CN111344876A - 膜结构体及其制造方法 - Google Patents

膜结构体及其制造方法 Download PDF

Info

Publication number
CN111344876A
CN111344876A CN201880073619.1A CN201880073619A CN111344876A CN 111344876 A CN111344876 A CN 111344876A CN 201880073619 A CN201880073619 A CN 201880073619A CN 111344876 A CN111344876 A CN 111344876A
Authority
CN
China
Prior art keywords
film
main surface
oriented
piezoelectric
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201880073619.1A
Other languages
English (en)
Other versions
CN111344876B (zh
Inventor
木岛健
滨田泰彰
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Christo Co ltd
Original Assignee
Advanced Material Technologies Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Advanced Material Technologies Inc filed Critical Advanced Material Technologies Inc
Publication of CN111344876A publication Critical patent/CN111344876A/zh
Application granted granted Critical
Publication of CN111344876B publication Critical patent/CN111344876B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/006Compounds containing, besides zirconium, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G25/00Compounds of zirconium
    • C01G25/02Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/082Oxides of alkaline earth metals
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • C23C14/083Oxides of refractory metals or yttrium
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/16Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon
    • C23C14/165Metallic material, boron or silicon on metallic substrates or on substrates of boron or silicon by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/28Vacuum evaporation by wave energy or particle radiation
    • C23C14/30Vacuum evaporation by wave energy or particle radiation by electron bombardment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/079Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing using intermediate layers, e.g. for growth control
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/704Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings
    • H10N30/706Piezoelectric or electrostrictive devices based on piezoelectric or electrostrictive films or coatings characterised by the underlying bases, e.g. substrates
    • H10N30/708Intermediate layers, e.g. barrier, adhesion or growth control buffer layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/85Piezoelectric or electrostrictive active materials
    • H10N30/853Ceramic compositions
    • H10N30/8548Lead-based oxides
    • H10N30/8554Lead-zirconium titanate [PZT] based
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/80Constructional details
    • H10N30/87Electrodes or interconnections, e.g. leads or terminals
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/076Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by vapour phase deposition
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N30/00Piezoelectric or electrostrictive devices
    • H10N30/01Manufacture or treatment
    • H10N30/07Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base
    • H10N30/074Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing
    • H10N30/077Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by liquid phase deposition
    • H10N30/078Forming of piezoelectric or electrostrictive parts or bodies on an electrical element or another base by depositing piezoelectric or electrostrictive layers, e.g. aerosol or screen printing by liquid phase deposition by sol-gel deposition

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Physical Vapour Deposition (AREA)
  • Semiconductor Memories (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)
  • Particle Formation And Scattering Control In Inkjet Printers (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

膜结构体具有:基板(11),其是包含由(100)面构成的上表面(11a)的硅基板;取向膜(12),其形成于上表面(11a)上,具有立方晶的晶体结构,且包含(100)取向的氧化锆膜;以及导电膜(13),其形成于取向膜(12)上,具有立方晶的晶体结构,且包含(100)取向的铂膜。取向膜(12)与导电膜(13)之间的界面(IF1)的平均界面粗糙度比基板(11)与取向膜(12)之间的界面(IF2)的平均界面粗糙度大。

Description

膜结构体及其制造方法
技术领域
本发明涉及膜结构体及其制造方法。
背景技术
作为具有基板、在基板上形成的导电膜、以及在导电膜上形成的压电膜的膜结构体,已知有具有基板、在基板上形成的包含铂的导电膜、以及在导电膜上形成的包含锆钛酸铅(PZT)的压电膜的膜结构体。
在国际公开第2016/009698号(专利文献1)中公开了如下技术,即,在强电介质陶瓷中,具备Pb(Zr1-ATiA)O3膜和在该Pb(Zr1-ATiA)O3膜上形成的Pb(Zr1-xTix)O3膜,A和x满足0≤A≤0.1和0.1<x<1。
