to save the IO pins of the excitation FPGA. It adopts the serial configuration method to generate the main serial configuration sequence circuit of the FPGA group to be tested in the excitation FPGA1, and uses fewer IO pins to realize the four FPGAs to be tested. Serial configuration, serially download the test cases in the configuration buffer area to the FPGA group to be tested, and judge whether the configuration status is successful or not.
测试向量发生模块,产生CLB测试用例所需输入测试向量,测试向量被预置到内部RAM空间,采用这种方式节省激励FPGA 内部逻辑资源,顺序读出提供给待测FPGA的 CLB模块作为测试输入向量。The test vector generation module generates the input test vector required for the CLB test case, and the test vector is preset to the internal RAM space. In this way, the internal logic resources of the excitation FPGA are saved, and the CLB module provided to the FPGA to be tested is sequentially read out as the test input vector.
一种FPGA可编程逻辑单元测试设备的使用方法,其特征在于,包括以下步骤:A method of using FPGA programmable logic unit testing equipment, comprising the following steps:
S1:将NI PCIE 工控机初始化,初始化电源模块,关闭待测试FPGA的电源,初始化示波器模块,将示波器模块设置为为直流耦合、输入阻抗为1M、自动测试方式,将激励FPGA上电后通过配置芯片完成配置过程,在激励FPGA内部通过PCIE IP核模块与工控机进行交互工作,完成整个系统的初始化过程;S1: Initialize the NI PCIE industrial computer, initialize the power module, turn off the power of the FPGA to be tested, initialize the oscilloscope module, set the oscilloscope module to DC coupling, input impedance to 1M, automatic test mode, and to stimulate the FPGA to pass the configuration after power-on The chip completes the configuration process, and interacts with the industrial computer through the PCIE IP core module inside the excitation FPGA to complete the initialization process of the entire system;
S2:设定需要测试的项目,选择对应测试用例下载到激励FPGA的DDR3芯片中;S2: Set the items to be tested, select the corresponding test case and download it to the DDR3 chip that motivates the FPGA;
S3:设置电源模块输出待测试FPGA所需要的1.2V,1.0V,1.8V,3.3V,2.5V电源,设置示波器模块的触发电平、采样频率;S3: Set the 1.2V, 1.0V, 1.8V, 3.3V, 2.5V power required by the power supply module to output the FPGA to be tested, and set the trigger level and sampling frequency of the oscilloscope module;
S4:对被测FPGA进行所选项目的测试;S4: Test the selected item on the FPGA under test;
S4.1:对被测FPGA进行所选项目的功能测试,激励FPGA以串行方式配置DDR3缓存中的测试用例到待测FPGA芯片中,然后通过NI PCIE 工控机发送控制命令,控制激励FPGA中时钟模块根据测试需求产生特定频率时钟,在该时钟频率下,误码测试模块的误码发生模块产生的PRBS序列作为待测试FPGA的激励输入,该序列在待测试FPGA的测试用例中处理后,输出串行序列,串行序列输出到误码测试模块的误码接收模块,通过在用户定义时间段内误码测试模块有无误码来确定是否通过该频率下的功能测试;S4.1: Perform the functional test of the selected item on the FPGA under test, stimulate the FPGA to configure the test cases in the DDR3 cache to the FPGA chip under test in serial mode, and then send control commands through the NI PCIE industrial computer to control and stimulate the FPGA chip. The clock module generates a specific frequency clock according to the test requirements. At this clock frequency, the PRBS sequence generated by the error generation module of the error test module is used as the excitation input of the FPGA to be tested. After the sequence is processed in the test case of the FPGA to be tested, The serial sequence is output, and the serial sequence is output to the error receiving module of the error test module, and whether the function test at the frequency is passed is determined by whether the error test module has errors within the user-defined time period;
S4.2:对被测FPGA进行所选项目的性能测试;S4.2: Perform the performance test of the selected item on the FPGA under test;