在日本特开2014-84494号公报(专利文献2)中公开了在硅基板(Si)上预先依次层叠YSZ(8%Y2O3+92%ZrO2)、CeO2、LaSrCoO3的膜而形成的缓冲层上形成PZT的薄膜的技术。另外,在专利文献2中公开了LaSrCoO3(LSCO)相对于其他膜旋转45°晶格的技术。
在非专利文献1中公开了如下技术,即,在硅基板上形成依次层叠YSZ、CeO2、La0.5Sr0.5CoO3(LSCO)、SrRuO3(SRO)而成的缓冲层,在该缓冲层上形成c轴取向的0.06Pb(Mn1/3,Nb2/3)O3-0.94Pb(Zr0.5Ti0.5)O3(PMnN-PZT)外延薄膜。在非专利文献1中公开了PMnN-PZT的晶格在面内方向相对于Si旋转45°的技术。
在非专利文献2中公开了如下技术,即,使用MgO单晶坩埚并通过助焊剂法所培育的PbTiO3的相对介电常数在室温下为150,是纯净的PbTiO3单晶的相对介电常数的1.5倍。
在先技术文献
专利文献
专利文献1:国际公开第2016/009698号
专利文献2:日本特开2014-84494号公报
非专利文献1:S.Yoshida et al.,“Fabrication and characterization oflarge figure-of-merit epitaxial PMnN-PZT/Si transducer for piezoelectric MEMSsensors”,Sensors and Actuators A 239(2016)201-208
非专利文献2:小舟正文,其他1名,“根据MgO单晶制坩埚的PbTiO3单晶的培育及评价”,窑业协会志,1987年,第95卷,第11号,p.1053-1058
发明内容
发明要解决的课题
在包含锆钛酸铅的压电膜中,在压电膜的结晶性等品质并非良好的情况下,压电膜的压电特性会降低。但是,例如难以形成结晶性的品质良好的包含锆钛酸铅的压电膜,难以提高压电膜的压电特性。
本发明是为了解决上述的现有技术的问题点而提出的,其目的在于提供一种在用于形成包含锆钛酸铅的压电膜的膜结构体中,能够提高压电膜的压电特性的膜结构体。
用于解决课题的方案
若简单说明本申请中公开的发明中的代表性的方案的概要,则如下所述。
作为本发明的一个实施方式的膜结构体具有:硅基板,其包含由(100)面构成的主面;第一膜,其形成于主面上,具有立方晶的晶体结构,且包含(100)取向的第一氧化锆膜;以及导电膜,其形成于第一膜上,具有立方晶的晶体结构,且包含(100)取向的铂膜。第一膜与导电膜之间的第一界面的第一平均界面粗糙度比硅基板与第一膜之间的第二界面的第二平均界面粗糙度大。
另外,作为另一个实施方式,也可以是,第一膜包含:膜部,其形成于主面上;以及多个突出部,它们分别从膜部的上表面突出,膜部具有立方晶的晶体结构,且包含(100)取向的第二氧化锆膜,多个突出部分别具有立方晶的晶体结构,且包含(100)取向的第三氧化锆膜。
另外,作为另一个实施方式,也可以是,突出部的与沿着主面的第一方向垂直的剖面形状为三角形状,突出部的沿着主面且与第一方向垂直的方向即第二方向上的宽度从膜部侧朝向与膜部侧相反的一侧减小。
另外,作为另一个实施方式,也可以是,膜部的厚度为11~18nm,多个突出部分别从膜部的上表面突出的突出高度为4~8nm。
另外,作为另一个实施方式,也可以是,导电膜覆盖多个突出部,在相邻的两个突出部之间埋入有导电膜。
另外,作为另一个实施方式,也可以是,导电膜具有第一拉伸应力,第一膜具有第一压缩应力、或者具有比第一拉伸应力小的第二拉伸应力。
另外,作为另一个实施方式,也可以是,第一膜的上层部具有第二压缩应力,第一膜的下层部具有第三拉伸应力,在第一膜具有第一压缩应力时,第二压缩应力比第一压缩应力大,在第一膜具有第二拉伸应力时,第三拉伸应力比第二拉伸应力大。
另外,作为另一个实施方式,也可以是,膜结构体具有压电膜,该压电膜形成于导电膜上,具有正方晶的晶体结构,且包含(001)取向的锆钛酸铅膜。
另外,作为另一个实施方式,也可以是,第一氧化锆膜以第一氧化锆膜的沿着主面的<100>方向与硅基板的沿着主面的<100>方向平行的方式取向,铂膜以铂膜的沿着主面的<100>方向与硅基板的沿着主面的<100>方向平行的方式取向。
另外,作为另一个实施方式,也可以是,第一氧化锆膜以第一氧化锆膜的沿着主面的<100>方向与硅基板的沿着主面的<100>方向平行的方式取向,铂膜以铂膜的沿着主面的<100>方向与硅基板的沿着主面的<100>方向平行的方式取向。另外,也可以是,锆钛酸铅膜以锆钛酸铅膜的沿着主面的<100>方向与硅基板的沿着主面的<100>方向平行的方式取向。
另外,作为另一个实施方式,也可以是,锆钛酸铅膜具有下述通式(化学式1)表示的由锆钛酸铅构成的复合氧化物。
Pb(Zr1-xTix)O3···(化学式1)
x满足0.32≤x≤0.52,锆钛酸铅的c轴方向的第二晶格常数相对于a轴方向的第一晶格常数的晶格常数比为1.010~1.016。
作为本发明的一个实施方式的膜结构体的制造方法包括如下工序:,(a)准备包含由(100)面构成的主面的硅基板;(b)在主面上形成具有立方晶的晶体结构且包含(100)取向的第一氧化锆膜的第一膜;以及(c)在第一膜上形成具有立方晶的晶体结构且包含(100)取向的铂膜的导电膜。第一膜与导电膜之间的第一界面的第一平均界面粗糙度比硅基板与第一膜之间的第二界面的第二平均界面粗糙度大。
另外,作为另一个实施方式,也可以是,在(b)工序中,形成包含形成于主面上的膜部、以及分别从膜部的上表面突出的多个突出部的第一膜,膜部具有立方晶的晶体结构,且包含(100)取向的第二氧化锆膜,多个突出部分别具有立方晶的晶体结构,且包含(100)取向的第三氧化锆膜。
另外,作为另一个实施方式,也可以是,突出部的与沿着主面的第一方向垂直的剖面形状为三角形状,突出部的沿着主面且与第一方向垂直的方向即第二方向上的宽度从膜部侧朝向与膜部侧相反的一侧减小。
另外,作为另一个实施方式,电可以是,膜部的厚度为11~18nm,多个突出部分别从膜部的上表面突出的突出高度为4~8nm。
另外,作为另一个实施方式,也可以是,在(c)工序中,形成覆盖多个突出部的导电膜,在(c)工序中,在相邻的两个突出部之间埋入导电膜。
另外,作为另一个实施方式,也可以是,导电膜具有第一拉伸应力,第一膜具有第一压缩应力、或者具有比第一拉伸应力小的第二拉伸应力。
另外,作为另一个实施方式,也可以是,第一膜的上层部具有第二压缩应力,第一膜的下层部具有第三拉伸应力,在第一膜具有第一压缩应力时,第二压缩应力比第一压缩应力大,在第一膜具有第二拉伸应力时,第三拉伸应力比第二拉伸应力大。
另外,作为另一个实施方式,也可以是,膜结构体的制造方法还包括如下工序:(d)在导电膜上形成压电膜,该压电膜具有正方晶的晶体结构,且包含(001)取向的锆钛酸铅膜。
另外,作为另一个实施方式,也可以是,第一氧化锆膜以第一氧化锆膜的沿着主面的<100>方向与硅基板的沿着主面的<100>方向平行的方式取向,铂膜以铂膜的沿着主面的<100>方向与硅基板的沿着主面的<100>方向平行的方式取向。
另外,作为另一个实施方式,也可以是,第一氧化锆膜以第一氧化锆膜的沿着主面的<100>方向与硅基板的沿着主面的<100>方向平行的方式取向,铂膜以铂膜的沿着主面的<100>方向与硅基板的沿着主面的<100>方向平行的方式取向。另外,也可以是,锆钛酸铅膜以锆钛酸铅膜的沿着主面的<100>方向与硅基板的沿着主面的<100>方向平行的方式取向。
另外,作为另一个实施方式,也可以是,使锆钛酸铅膜具有下述通式(化学式1)表示的由锆钛酸铅构成的复合氧化物。
Pb(Zr1-xTix)O3···(化学式1)
x满足0.32≤x≤0.52,锆钛酸铅的c轴方向的第二晶格常数相对于a轴方向的第一晶格常数的晶格常数比为1.010~1.016。
发明效果
通过应用本发明的一个实施方式,在用于形成包含锆钛酸铅的压电膜的膜结构体中,能够提高压电膜的压电特性。
附图说明
图1是实施方式的膜结构体的剖视图。
图2是实施方式的膜结构体具有作为上部电极的导电膜情况下的膜结构体的剖视图。
图3是从图2所示的膜结构体去除基板和取向膜情况下的膜结构体的剖视图。
图4是实施方式的膜结构体的另一例的剖视图。
图5是将图4所示的膜结构体的一部分放大而示出的剖视图。
图6是图4所示的膜结构体的剖视图。
图7是图4所示的膜结构体的制造工序中的膜结构体的剖视图。
图8是示意性地示出实施方式的膜结构体所包含的两个压电膜的剖面结构的图。
图9是示意性地示出实施方式的膜结构体所包含的压电膜的极化的电场依赖性的曲线图。
图10是对实施方式的膜结构体所包含的各层的膜外延生长的状态进行说明的图。
图11是示意性地示出PZT的单位格子的图。
图12是实施方式的膜结构体的制造工序中的剖视图。
图13是实施方式的膜结构体的制造工序中的剖视图。
图14是实施方式的膜结构体的制造工序中的剖视图。
图15是实施方式的膜结构体的制造工序中的剖视图。
图16是实施方式的变形例的膜结构体的剖视图。
图17是示出实施例的膜结构体的基于XRD法的θ-2θ光谱的例子的曲线图。
图18是示出实施例的膜结构体的基于XRD法的θ-2θ光谱的例子的曲线图。
图19是示出比较例的膜结构体的基于XRD法的θ-2θ光谱的例子的曲线图。
图20是示出比较例的膜结构体的基于XRD法的θ-2θ光谱的例子的曲线图。
图21是示出实施例的膜结构体的基于XRD法的极点图的例子的曲线图。
图22是示出实施例的膜结构体的基于XRD法的极点图的例子的曲线图。
图23是示出实施例的膜结构体的基于XRD法的极点图的例子的曲线图。
图24是示出实施例的膜结构体的基于XRD法的极点图的例子的曲线图。
图25是用于说明通过XRD法测定基板的翘曲量的方法的图。
图26是示出通过XRD法测定基板的翘曲量的结果的曲线图。
图27是示出实施例的膜结构体的HAADF图像的照片。
图28是示出实施例的膜结构体的BF图像的照片。
图29是示出实施例的膜结构体的BF图像的照片。
图30是示出实施例的膜结构体的HAADF图像的照片。
图31是示出实施例的膜结构体的极化的电压依赖性的曲线图。
图32是示出实施例的膜结构体的位移的电压依赖性的曲线图。
图33是示出实施例的膜结构体的残留极化值的温度依赖性的曲线图。
图34是示出实施例的膜结构体的抗电压值的温度依赖性的曲线图。
具体实施方式
以下,参照附图对本发明的各实施方式进行说明。
需要说明的是,本公开只不过是一例,关于本领域技术人员容易想到的符合发明主旨的适当变更,当然也包含在本发明的范围中。另外,有时为了使说明更加明确,附图与实施方式相比,示意性地示出各部分的宽度、厚度、形状等,但这只是一例,并非用于限定本发明的解释。
另外,在本说明书和各附图中,有时对与在之前的图中已经说明过的要素相同的要素标出相同的附图标记,并适当省略详细的说明。
进而,在实施方式中所使用的附图中,有时也会根据附图省略用于区分结构物而标注的阴影线(网格线)。
需要说明的是,在以下的实施方式中,在将范围表示为A~B的情况下,除了特别明示的情况以外,表示A以上且B以下。
(实施方式)
<膜结构体>
首先,对作为本发明的一个实施方式的实施方式的膜结构体进行说明。图1是实施方式的膜结构体的剖视图。图2是实施方式的膜结构体具有作为上部电极的导电膜情况下的膜结构体的剖视图。图3是从图2所示的膜结构体去除了基板和取向膜情况下的膜结构体的剖视图。图4是实施方式的膜结构体的另一例的剖视图。图5是将图4所示的膜结构体的一部分放大而示出的剖视图。图6是图4所示的膜结构体的剖视图。图6除了图4所示的膜结构体的剖视图以外,还示意性地示出膜结构体所具有的应力。图7是图4所示的膜结构体的制造工序中的膜结构体的剖视图。图7除了在基板上形成了取向膜的时间点的膜结构体的剖视图以外,还示意性地示出膜结构体所具有的应力。
如图1所示,本实施方式的膜结构体10具有基板11、取向膜12、导电膜13、膜14、以及压电膜15。取向膜12形成在基板11上。导电膜13形成在取向膜12上。膜14形成在导电膜13上。压电膜15形成在膜14上。
需要说明的是,如图2所示,本实施方式的膜结构体10也可以具有导电膜18。导电膜18形成在压电膜15上。此时,导电膜13是作为下部电极的导电膜,导电膜18是作为上部电极的导电膜。另外,如图3所示,本实施方式的膜结构体10也可以不具有基板11(参照图2)和取向膜12(参照图2),而仅具有作为下部电极的导电膜13、膜14、压电膜15、以及作为上部电极的导电膜18。
另外,如图4所示,本实施方式的膜结构体10也可以仅具有基板11、取向膜12、以及导电膜13。在这样的情况下,能够使用膜结构体10作为用于形成压电膜15的电极基板,能够在导电膜13上容易形成外延生长且具有良好的压电特性的压电膜15。
基板11是由硅(Si)单晶构成的硅基板。作为硅基板的基板11包括作为由(100)面构成的主面的上表面11a。取向膜12形成在上表面11a上,具有立方晶的晶体结构,并且包含(100)取向的氧化锆(氧化锆膜)。导电膜13具有立方晶的晶体结构,并且包含(100)取向的铂(铂膜)。由此,在压电膜15具有钙钛矿型结构的复合氧化物的情况下,能够使压电膜15在基板11上以正方晶显示进行(001)取向或以伪立方晶显示进行(100)取向。
在此,取向膜12(100)取向是指,具有立方晶的晶体结构的取向膜12的(100)面沿着硅基板即基板11的作为由(100)面构成的主面的上表面11a,且优选指与硅基板即基板11的由(100)面构成的上表面11a平行。另外,对于取向膜12的(100)面与基板11的由(100)面构成的上表面11a平行而言,不仅包括取向膜12的(100)面与基板11的上表面11a完全平行的情况,还包括完全平行于基板11的上表面11a的面与取向膜12的(100)面所成的角度为20°以下的情况。另外,不仅对取向膜12,对其他层的膜的取向也同样。
或者,作为取向膜12,也可以代替由单层膜构成的取向膜12,而在基板11上形成由层叠膜构成的取向膜12。
如图1、图2、图4及图5所示,取向膜12包括形成在基板11的上表面11a上的膜部12a、以及分别从膜部12a的上表面突出的多个突出部12b。另外,膜部12a具有立方晶的晶体结构,并且包含(100)取向的氧化锆(氧化锆膜)。并且,多个突出部12b分别具有立方晶的晶体结构,并且包含(100)取向的氧化锆(氧化锆膜)。
由此,取向膜12与导电膜13之间的界面IF1的界面粗糙度(粗糙度)变大,取向膜12与导电膜13之间的界面IF1的平均界面粗糙度变得比基板11与取向膜12之间的界面IF2的平均界面粗糙度大。因此,例如,取向膜12的表面成为取向膜12所包含的氧化锆膜的(100)面以外的面,在该氧化锆膜的(100)面以外的面上,导电膜13所包含的铂膜的(100)面以外的面进行外延生长等,由此铂膜容易在氧化锆膜的表面上外延生长。并且,包含铂膜的导电膜13变得容易外延生长,从而膜14及压电膜15变得容易外延生长,因此能够提高压电膜15的压电特性。
或者,取向膜12与导电膜13之间的界面IF1的平均界面粗糙度只要比基板11与取向膜12之间的界面IF2的平均界面粗糙度大即可,因此取向膜12也可以不明确地具有多个突出部12b,例如也可以具有在表面具有在俯视下相互隔离地形成的多个台阶(阶梯)的阶梯状(step terrace)结构。
平均界面粗糙度可以通过如下方式来计算:例如以界面IF1和界面IF2被拍摄在同一图像中的方式,利用透射型电子显微镜(Transmission Electron Microscope:TEM)拍摄膜结构体的剖面的图像,并使用计算机对所拍摄的图像进行运算处理。另外,对于表示界面IF1和界面IF2各自的平均界面粗糙度的参数的种类,只要使用相同种类的参数即可,没有特别限定。因此,作为表示平均界面粗糙度的参数,可以使用算术平均粗糙度Ra、均方根高度Rrms等各种参数来进行比较。例如在多个突出部12b的突出高度HT1全部为6nm,并且例如使用算术平均粗糙度Ra作为平均界面粗糙度的情况下,算术平均粗糙度Ra为3nm。
优选的是,突出部12b的与沿着基板11的上表面11a的第一方向垂直的剖面形状为三角形状,突出部12b的第二方向上的宽度从膜部12a侧即基板11侧朝向与膜部12a侧相反的一侧、即与基板11侧相反的一侧而减小,该第二方向是沿着基板11的上表面11a且与第一方向垂直的方向。在突出部12b具有这样的三角形状的情况下,导电膜13所包含的铂膜更容易在取向膜12所包含的氧化锆膜的表面上外延生长。
优选的是,膜部12a的厚度TH1(参照图5)为11~18nm,多个突出部12b分别从膜部12a的上表面12c(参照图5)突出的突出高度HT1(参照图5)为4~8nm。即,优选取向膜12的厚度TH2(参照图5)为13~22nm。
在突出部12b的突出高度HT1为4nm以上的情况下,与突出部12b的突出高度HT1小于4nm的情况相比,能够可靠地使界面IF1的平均界面粗糙度比界面IF2的平均界面粗糙度大,因此在包含(100)取向的氧化锆的取向膜12上形成的导电膜13所包含的铂变得容易进行(100)取向。另一方面,在突出部12b的突出高度HT1为8nm以下的情况下,与突出部12b的突出高度HT1超过8nm的情况相比,界面IF1的平均界面粗糙度不会变得过大,因此能够提高在包含(100)取向的氧化锆的取向膜12上形成的导电膜13的平坦性。
另外,在膜部12a的厚度TH1为11nm以上的情况下,与膜部12a的厚度TH1小于11nm的情况相比,取向膜12的厚度TH2在某种程度上变厚,因此,能够在基板11的整个上表面11a上均匀地形成取向膜12,防止导电膜13与基板11直接接触。另外,在膜部12a的厚度TH1为11nm以上的情况下,与膜部12a的厚度TH1小于11nm的情况相比,取向膜12的厚度TH2在某种程度上变厚,因此容易使突出部12b的突出高度HT1为4nm以上,导电膜13所包含的铂容易进行(100)取向。另一方面,在膜部12a的厚度TH1为18nm以下的情况下,与膜部12a的厚度TH1超过18nm的情况相比,界面IF1的平均界面粗糙度不会变得过大,因此能够提高形成在取向膜12上的导电膜13的平坦性。
即,在取向膜12的厚度TH2为13nm以上的情况下,与取向膜12的厚度TH2小于13nm的情况相比,能够在基板11的上表面11a上整体均匀地形成取向膜12,防止导电膜13与基板11直接接触。另外,在取向膜12的厚度TH2为13nm以上的情况下,与取向膜12的厚度TH2小于13nm的情况相比,容易使突出部12b的突出高度HT1为4nm以上,导电膜13所包含的铂容易进行(100)取向。另一方面,在取向膜12的厚度TH2为22nm以下的情况下,与取向膜12的厚度TH2超过22nm的情况相比,界面IF1的平均界面粗糙度不会变得过大,因此能够提高形成在取向膜12上的导电膜13的平坦性。
优选的是,导电膜13覆盖多个突出部12b,在相邻的两个突出部12b之间埋入有导电膜13。在导电膜13具有这样的形状的情况下,导电膜13与取向膜12之间的界面的面积增加,导电膜13与取向膜12密接的密接力增加。
需要说明的是,导电膜13所包含的铂膜只要能够在取向膜12所包含的氧化锆膜的表面上外延生长即可,因此突出部12b的与沿着基板11的上表面11a的第一方向垂直的剖面形状也可以不是三角形状。即,突出部12b的沿着基板11的上表面11a且与第一方向垂直的方向即第二方向上的宽度也可以不从膜部12a侧即基板11侧朝向与膜部12a侧相反的一侧、即与基板11侧相反的一侧减小。
在图4所示的膜结构体中,如图6所示,优选的是,导电膜13具有拉伸应力TS1,取向膜12具有压缩应力CS1、或者比拉伸应力TS1小的拉伸应力TS2。