S4.2.1:对被测FPGA进行所选项目的最大工作频率方面的性能测试,激励FPGA以串行方式配置DDR3缓存中测试用例到待测试FPGA中,然后通过NI PCIE 工控机发送控制命令,控制激励FPGA中时钟模块根据测试需求产生不同时钟,时钟按照最大频率设计指标进行折半发生,在该时钟频率下,误码测试模块的误码发生模块产生PRBS序列作为待测试FPGA的激励输入,该序列在待测试FPGA测试用例处理后,输出到误码测试模块的误码接收模块,通过在用户定义时间段内误码测试模块有无误码来确定是否通过该频率下的功能测试;S4.2.1: Perform the performance test on the maximum operating frequency of the selected item on the FPGA under test, motivate the FPGA to serially configure the test cases in the DDR3 cache to the FPGA to be tested, and then send control commands through the NI PCIE industrial computer to control The clock module in the FPGA is stimulated to generate different clocks according to the test requirements, and the clock is generated in half according to the maximum frequency design index. At this clock frequency, the error generation module of the error test module generates a PRBS sequence as the excitation input of the FPGA to be tested. After the FPGA test case to be tested is processed, it is output to the bit error receiving module of the bit error test module, and whether the function test at the frequency is passed is determined by whether the bit error test module has bit errors within the user-defined time period;
S4.2.2: 对被测FPGA进行所选项目的输出延迟时间、占空比、输出上升、下降时间方面的性能测试,激励FPGA以串行方式配置DDR3缓存中测试用例到待测试FPGA中,然后通过NI PCIE 工控机发送控制命令,控制激励FPGA中时钟模块根据测试需求产生50M时钟作为待测试FPGA的激励输入,将待测试FPGA的测试用例通过SMA连接线发送至到示波器模块,读取示波器模块上的时间参数;S4.2.2: Perform the performance test on the output delay time, duty cycle, output rise and fall time of the selected item on the FPGA under test, motivate the FPGA to serially configure the test cases in the DDR3 cache to the FPGA under test, and then Send control commands through the NI PCIE industrial computer to control and stimulate the clock module in the FPGA to generate a 50M clock as the excitation input of the FPGA to be tested according to the test requirements, send the test case of the FPGA to be tested to the oscilloscope module through the SMA cable, and read the oscilloscope module. The time parameter on;
S5:根据测试项目和测试项目对应的判决标准,判断测试过程为正常或异常,正常时,继续测试,异常时,根据判决标准确定退出或忽略;S5: According to the test item and the judgment standard corresponding to the test item, judge whether the test process is normal or abnormal, when it is normal, continue the test, and when it is abnormal, decide to quit or ignore it according to the judgment standard;
S6:保存测试记录,跳转到第2步,继续下一个项目直至测试全部完成。S6: Save the test record, jump to step 2, and continue to the next item until the test is all completed.
本发明基于PCIE工控机平台,在工控机内部集成3U PCIE电源模块作为待测FPGA的CLB测试时候的可控电源用于电源方面参数测试;3U PCIE示波器模块测试CLB交直流模拟参数;在CLB测试板载硬件平台上的激励FPGA内部集成误码测试模块以满足CLB功能测试需求;利用激励FPGA内部的时钟模块产生可变时钟,满足CLB测试时对参考时钟的需求从而完成对FPGA上CLB的全功能、全性能测试,实现测试的低成本、小型化。The invention is based on the PCIE industrial computer platform, and a 3U PCIE power supply module is integrated in the industrial computer as a controllable power supply during the CLB test of the FPGA to be tested for power supply parameter testing; the 3U PCIE oscilloscope module tests the CLB AC and DC analog parameters; The excitation FPGA on the on-board hardware platform integrates the error test module to meet the CLB function test requirements; the clock module inside the excitation FPGA is used to generate a variable clock to meet the reference clock requirements during CLB testing, thereby completing the full CLB test on the FPGA. Functional and full performance testing to achieve low cost and miniaturization of testing.