在图4所示的膜结构体的制造工序中,如图7所示,对在基板11上形成了取向膜12的时间点的应力进行说明。在基板11上形成了取向膜12的时间点,取向膜12具有拉伸应力TS4。
氧化锆(ZrO2)的线膨胀系数αZrO2为9×10-6-1左右,硅(Si)的线膨胀系数αSi为4×10-6-1左右,氧化锆的线膨胀系数αZrO2比硅(Si)的线膨胀系数αSi大。在这样的情况下,在由硅形成的基板11上例如以550℃的温度形成了由氧化锆构成的取向膜12之后,使基板11从550℃冷却到室温(30℃)时,取向膜12沿着基板11的上表面11a收缩,但基板11不会像取向膜12那样收缩,因此取向膜12被基板11约束而被拉伸,无法完全收缩。其结果是,取向膜12具有拉伸应力TS4,基板11具有压缩应力,从而如图7所示那样,基板11弯曲成向下凸出的形状。
另一方面,铂(Pt)的线膨胀系数αPt也为9×10-6-1左右,铂(Pt)的线膨胀系数αPt也大于硅(Si)的线膨胀系数αSi。在这样的情况下,在取向膜12上例如以550℃的温度形成由铂构成的导电膜13之后,使基板11从550℃冷却到室温(30℃)时,导电膜13沿着基板11的上表面11a收缩,但基板11不会像导电膜13那样收缩,因此导电膜13被基板11约束而被拉伸,无法完全收缩。因此,导电膜13具有拉伸应力TS1。另外,取向膜12受到基板11拉伸,但受到导电膜13压缩,或者是几乎不受力。因此,取向膜12具有压缩应力CS1,或者具有比拉伸应力TS1小的拉伸应力TS2。
需要说明的是,在导电膜13的厚度比取向膜12的厚度厚的情况下,取向膜12受到导电膜13压缩。因此,如图6所示,取向膜12的上层部12d具有压缩应力CS2,取向膜12的下层部12e具有拉伸应力TS3。并且,在取向膜12整体上具有压缩应力CS1时,压缩应力CS2比压缩应力CS1大,在取向膜12整体上具有拉伸应力TS2时,拉伸应力TS3比拉伸应力TS2大。
优选的是,取向膜12在基板11的上表面11a上外延生长,导电膜13在取向膜12上外延生长。由此,在压电膜15包含具有钙钛矿型结构的复合氧化物的情况下,能够使压电膜15在导电膜13上外延生长。
在此,将在基板11的作为主面的上表面11a内彼此正交两个方向作为X轴方向和Y轴方向,将与上表面11a垂直的方向作为Z轴方向时,某个膜外延生长是指,该膜在X轴方向、Y轴方向及Z轴方向中的任一方向上均取向。需要说明的是,关于优选的上表面11a内的取向方向,使用后述的图10进行说明。另外,前述的第一方向相当于Y轴方向,前述的第二方向相当于X轴方向。
膜14包含由下述通式(化学式2)表示且以伪立方晶显示进行(100)取向的复合氧化物。
Sr(Ti1-zRuz)O3···(化学式2)
在此,z满足0≤z≤1。需要说明的是,以下,有时将z满足z=0情况下的Sr(Ti1- zRuz)O3即SrTiO3称为STO,将z满足0<z<1情况下的Sr(Ti1-zRuz)O3称为STRO,将z满足z=1情况下的Sr(Til-zRuz)O3即SrRuO3称为SRO。
SRO具有金属导电性,STO具有半导性或绝缘性。因此,z越接近1,膜14的导电性越提高,因此能够将膜14作为包含导电膜13的下部电极的一部分使用。
在此,在通过溅射法形成膜14的情况下,z优选满足0≤z≤0.4,更优选满足0.05≤z≤0.2。这是因为,在z超过0.4的情况下,上述通式(化学式2)表示的复合氧化物变成粉末,有可能无法充分固化,制造溅射靶变得困难。
另一方面,在例如通过溶胶凝胶法等涂布法形成膜14的情况下,即使z>0.4,也可以容易形成。
由上述通式(化学式2)表示且具有钙钛矿型结构的复合氧化物以伪立方晶显示进行(100)取向是指如下情况。
首先,在包含三维排列的单位格子,以通式ABO3表示的钙钛矿型结构的晶格中,考虑单位格子包括一个原子A、一个原子B及三个氧原子的情况。
这样的情况下,以伪立方晶显示进行(100)取向是指,该单位格子具有立方晶的晶体结构,并且进行(100)取向的情况。此时,该单位格子的一边长度设为晶格常数ac
另一方面,考虑由上述通式(化学式2)表示、且具有钙钛矿型结构的复合氧化物具有斜方晶的晶体结构的情况。并且,考虑斜方晶的三个晶格常数中的第一个晶格常数ao大致等于伪立方晶的晶格常数ac的21/2倍,斜方晶的三个晶格常数中的第二个晶格常数bo大致等于伪立方晶的晶格常数ac的2倍,斜方晶的三个晶格常数中的第三个晶格常数co大致等于伪立方晶的晶格常数ac的21/2倍的情况。需要说明的是,在本申请说明书中,数值V1与数值V2大致相等是指,数值V1与数值V2的差相对于数值V1与数值V2的平均的比为5%左右以下。
此时,以伪立方晶显示进行(100)取向是指,以斜方晶显示进行(101)取向或(020)取向。
膜14由上述通式(化学式2)表示,满足0≤z≤1,从而伪立方晶的晶格常数ac满足0.390nm≤ac≤0.393nm,因此如使用后述的图10所说明的那样,能够使膜14在导电膜13上以伪立方晶显示进行(100)取向。
压电膜15经由膜14形成在导电膜13上,具有正方晶的晶体结构,并且包含作为(001)取向的复合氧化物的锆钛酸铅(PZT)、即PZT膜。或者,在压电膜15所包含的PZT包含具有正方晶的晶体结构的部分和具有菱面体晶的晶体结构的部分的情况下,压电膜15经由膜14形成在导电膜13上,并且也可以包含作为以伪立方晶显示进行(100)取向的复合氧化物的锆钛酸铅(PZT)。
压电膜15包含PZT是指,压电膜15包含由下述通式(化学式3)表示的复合氧化物。
Pb(Zr1-uTiu)O3···(化学式3)
u满足0<u<1。
另外,在压电膜15具有正方晶的晶体结构、且包含(001)取向的PZT的情况下,在本实施方式中,在基于使用CuKα线的θ-2θ法的压电膜15的X射线衍射图案中,在将锆钛酸铅的正方晶显示中的(004)面的衍射峰的衍射角度设为2θ004时,2θ004满足下述式(式1)。
004≤96.5°···(式1)
由此,锆钛酸铅的正方晶显示中的(004)面的间隔变长。或者,可以使压电膜15中的具有正方晶的晶体结构并且(001)取向(c轴取向)的锆钛酸铅的含有率比压电膜15中的具有正方晶的晶体结构并且(100)取向(a轴取向)的锆钛酸铅的含有率大。因此,能够使压电膜15所包含的多个晶粒的各自的极化方向一致,从而能够提高压电膜15的压电特性。
另一方面,在压电膜15包含以伪立方晶显示进行(100)取向的PZT的情况下,可以考虑如下。
压电膜15所包含的PZT具有正方晶的晶体结构,正方晶的两个晶格常数为at和ct,at和ct满足ct>at,考虑单位格子是彼此正交三个边的长度为at、at及ct的长方体的情况。并且,考虑正方晶的晶格常数at与伪立方晶的晶格常数ac大致相等,且正方晶的晶格常数ct与伪立方晶的晶格常数ac大致相等的情况。在这样的情况下,PZT以伪立方晶显示进行(100)取向是指,PZT以正方晶显示进行(100)取向(a轴取向),或者进行(001)取向(c轴取向)。
另一方面,考虑压电膜15所包含的PZT具有菱面体晶的晶体结构、且菱面体晶的晶格常数为ar的情况。并且,考虑菱面体晶的晶格常数ar与伪立方晶的晶格常数ac大致相等的情况。在这样的情况下,PZT以伪立方晶显示进行(100)取向是指,PZT以菱面体晶显示进行(100)取向。
这样的情况下,在本实施方式中,在基于使用CuKα线的θ-2θ法的压电膜15的X射线衍射图案中,在将锆钛酸铅的伪立方晶显示中的(400)面的衍射峰的衍射角度设为2θ400时,2θ400在上述式(式1)中,满足代替2θ004而置换为2θ400的式(2θ400≤96.5°)。并且,由此,锆钛酸铅的伪立方晶显示中的(400)面的间隔变长。因此,可以使压电膜15中的具有正方晶的晶体结构并且(001)取向的锆钛酸铅的含有率比压电膜15中的具有正方晶的晶体结构并且(100)取向的锆钛酸铅的含有率大。因此,能够使压电膜15所包含的多个晶粒的各自的极化方向一致,因此能够提高压电膜15的压电特性。
另外,在本实施方式中,在将压电膜15的相对介电常数设为εr时,εr满足下述式(式2)。
εr≤450···(式2)
由此,在将膜结构体10例如用作使用了压电效果的压力传感器的情况下,能够提高检测灵敏度,能够容易设计该压力传感器的检测电路。或者,在将膜结构体10例如用作使用了逆压电效果的超声波振子的情况下,能够容易设计振荡电路。
在具有包含锆钛酸铅的压电膜的膜结构体中,例如由于膜密度小,或者锆钛酸铅的含量少等的理由,在压电膜的结晶性等品质不良好的情况下,压电膜的压电特性降低。另一方面,在具有包含锆钛酸铅的压电膜的膜结构体中,例如由于膜密度大,或者锆钛酸铅的含量多等理由,在压电膜的结晶性等品质良好的情况下,虽然压电膜的压电特性提高,但有时压电膜的相对介电常数不会变小。
这样,在具有包含锆钛酸铅的压电膜的膜结构体中,在提高压电膜的压电特性时,有时压电膜的相对介电常数不会变小。并且,如果压电膜的相对介电常数不变小,则例如在将该压电膜用作压力传感器的情况下,例如由于压力传感器的容量变大等理由,压力传感器的检测灵敏度降低,有可能该压力传感器的检测电路的设计变得困难。
在本实施方式的膜结构体10中,2θ004满足上述式(式1),并且εr满足上述式(式2)。通过使2θ004满足上述式(式1),压电膜15中的具有正方晶的晶体结构且(001)取向的锆钛酸铅的含有率变大,因此能够提高压电特性。另外,通过使εr满足上述式(式2),相对介电常数变小,因此能够增大压力传感器的检测灵敏度。因此,根据本实施方式的膜结构体10,能够提高压电特性,并且能够提高使用了压电效果的传感器的检测灵敏度。即,在具有包含锆钛酸铅的压电膜的膜结构体中,能够提高压电膜的压电特性,并且能够提高使用了该压电膜的压力传感器的检测灵敏度。
如上述非专利文献2所记载那样,在PbTiO3中,为单晶状,若包含取向性等的结晶性提高,则相对介电常数变低。因此,PZT也与PbTiO3同样地,考虑通过使包含薄膜的取向性的结晶性提高来使相对介电常数变低。即,膜结构体10的相对介电常数εr低至450以下表示包含锆钛酸铅的压电膜即压电膜15变成单晶状的情况。
优选的是,在膜结构体10具有导电膜18的情况下,在将对导电膜13与导电膜18之间施加具有1kHz的频率的交流电压而测定的压电膜15的相对介电常数设为εr时,压电膜15的εr满足上述式(式2)。通过使在具有这样的频率的交流电压下的相对介电常数变小,例如能够使检测电路的时钟频率提高,能够提高使用了膜结构体10的压力传感器的响应速度。
在膜结构体10具有导电膜18的情况下,通过导电膜13、压电膜15及导电膜18形成强电介质电容器CP1。并且,压电膜15的εr基于对导电膜13与导电膜18之间施加了具有1kHz的频率的交流电压时的强电介质电容器CP1的静电电容而计算。
优选的是,在将压电膜15的残留极化值设为Pr时,Pr满足下述式(式3)。
Pr≥28μC/cm2···(式3)
残留极化值是成为也是强电介质的压电体的强介电特性的指标的值,但通常,强介电特性优异的压电膜的压电特性也优异。因此,通过使压电膜15的Pr满足上述式(式3),能够提高压电膜15的强介电特性,因此也能够提高压电膜15的压电特性。
需要说明的是,Pr优选满足Pr≥40μC/cm2,更优选满足Pr≥50μC/cm2,更进一步优选Pr≥55μC/cm2。Pr越大,则越能够提高压电膜15的强介电特性,因此压电膜15的压电特性也能够进一步提高。
在膜结构体10具有导电膜18的情况下,在测定示出使施加于导电膜13与导电膜18之间的电压变化了时的压电膜15的极化的变化的极化电压磁滞曲线(参照后述的图9)时,使施加于导电膜13与导电膜18之间的电压从0向正侧增加并再次回到0时的极化值为压电膜15的残留极化值Pr。另外,使施加于导电膜13与导电膜18之间的电压从0向负侧减小并再次回到0时的极化值为压电膜15的残留极化值-Pr
即,在测定示出使施加于压电膜15的电场变化了时的压电膜15的极化的变化的极化电场磁滞曲线时,使施加于压电膜15的电压从0向正侧增加并再次回到0时的极化为压电膜15的残留极化值Pr。另外,使施加于压电膜15的电场从0向负侧减小并再次回到0时的极化为压电膜15的残留极化值-Pr
如图2所示,在膜结构体10具有导电膜18的情况下,通过导电膜13、压电膜15及导电膜18形成强电介质电容器CP1。在这样的情况下,压电膜15的Pr为强电介质电容器CP1的残留极化值。
优选的是,压电膜15包含压电膜16和压电膜17。压电膜16包含由形成在膜14上的锆钛酸铅构成的复合氧化物。压电膜17包含由形成在压电膜16上的锆钛酸铅构成的复合氧化物。压电膜16具有压缩应力,压电膜17具有拉伸应力。
考虑压电膜16具有拉伸应力,压电膜17具有拉伸应力的情况。在这样的情况下,膜结构体10在以基板11的上表面11a为主面时,容易以具有向下方凸出的形状的方式翘曲。因此,例如使用光刻技术加工膜结构体10的情况下的形状精度降低,加工膜结构体10而形成的压电元件的特性降低。
另外,考虑压电膜16具有压缩应力,压电膜17具有压缩应力的情况。在这样的情况下,膜结构体10在以基板11的上表面11a为主面时,容易以具有向上凸出的形状的方式翘曲。因此,例如使用光刻技术加工膜结构体10的情况下的形状精度降低,加工膜结构体10而形成的压电元件的特性降低。
另一方面,在本实施方式中,压电膜16具有压缩应力,压电膜17具有拉伸应力。由此,与压电膜16和压电膜17均具有拉伸应力的情况相比,能够降低膜结构体10翘曲的翘曲量,与压电膜16和压电膜17均具有压缩应力的情况相比,能够降低膜结构体10翘曲的翘曲量。因此,例如能够提高使用光刻技术加工膜结构体10的情况下的形状精度,能够提高加工膜结构体10而形成的压电元件的特性。
需要说明的是,压电膜16具有压缩应力,压电膜17具有拉伸应力例如能够如下那样来确定:在由膜结构体10依次去除压电膜17和压电膜16时,在去除压电膜17的前后,基板11从向下凸出侧朝向向上凸出侧变形,在去除压电膜16前后,基板11从向上凸出侧朝向向下凸出侧变形。
优选的是,压电膜16包含由下述通式(化学式4)表示且由锆钛酸铅(PZT)构成的复合氧化物。
Pb(Zr1-xTix)O3···(化学式4)
在此,x满足0.32≤x≤0.52。需要说明的是,上述通式(化学式4)表示与上述通式(化学式1)相同的复合氧化物。
其中,在x满足0.32≤x≤0.48的情况下,压电膜16所包含的PZT是原本具有菱面体晶的晶体结构的组成,但主要由于来自基板11的约束力等,而变得具有正方晶的晶体结构且容易进行(001)取向。并且,包含PZT的压电膜16在膜14上外延生长。需要说明的是,在x满足0.48<x≤0.52的情况下,压电膜16所包含的PZT是原本具有正方晶的晶体结构的组成,因此具有正方晶的晶体结构且进行(001)取向。并且,包含PZT的压电膜16在膜14上外延生长。由此,能够使压电膜16所包含的锆钛酸铅的极化轴与上表面11a大致垂直地取向,因此能够提高压电膜16的压电特性。
另外,优选的是,压电膜17包含由下述通式(化学式5)表示且由锆钛酸铅(PZT)形成的复合氧化物。
Pb(Zr1-yTiy)O3···(化学式5)
在此,y满足0.32≤y≤0.52。
其中,在y满足0.32≤y≤0.48的情况下,压电膜17所包含的PZT是原本具有菱面体晶的晶体结构的组成,但主要由于来自基板11的约束力等,而变得具有正方晶的晶体结构且容易进行(001)取向。并且,包含PZT的压电膜17在压电膜16上外延生长。需要说明的是,在y满足0.48<y≤0.52的情况下,压电膜17所包含的PZT是原本具有正方晶的晶体结构的组成,因此具有正方晶的晶体结构且进行(001)取向。并且,包含PZT的压电膜17在压电膜16上外延生长。由此,能够使压电膜17所包含的锆钛酸铅的极化轴与上表面11a大致垂直地取向,因此能够提高压电膜17的压电特性。
如使用后述的图15所说明的那样,例如能够通过溅射法形成具有压缩应力的压电膜16。另外,在对膜结构体的制造工序进行说明时,如使用图1所说明的那样,例如能够通过溶胶凝胶法等涂布法形成具有拉伸应力的压电膜17。
图8是示意性地示出实施方式的膜结构体所包含的两个压电膜的剖面结构的图。图8示意性地示出利用扫描型电子显微镜(Scanning Electron Microscope:SEM)观察通过劈开图1所示的实施方式的膜结构体10所包含的基板11而形成的剖面、即断裂面的观察图像中的压电膜16和压电膜17。
图9是示意性地示出实施方式的膜结构体所包含的压电膜的极化的电场依赖性的曲线图。图9是示意性地示出表示使图2所示的实施方式的膜结构体10所包含的下部电极(导电膜13)与上部电极(导电膜18)之间的电场变化了时的压电膜15的极化的变化的极化电场磁滞曲线的曲线图。
如图8所示,在通过溅射法形成压电膜16的情况下,压电膜16包含从压电膜16的下表面至上表面为止分别被一体地形成的多个晶粒16g。另外,在基板11的主面(图1的上表面11a)内彼此相邻的两个晶粒16g之间,不容易残留空孔或空隙。因此,在通过集束离子束(Focused Ion Beam:FIB)法来加工并在压电膜16上形成用于利用SEM进行观察的剖面的情况下,该剖面容易看成单一的剖面,难以观察到晶粒16g。
另一方面,在通过涂布法形成压电膜17的情况下,压电膜17包含多个作为在压电膜17的厚度方向上相互层叠而成的层的膜17f。作为多个层的每一层的膜17f包含从一层的膜17f的下表面到上表面为止分别一体地形成的多个晶粒17g。另外,在压电膜17的厚度方向上彼此相邻的两个膜17f之间有空孔或空隙残留。
如图8所示,优选的是,多个晶粒的每一个具有自发极化。该自发极化包含与压电膜16的厚度方向平行的极化成分P1,多个晶粒的每一个所具有的自发极化所包含的极化成分P1彼此朝向相同的方向。
在这样的情况下,如图9所示,在初始状态下,压电膜15具有较大的自发极化。因此,对于在从电场为0的起点SP使电场向正侧增加并再次回到0之后、使电场向负侧减小并再次回到0的终点EP的情况下的、示出压电膜15的极化的电场依赖性的磁滞曲线,示出将远离原点的点作为起点SP的曲线。因此,在将本实施方式的膜结构体10作为压电元件使用的情况下,在使用前,不需要对压电膜15实施极化处理。
需要说明的是,将图9所示的磁滞曲线与电场轴交叉时、即极化变为0时的电场值称为矫顽电场值Ec。另外,在磁滞曲线的曲线图中,在代替极化的电场依赖性而以极化的电压依赖性表示时,将磁滞曲线与电压轴交叉时、即极化变为0时的电压值称为抗电压值Vc。
图10是对实施方式的膜结构体所包含的各层的膜外延生长的状态进行说明的图。需要说明的是,在图10中,示意性地示出基板11、取向膜12、导电膜13、膜14及压电膜15的各层。
将基板11所包含的Si的晶格常数、取向膜12所包含的ZrO2的晶格常数、导电膜13所包含的Pt的品格常数、膜14所包含的SRO的晶格常数、以及压电膜15所包含的PZT的晶格常数示于表1中。
[表1]
材料 晶格常数(nm)
PZT 0.411
SRO 0.390~0.393
Pt 0.392(0.554)
ZrO<sub>2</sub> 0.511
Si 0.543
如表1所示,Si的晶格常数为0.543nm,ZrO2的晶格常数为0.511nm,ZrO2的晶格常数相对于Si的晶格常数的不匹配小至6.1%,因此ZrO2的晶格常数相对于Si的晶格常数的匹配性良好。因此,如图10所示,能够使包含ZrO2的取向膜12在包含硅单晶的基板11的作为由(100)面构成的主面的上表面11a上外延生长。因此,能够使包含ZrO2的取向膜12在包含硅单晶的基板11的(100)面上以立方晶的晶体结构进行(100)取向,能够提高取向膜12的结晶性。