Claims (8)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010264339.8A CN111366841B (en) | 2020-04-07 | 2020-04-07 | A kind of FPGA programmable logic unit testing equipment and using method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010264339.8A CN111366841B (en) | 2020-04-07 | 2020-04-07 | A kind of FPGA programmable logic unit testing equipment and using method |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111366841A CN111366841A (en) | 2020-07-03 |
CN111366841B true CN111366841B (en) | 2022-06-21 |
Family
ID=71207165
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010264339.8A Expired - Fee Related CN111366841B (en) | 2020-04-07 | 2020-04-07 | A kind of FPGA programmable logic unit testing equipment and using method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111366841B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112014726B (en) * | 2020-08-05 | 2023-09-05 | 广东省新一代通信与网络创新研究院 | DSP chip testing device and method |
CN112198423B (en) * | 2020-09-25 | 2023-04-25 | 杭州加速科技有限公司 | Test excitation generation unit in FPGA chip |
CN112858892B (en) * | 2021-01-15 | 2024-05-14 | 胜达克半导体科技(上海)股份有限公司 | Method for realizing custom module on digital test channel based on FPGA |
CN112798944B (en) * | 2021-01-16 | 2022-05-31 | 西安电子科技大学 | FPGA hardware error attribution analysis method based on online real-time data |
CN113127281B (en) * | 2021-04-17 | 2022-12-27 | 山东英信计算机技术有限公司 | ASPM test method, system, equipment and storage medium |
CN117931553A (en) * | 2021-05-26 | 2024-04-26 | 天津市职业大学 | A debugging method for system software and identification-level principle prototype |
CN113985256A (en) * | 2021-11-01 | 2022-01-28 | 北京中科胜芯科技有限公司 | FPGA life test method |
CN114325326B (en) * | 2021-12-29 | 2024-11-15 | 上海富瀚微电子股份有限公司 | A chip electrical performance automatic testing system, method and controllable power supply module |
CN114896919B (en) * | 2022-05-07 | 2023-06-09 | 常超 | FPGA-based integrated circuit prototype verification system and method |
CN119199489B (en) * | 2024-11-26 | 2025-02-28 | 中国船舶集团有限公司第七〇七研究所 | A method, system and device for locating faults in functional testing of CLB modules |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN100588982C (en) * | 2007-10-12 | 2010-02-10 | 电子科技大学 | Field programmable gate array configurable logic block verification method and system |
US20090100304A1 (en) * | 2007-10-12 | 2009-04-16 | Ping Li | Hardware and Software Co-test Method for FPGA |
CN101937222B (en) * | 2010-08-17 | 2012-04-25 | 北京交大资产经营有限公司 | Board Level Test System |
CN101995546B (en) * | 2010-11-16 | 2013-02-27 | 复旦大学 | Automatic testing system and method for programmable logic devices based on boundary scan |
CN102841306B (en) * | 2011-07-21 | 2015-06-24 | 北京飘石科技有限公司 | Testing and locating method for FPGA (field programmable gate array) programmable logic unit |
CN105302950B (en) * | 2015-10-19 | 2018-07-24 | 北京精密机电控制设备研究所 | A kind of programmable logic device crosslinking emulation test method of soft and hardware collaboration |
CN105787164A (en) * | 2016-02-19 | 2016-07-20 | 深圳市同创国芯电子有限公司 | Debugging method and system for programmable logic device |
CN106483950B (en) * | 2016-12-21 | 2019-03-29 | 中国南方航空工业(集团)有限公司 | Programmable logic device detection method and device |
CN109655740B (en) * | 2018-12-12 | 2021-07-27 | 上海精密计量测试研究所 | K series FPGA internal CLB module positioning and universal configuration test method |
CN109709472B (en) * | 2019-01-25 | 2020-12-22 | 华北水利水电大学 | Test system and test method for CFG (field programmable gate array) of FPGA (field programmable gate array) configuration circuit |
-
2020
- 2020-04-07 CN CN202010264339.8A patent/CN111366841B/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
CN111366841A (en) | 2020-07-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111366841B (en) | A kind of FPGA programmable logic unit testing equipment and using method | |
US7231560B2 (en) | Apparatus and method for testing motherboard having PCI express devices | |
CN102130951B (en) | Server and method for remotely upgrading programmable logic device thereof | |
TWI534625B (en) | Incorporating an independent logic block in a system-on-a-chip | |
CN109411007B (en) | Universal flash memory test system based on FPGA | |
US20120146658A1 (en) | Debug state machine cross triggering | |
JP2002123562A (en) | Method of generating tester construction data, method of constructing tester, and test circuit | |
CN107153622A (en) | A kind of drive control method based on spi bus | |
CN103064006A (en) | Testing device for integrated circuit | |
CN101706762A (en) | Intelligent type signal transfer system | |
CN111398795B (en) | A kind of FPGA internal DSP unit testing equipment and using method | |
CN114624564B (en) | Portable chip testing method and device based on FPGA | |
US20050097403A1 (en) | USB interface and testing method thereof | |
CN113270137A (en) | DDR2 test method based on FPGA embedded soft core | |
CN112198423A (en) | Test excitation generating unit in FPGA chip | |
CN117827559A (en) | Verification board and chip verification system | |
CN108646172A (en) | A kind of apparatus for testing chip | |
CN108107352A (en) | FPGA device tests system and method | |
CN116050324A (en) | Chip verification structure, chip verification system and method | |
CN107255975B (en) | Device and method for realizing rapid loading of FPGA (field programmable Gate array) program by utilizing high-speed bus | |
CN114610549A (en) | Serial port flash memory chip test system and test method | |
CN116324439A (en) | High speed functional protocol based testing and debugging | |
Anagha et al. | Prototyping of dual master I 2 C bus controller | |
CN107329863A (en) | A kind of measuring instrument general hardware platform based on COMe | |
CN111338326B (en) | FPGA general IO interface test device and method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20220621 |
|
CF01 | Termination of patent right due to non-payment of annual fee |