取向膜12具有立方晶的晶体结构,并且包含(100)取向的氧化锆膜12f。在这样的情况下,氧化锆膜12f以氧化锆膜12f的沿着由硅基板构成的基板11的作为主面的上表面11a的<100>方向与基板11自身的沿着上表面11a的<100>方向平行的方式取向。
需要说明的是,氧化锆膜12f的沿着基板11的上表面11a的<100>方向与由硅基板构成的基板11自身的沿着上表面11a的<100>方向平行是指,不只包括氧化锆膜12f的<100>方向与基板11自身的沿着上表面11a的<100>方向完全平行的情况,还包括氧化锆膜12f的<100>方向与基板11自身的沿着上表面11a的<100>方向所成的角度为20°以下的情况。另外,不仅对氧化锆膜12f,对其他层的膜的面内的取向也同样。
另一方面,如表1所示,ZrO2的晶格常数为0.511nm,Pt的晶格常数为0.392nm,但若Pt在平面内旋转45°,则对角线的长度成为0.554nm,该对角线的长度相对于ZrO2的晶格常数的不匹配小至8.1%,因此认为能够使包含Pt的导电膜13在包含ZrO2的取向膜12的(100)面上外延生长。例如在上述专利文献2和上述非专利文献1中,报告了如下内容:以不是Pt膜而由具有与Pt的晶格常数相同程度的晶格常数(0.381nm)的LSCO形成的LSCO膜的面内的<100>方向与硅基板的主面内的<110>方向平行的方式取向。
但是,本发明人等首先发现,Pt的晶格常数相对于ZrO2的晶格常数的不匹配高达26%,但无需Pt不在平面内旋转45°,就能够使包含Pt的导电膜13在硅基板上外延生长。即,导电膜13具有立方晶的晶体结构,并且包含(100)取向的铂膜13a。在这样的情况下,铂膜13a以铂膜13a的沿着由硅基板构成的基板11的上表面11a的<100>方向与基板11自身的沿着上表面11a的<100>方向平行的方式取向。这样,可知能够使包含Pt的导电膜13在包含ZrO2的取向膜12的(100)面上以立方晶的晶体结构进行(100)取向,能够提高导电膜13的结晶性。
需要说明的是,通过调整形成ZrO2情况下的条件或形成Pt情况下的条件,也能够以Pt在平面内旋转45°的状态、即在基板11的主面内以Pt的<100>方向沿着Si的<110>方向的状态,使包含Pt的导电膜13在包含ZrO2的取向膜12的(100)面上外延生长。
另外,如表1所示,Pt的晶格常数为0.392nm,SRO的晶格常数为0.390~0.393nm,PZT的晶格常数相对于Pt的晶格常数的不匹配小至0.5%以下,SRO的晶格常数相对于Pt的晶格常数的匹配性良好。因此,如图10所示,能够使包含SRO的膜14在包含Pt的导电膜13的(100)面上外延生长。因此,能够使包含SRO的膜14在包含Pt的导电膜13的(100)面上以伪立方晶显示进行(100)取向,能够提高膜14的结晶性。
膜14具有伪立方晶的晶体结构且包含(100)取向的SRO膜14a。在这样的情况下,SRO膜14a以SRO膜14a的沿着由硅基板构成的基板11的上表面11a的<100>方向与基板11自身的沿着上表面11a的<100>方向平行的方式进行取向。
另外,如表1所示,SRO的晶格常数为0.390~0.393nm,PZT的晶格常数为0.411nm,PZT的晶格常数相对于SRO的晶格常数的不匹配小至4.5~5.2%,因此PZT的晶格常数相对于SRO的晶格常数的匹配性良好。因此,如图10所示,能够使包含PZT的压电膜15在包含SRO的膜14的(100)面上外延生长。因此,能够使包含PZT的压电膜15在包含SRO的膜14的(100)面上以正方晶显示进行(001)取向或以伪立方晶显示进行(100)取向,能够提高压电膜15的结晶性。
压电膜15具有正方晶的晶体结构,且包含(001)取向的锆钛酸铅膜15a。在这样的情况下,锆钛酸铅膜15a以锆钛酸铅膜15a的沿着由硅基板构成的基板11的上表面11a的<100>方向与基板11自身的沿着上表面11a的<100>方向平行的方式进行取向。
这样,本发明人等首次发现,无需使锆钛酸铅在平面内旋转45°,就能够使包含锆钛酸铅的压电膜15在硅基板上外延生长。这是与例如在上述专利文献2和上述非专利文献1中所记载的面内取向的关系完全不同的关系。
需要说明的是,也可以在膜14与压电膜15之间形成包含锆钛酸铅的膜。该膜也可以包含由下述通式(化学式6)表示且以伪立方晶显示进行(100)取向的复合氧化物。
Pb(Zr1-vTiv)O3···(化学式6)
在此,v满足0≤v≤0.1。
由此,能够使包含PZT的压电膜15在包含SRO的膜14的(100)面上更容易地以正方晶显示进行(001)取向或以伪立方晶显示进行(100)取向,能够更容易地提高压电膜15的结晶性。
图11是示意性地示出PZT的单位格子的图。图11示出了压电膜15所包含的PZT的单位格子所包含的元素中的铅(Pb)、以及锆(Zr)或钛(Ti)。
如图11所示,在压电膜15所包含的PZT以正方晶显示进行(001)取向、即c轴取向时,优选的是,正方晶PZT的c轴方向的晶格常数c相对于正方晶PZT的a轴方向的晶格常数a的晶格常数比为1.010~1.016。
通常的正方晶PZT的c轴方向的晶格常数c相对于正方晶PZT的a轴方向的晶格常数a的晶格常数比(c/a比)小于1.010。另一方面,本实施方式的膜结构体具有的压电膜15中的正方晶PZT的c/a比为1.010以上。另外,正方晶PZT的压电特性依赖于正方晶PZT的c/a比。因此,根据本实施方式的膜结构体具有的压电膜15,能够实现具有比通常的PZT优异的压电特性的压电膜。需要说明的是,压电膜15之中,在压电膜16中,正方晶PZT的c轴方向的晶格常数c相对于正方晶PZT的a轴方向的晶格常数a的晶格常数比也可以为1.010~1.016。
<膜结构体的制造方法>
接着,对本实施方式的膜结构体的制造方法进行说明。图12至图15是实施方式的膜结构体的制造工序中的剖视图。
首先,如图12所示,准备基板11(步骤S1)。在步骤S1中,例如准备由硅(Si)单晶形成的硅基板即基板11。由硅单晶形成的基板11具有立方晶的晶体结构,且具有由(100)面构成的作为主面的上表面11a。在基板11为硅基板的情况下,也可以在基板11的上表面11a上形成SiO2膜等氧化膜。
需要说明的是,作为基板11,能够使用硅基板以外的各种基板,例如能够使用SOI(Silicon on Insulator)基板、由硅以外的各种半导体单晶形成的基板、由蓝宝石等各种氧化物单晶形成的基板、或者由在表面形成有多晶硅膜的玻璃基板构成的基板等。
如图12所示,将由硅单晶形成的基板11的由(100)面构成的上表面11a内彼此正交两个方向设为X轴方向和Y轴方向,将与上表面11a垂直的方向设为Z轴方向。
接着,如图13所示,在基板11上形成取向膜12(步骤S2)。以下,在步骤S2中,以使用电子束蒸镀法形成取向膜12的情况为例进行说明,但例如也能够使用溅射法等各种方法形成取向膜12。
在步骤S2中,首先,在将基板11配置在一定的真空气氛中的状态下,将基板11加热到例如700℃。
在步骤S2中,接着,通过使用了锆(Zr)单晶的蒸镀材料的电子束蒸镀法使Zr蒸发。此时,蒸发了的Zr在例如被加热到700℃的基板11上与氧反应,从而成膜为氧化锆(ZrO2)膜。并且,形成由作为单层膜的ZrO2膜构成的取向膜12。
取向膜12在由硅单晶形成的基板11的作为由(100)面构成的主面的上表面11a上外延生长。取向膜12具有立方晶的晶体结构,且包含(100)取向的氧化锆(ZrO2)。即,在由硅单晶形成的基板11的由(100)面构成的上表面11a上形成由包含(100)取向的氧化锆(ZrO2)的单层膜构成的取向膜12。
如使用前述的图12所说明的那样,将由硅单晶形成的基板11的由(100)面构成的上表面11a内彼此正交两个方向设为X轴方向和Y轴方向,将与上表面11a垂直的方向设为Z轴方向。此时,某个膜外延生长是指,该膜在X轴方向、Y轴方向及Z轴方向的任一方向上均进行取向。
取向膜12具有立方晶的晶体结构,且包含(100)取向的氧化锆膜12f(参照图10)。在这样的情况下,氧化锆膜12f以氧化锆膜12f的沿着由硅基板构成的基板11的作为主面的上表面11a的<100>方向与基板11自身的沿着上表面l1a的<100>方向平行。
如图13所示,优选的是,取向膜12包含形成在基板11的上表面11a上的膜部12a、以及从膜部12a的上表面分别突出的多个突出部12b。另外,膜部12a具有立方晶的晶体结构,且包含(100)取向的氧化锆(氧化锆膜)。并且,多个突出部12b分别具有立方晶的晶体结构,且包含(100)取向的氧化锆(氧化锆膜)。
由此,取向膜12与在后述的步骤S3中形成的导电膜13(参照图4)之间的界面IF1(参照图4)的界面粗糙度(粗糙度)变大,取向膜12与导电膜13之间的界面IF1的平均界面粗糙度比基板11与取向膜12之间的界面IF2(参照图4)的平均界面粗糙度大。因此,例如取向膜12的表面成为取向膜12所包含的氧化锆膜的(100)面以外的面,在该氧化锆膜的(100)面以外的面上,通过导电膜13所包含的铂膜的(100)面以外的面进行外延生长等,铂膜变得容易在氧化锆膜的表面上外延生长。并且,通过包含铂膜的导电膜13变得容易外延生长,从而膜14和压电膜15变得容易外延生长,因此能够提高压电膜15的压电特性。
或者,由于只要取向膜12与导电膜13之间的界面IF1的平均界面粗糙度比基板11与取向膜12之间的界面IF2的平均界面粗糙度大即可,因此取向膜12也可以不明确地具有多个突出部12b,例如也可以具有在表面具有在俯视下相互隔离地形成的多个台阶(阶梯)的阶梯状结构。
优选的是,突出部12b的与沿着基板11的上表面11a的第一方向垂直的剖面形状为三角形状,突出部12b的沿着基板11的上表面11a且与第一方向垂直的方向即第二方向上的宽度从膜部12a侧即基板11侧朝向与膜部12a侧相反的一侧、即与基板11侧相反的一侧减小。在突出部12b具有这样的三角形状的情况下,导电膜13所包含的铂膜更容易在取向膜12所包含的氧化锆膜的表面上外延生长。
优选的是,膜部12a的厚度TH1(参照图5)为11~18nm,多个突出部12b分别从膜部12a的上表面12c(参照图5)突出的突出高度HT1(参照图5)为4~8nm。即,优选的是,取向膜12的厚度TH2(参照图5)为13~22nm。
在突出部12b的突出高度HT1为4nm以上的情况下,与突出部12b的突出高度HT1小于4nm的情况相比,能够可靠地使界面IF1的平均界面粗糙度比界面IF2的平均界面粗糙度大,因此形成在包含(100)取向的氧化锆的取向膜12上的导电膜13所包含的铂容易进行(100)取向。另一方面,在突出部12b的突出高度HT1为8nm以下的情况下,与突出部12b的突出高度HT1超过8nm的情况相比,界面IF1的平均界面粗糙度不会变得过大,因此能够提高形成在包含(100)取向的氧化锆的取向膜12上的导电膜13的平坦性。
另外,在膜部12a的厚度TH1为11nm以上的情况下,与膜部12a的厚度TH1小于11nm的情况相比,取向膜12的厚度TH2在某种程度上变厚,因此在基板11的整个上表面11a上均匀地形成取向膜12,能够防止导电膜13与基板11直接接触。另外,在膜部12a的厚度TH1为11nm以上的情况下,与膜部12a的厚度TH1小于11nm的情况相比,取向膜12的厚度TH2在某种程度上变厚,因此容易使突出部12b的突出高度HT1为4nm以上,导电膜13所包含的铂容易进行(100)取向。另一方面,在膜部12a的厚度TH1为18nm以下的情况下,与膜部12a的厚度TH1超过18nm的情况相比,界面IF1的平均界面粗糙度不会变得过大,因此能够提高形成在取向膜12上的导电膜13的平坦性。
即,在取向膜12的厚度TH2为13nm以上的情况下,与取向膜12的厚度TH2小于13nm的情况相比,在基板11的整个上表面11a上均匀地形成取向膜12,能够防止导电膜13与基板11直接接触。另外,在取向膜12的厚度TH2为13nm以上的情况下,与取向膜12的厚度TH2小于13nm的情况相比,容易使突出部12b的突出高度HT1为4nm以上,导电膜13所包含的铂容易进行(100)取向。另一方面,在取向膜12的厚度TH2为22nm以下的情况下,与取向膜12的厚度TH2超过22nm的情况相比,界面IF1的平均界面粗糙度不会变得过大,因此能够提高形成在取向膜12上的导电膜13的平坦性。
接着,如图4所示,形成导电膜13(步骤S3)。
在该步骤S3中,首先,在取向膜12上形成外延生长成的作为下部电极的一部分的导电膜13。导电膜13由金属形成。作为由金属形成的导电膜13,例如使用包含铂(Pt)的导电膜。
作为导电膜13,在形成包含Pt的导电膜的情况下,在取向膜12上,以450~600℃的温度,通过溅射法,将外延生长成的导电膜13形成为下部电极的一部分。包含Pt的导电膜13在取向膜12上外延生长。另外,导电膜13所包含的Pt具有立方晶的晶体结构,且进行(100)取向。
导电膜13具有立方晶的晶体结构,且包含(100)取向的铂膜13a(参照图10)。在这样的情况下,铂膜13a以铂膜13a的沿着由硅基板构成的基板11的上表面11a的<100>方向与基板11自身的沿着上表面11a的<100>方向平行的方式进行取向。
需要说明的是,作为由金属形成的导电膜13,也可以代替包含铂(Pt)的导电膜而使用例如包含铱(Ir)的导电膜。
优选的是,在步骤S3中,形成覆盖多个突出部12b的导电膜13,在相邻的两个突出部12b之间埋入导电膜13。在导电膜13具有这样的形状的情况下,导电膜13与取向膜12之间的界面的面积增加,导电膜13与取向膜12密接的密接力增加。
在图4所示的膜结构体中,如图6所示,优选的是,导电膜13具有拉伸应力TS1,取向膜12具有压缩应力CS1或者具有比拉伸应力TS1小的拉伸应力TS2。
首先,如图13所示,在基板11上形成了取向膜12的时间点,如使用前述的图7所说明的那样,取向膜12具有拉伸应力TS4。
氧化锆(ZrO2)的线膨胀系数αZrO2为9×10-6-1左右,硅(Si)的线膨胀系数αSi为4×10-6-1左右,氧化锆的线膨胀系数αZrO2比硅(Si)的线膨胀系数αSi大。在这样的情况下,在由硅形成的基板11上例如以550℃的温度形成由氧化锆形成的取向膜12之后,使基板11从550℃冷却到室温(30℃)时,取向膜12沿着基板11的上表面11a收缩,但基板11不会像取向膜12那样收缩,因此取向膜12被基板11约束而拉伸,无法完全收缩。其结果是,取向膜12具有拉伸应力TS4,基板11具有压缩应力,基板11如图7所示那样弯曲成向下凸出的形状。
另一方面,铂(Pt)的线膨胀系数αPt也为9×10-6-1左右,铂(Pt)的线膨胀系数αPt也比硅(Si)的线膨胀系数αSi大。在这样的情况下,在取向膜12上例如以550℃的温度形成由铂形成的导电膜13之后,使基板11从550℃冷却到室温(30℃)时,导电膜13沿着基板11的上表面11a收缩,但基板11不会像导电膜13那样收缩,因此导电膜13被基板11约束而被拉伸,无法完全收缩。因此,导电膜13具有拉伸应力TS1。另外,取向膜12受到基板11拉伸,但受到导电膜13压缩、或者几乎不受力。因此,取向膜12具有压缩应力CS1、或者具有比拉伸应力TS1小的拉伸应力TS2。
需要说明的是,在导电膜13的厚度比取向膜12的厚度厚的情况下,取向膜12受到导电膜13压缩。因此,如图6所示,取向膜12的上层部12d具有压缩应力CS2,取向膜12的下层部12e具有拉伸应力TS3。并且,在取向膜12整体上具有压缩应力CS1时,压缩应力CS2比压缩应力CS1大,在取向膜12整体上具有拉伸应力TS2时,拉伸应力TS3比拉伸应力TS2大。
接着,如图14所示,形成膜14(步骤S4)。在该步骤S4中,将包含上述通式(化学式2)表示的复合氧化物的膜14形成在导电膜13上。作为上述通式(化学式2)表示的复合氧化物,例如可以形成包含钛酸锶(STO)、钛酸钌酸锶(STRO)、或钌酸锶(SRO)的导电膜。在形成包含SRO的导电膜作为由上述通式(化学式2)表示的复合氧化物的情况下,在步骤S4中,在导电膜13上形成作为下部电极的一部分的作为导电膜的膜14。需要说明的是,在上述通式(化学式2)中,z满足0≤z≤1。
作为膜14,在形成包含STO、STRO或SRO的导电膜的情况下,在导电膜13上,以600℃左右的温度,通过溅射法将外延生长成的膜14形成为下部电极的一部分。包含STO、STRO或SRO的膜14在导电膜13上外延生长。另外,膜14所包含的STO、STRO或SRO以伪立方晶显示或立方晶显示进行(100)取向。
膜14具有伪立方晶的晶体结构,且包含(100)取向的SRO膜14a(参照图10)。在这样的情况下,SRO膜14a以SRO膜14a的沿着由硅基板形成的基板11的上表面11a的<100>方向与基板11自身的沿着上表面11a的<100>方向平行的方式进行取向。
另外,也可以代替溅射法而例如通过溶胶凝胶法等涂布法形成膜14。在这样的情况下,在步骤S4中,首先,在膜14上涂布含有锶及钌、锶、钛及钌、或锶及钛的溶液,从而形成包含上述通式(化学式2)表示的复合氧化物的前体的膜。另外,在通过涂布法形成膜14的情况下,在步骤S4中,接着,通过对膜进行热处理而使前体氧化并结晶,从而形成包含上述通式(化学式2)表示的复合氧化物的膜14。
接着,如图15所示,形成压电膜16(步骤S5)。在该步骤S5中,通过溅射法将包含由上述通式(化学式4)表示且由锆钛酸铅(PZT)形成的复合氧化物的压电膜16形成在膜14上。在此,在上述通式(化学式4)中,x满足0.32≤x≤0.52。
其中,在x满足0.32≤x≤0.48的情况下,压电膜16所包含的PZT是原本具有菱面体晶的晶体结构的组成,但主要由于来自基板11的约束力等,而变得具有正方晶的晶体结构且容易进行(001)取向。并且,包含PZT的压电膜16在膜14上外延生长。需要说明的是,在x满足0.48<x≤0.52的情况下,压电膜16所包含的PZT是原本具有正方晶的晶体结构的组成,因此具有正方晶的晶体结构,且进行(001)取向。并且,包含PZT的压电膜16在膜14上外延生长。由此,能够使压电膜16所包含的锆钛酸铅的极化轴与上表面11a大致垂直地取向,因此能够提高压电膜16的压电特性。
压电膜16具有正方晶的晶体结构,且包含(001)取向的锆钛酸铅膜16a(参照图10)。在这样的情况下,锆钛酸铅膜16a以锆钛酸铅膜16a的沿着由硅基板形成的基板11的上表面11a的<100>方向与基板11自身的沿着上表面11a的<100>方向平行的方式进行取向。
例如,在利用溅射法形成压电膜16时,能够利用等离子体使压电膜16所包含的多个晶粒16g(参照图8)分别极化。因此,成膜出的压电膜16所包含的多个晶粒16g各自具有自发极化。另外,多个晶粒16g各自具有的自发极化包含与压电膜16的厚度方向平行的极化成分P1(参照图8)。并且,多个晶粒16g各自具有的自发极化所包含的极化成分P1朝向彼此相同的方向。其结果是,所形成的压电膜16从进行极化处理之前起,作为压电膜16整体具有自发极化。
即,在步骤S5中,在利用溅射法形成压电膜16时,能够通过等离子体使压电膜16极化。其结果是,如使用图6所说明的那样,在使用本实施方式的膜结构体10作为压电元件的情况下,不需要在使用前对压电膜16实施极化处理。
另外,在步骤S5中,在利用溅射法形成压电膜16时,例如溅射粒子及氩(Ar)气射入压电膜16内而使压电膜16膨胀,由此压电膜16具有压缩应力。
接着,如图1所示,形成压电膜17(步骤S6)。在该步骤S6中,通过例如溶胶凝胶法等涂布法将包含由上述通式(化学式5)表示且由锆钛酸铅(PZT)构成的复合氧化物的压电膜17形成在压电膜16上。以下,对通过溶胶凝胶法形成压电膜17的方法进行说明。
在步骤S6中,首先,通过在压电膜16上涂布含有铅、锆及钛的溶液,而形成包含PZT的前体的膜。需要说明的是,也可以将涂布含有铅、锆及钛的溶液的工序重复多次,由此,形成包含相互层叠的多个膜的膜。
在步骤S6中,接着,通过将膜热处理而使前体氧化并进行结晶化,由此形成包含PZT的压电膜17。在此,在上述通式(化学式5)中,y满足0.32≤y≤0.52。
其中,在y满足0.32≤y≤0.48的情况下,压电膜17所包含的PZT是原本具有本来菱面体晶的晶体结构的组成,但主要由于来自基板11的约束力等,而变得具有正方晶的晶体结构且容易进行(001)取向。并且,包含PZT的压电膜17在压电膜16上外延生长。需要说明的是,在y满足0.48<y≤0.52的情况下,压电膜17所包含的PZT原本是具有正方晶的晶体结构的组成,因此具有正方晶的晶体结构,且进行(001)取向。并且,包含PZT的压电膜17在压电膜16上外延生长。由此,能够使压电膜17所包含的锆钛酸铅的极化轴与上表面11a大致垂直地取向,因此能够提高压电膜17的压电特性。
压电膜17具有正方晶的晶体结构,且包含(001)取向的锆钛酸铅膜17a(参照图10)。在这样的情况下,锆钛酸铅膜17a以锆钛酸铅膜17a的沿着由硅基板构成的基板11的上表面11a的<100>方向与基板11自身的沿着上表面11a的<100>方向平行的方式进行取向。
在具有正方晶的晶体结构的PZT进行(001)取向的情况下,由于与[001]方向平行的极化方向和与压电膜15的厚度方向平行的电场方向相互平行,因此压电特性提高。即,在具有正方晶的晶体结构的PZT中,在施加沿着[001]方向的电场的情况下,得到大的绝对值的压电常数d33和d31。因此,能够进一步增大压电膜15的压电常数。需要说明的是,在本申请说明书中,关于压电常数d31,原本其附图标记为负,但有时省略附图标记而用绝对值表示。
在步骤S6中,例如由于在热处理时溶液中的溶剂蒸发、或者在前体氧化且结晶时膜收缩,从而压电膜17具有拉伸应力。
这样,形成包含压电膜16和压电膜17的压电膜15,形成图1所示的膜结构体10。即,步骤S5和步骤S6包含于如下工序:在导电膜13上经由膜14以正方晶显示进行(001)取向或以伪立方晶显示进行(100)取向,形成包含外延生长的锆钛酸铅的压电膜15。
如使用前述的图11所说明的那样,在压电膜15所包含的PZT以正方晶显示进行(001)取向、即c轴取向时,优选的是,正方晶PZT的c轴方向的晶格常数c相当于正方晶PZT的a轴方向的晶格常数a的晶格常数比为1.010~1.016。
正方晶PZT的c轴方向的晶格常数c相对于通常的正方晶PZT的a轴方向的晶格常数a的晶格常数比(c/a比)小于1.010。另一方面,本实施方式的膜结构体所具有的压电膜15中的正方晶PZT的c/a比为1.010以上。另外,正方晶PZT的压电特性依赖于正方晶PZT的c/a比。因此,根据本实施方式的膜结构体所具有的压电膜15,能够实现具有比通常的PZT优异的压电特性的压电膜。
需要说明的是,也可以在形成压电膜17之后,在压电膜17上形成作为上部电极的导电膜18(参照图2)(步骤S7)。
另外,也可以在膜14与压电膜15之间形成包含锆钛酸铅的膜。该膜可以包含由上述通式(化学式6)表示且以伪立方晶显示进行(100)取向的复合氧化物。
<实施方式的变形例>
在实施方式中,如图1所示,形成了包含压电膜16和压电膜17的压电膜15。但是,压电膜15也可以仅包含压电膜16。将这样的例子作为实施方式的变形例进行说明。
图16是实施方式的变形例的膜结构体的剖视图。
如图16所示,本变形例的膜结构体10具有基板11、取向膜12、导电膜13、膜14、以及压电膜15。取向膜12形成在基板11上。导电膜13形成在取向膜12上。膜14形成在导电膜13上。压电膜15形成在膜14上。压电膜15包含压电膜16。
即,本变形例的膜结构体10除了压电膜15不包括压电膜17(参照图1)而仅包含压电膜16这一点之外,与实施方式的膜结构体10相同。
在压电膜15包含具有压缩应力的压电膜16但不包含具有拉伸应力的压电膜17(参照图1)的情况下,与压电膜15既包含具有压缩应力的压电膜16也包含具有拉伸应力的压电膜17(参照图1)的情况相比,膜结构体10翘曲的翘曲量增加。但是,例如在压电膜15的厚度薄的情况下,能够使膜结构体10翘曲的翘曲量降低。因此,即使在压电膜15仅包含压电膜16的情况下,例如也能够提高使用光刻技术加工膜结构体10情况下的形状精度,能够提高加工膜结构体10而形成的压电元件的特性。
需要说明的是,本变形例的膜结构体10也可以与实施方式的膜结构体10同样地具有导电膜18(参照图2)。
[实施例]
以下,基于实施例对本实施方式进行更详细的说明。需要说明的是,本发明并不限定于以下的实施例。
(实施例和比较例)
以下,将实施方式中使用图1说明的膜结构体10形成为实施例的膜结构体。实施例的膜结构体的取向膜12具有突出部12b。另一方面,比较例的膜结构体的取向膜12不具有突出部12b。
以下,对实施例的膜结构体的形成方法进行说明。首先,如图12所示,作为基板11,准备具有作为由(100)面构成的主面的上表面11a且由6英寸的硅单晶形成的晶片。
接着,如图13所示,在基板11上通过电子束蒸镀法形成氧化锆(ZrO2)膜作为取向膜12。此情况下的条件如下所示。
装置:电子束蒸镀装置
压力:7.00×10-3pa
蒸镀源:Zr+O2
加速电压/发射电流:7.5kV/1.80mA
厚度:24nm
基板温度:500℃
接着,如图4所示,在取向膜12上通过溅射法形成铂(Pt)膜作为导电膜13。此情况下的条件如下所示。
装置:DC溅射装置
压力:1.20×10-1Pa
蒸镀源:Pt
功率:100W
厚度:150nm
基板温度:450~600℃
接着,如图14所示,在导电膜13上通过溅射法形成SRO膜作为膜14。此情况下的条件如下所示。
装置:RF磁控管溅射装置
功率:300W
气体:Ar
压力:1.8Pa
基板温度:600℃
厚度:20nm
接着,如图15所示,在膜14上通过溅射法形成具有0.91μm的膜厚的Pb(Zr0.58Ti0.42)O3膜(PZT膜)作为压电膜16。此情况下的条件如下所示。
装置:RF磁控管溅射装置
功率:1750W
气体:Ar/O2
压力:1Pa
基板温度:380℃
在形成的压电膜16中,在距径向上的中心的距离为0mm、5mm、15mm、25mm、35mm、45mm、55mm、65mm、75mm、85mm、95mm的各位置处的膜厚为0.91μm、0.91μm、0.91μm、0.92μm、0.92μm、0.92μm、0.91μm、0.91μm、0.91μm、0.90μm、0.89μm。因此,能够形成在基板11的整个面范围具有均匀的膜厚的压电膜16。
接着,如图1所示,在压电膜16上通过涂布法形成Pb(Zr0.58Ti0.42)O3膜(PZT膜)作为压电膜17。此情况下的条件如下所示。
使Pb、Zr及Ti的有机金属化合物以成为Pb∶Zr∶Ti=100+δ∶58∶42的组成比的方式混合,调整以作为Pb(Zr0.58Ti0.42)O3的浓度成为0.35mol/l的方式溶解于乙醇和2-正丁氧基乙醇的混合溶剂的原料溶液。对于δ,设为δ=20。并且,在原料溶液中进一步溶解20g重量的K值为27~33的聚吡咯烷酮。
接着,将制备的原料溶液中的3ml的原料溶液滴加到由6英寸的晶片构成的基板11上,以3000rpm使其旋转10秒,在基板11上涂布原料溶液,由此形成包含前体的膜。并且,在200℃的温度的热板上将基板11载置30秒,进而在450℃的温度的热板上将基板11载置30秒,由此使溶剂蒸发而使膜干燥。然后,在0.2MPa的氧(O2)气氛中,在600~700℃下进行60秒热处理而使前体氧化使其结晶化,由此形成具有30nm的膜厚的压电膜17。
对于各实施例和比较例,测定了形成至作为压电膜17的PZT膜为止的膜结构体的基于X射线衍射(X-ray diffraction:XRD)法的θ-2θ光谱。即,针对实施例和比较例分别进行了基于θ-2θ法的X射线衍射测定。
图17至图20分别是示出形成至PZT膜为止的膜结构体的基于XRD法的θ-2θ光谱的例子的曲线图。图17至图20各自的曲线图的横轴表示角度2θ,图17至图20各自的曲线图的纵轴表示X射线的强度。图17和图18表示实施例的结果,图19和图20表示比较例的结果。图17和图19示出了20°≤2θ≤50°的范围,图18和图20示出了90°≤2θ≤110°的范围。
在图17和图18所示的例(实施例)中,在θ-2θ光谱中,观测到相当于具有立方晶的晶体结构的Pt的(200)面和(400)面的峰、以及相当于正方晶显示中的PZT的(001)面、(002)面及(004)面的峰。因此,在图17和图18所示的例(实施例)中,可知导电膜13具有立方晶的晶体结构,且包含(100)取向的Pt,压电膜15包含以正方晶显示进行(001)取向的PZT。
另外,在图18所示的例(实施例)中,在将PZT的正方晶显示中的(004)面的衍射峰的衍射角度设为2θ004时,2θ004=96.5°。因此,在图17和图18所示的例(实施例)中,可知2θ004满足2θ004≤96.5°,满足上述式(式1)。
在图19和图20所示的例(比较例)中,也与图17和图18所示的例(实施例)同样地,在θ-2θ光谱中,观测到相当于具有立方晶的晶体结构的Pt的(200)面和(400)面的峰、以及相当于正方晶显示中的PZT的(001)面、(002)面和(004)面的峰。因此,在图19和图20所示的例(比较例)中,也与图17和图18所示的例(实施例)同样地,可知导电膜13具有立方晶的晶体结构,且包含(100)取向的Pt,压电膜15包含以正方晶显示进行(001)取向的PZT。
但是,在图20所示的例(比较例)中,与图18所示的例(实施例)不同,在将PZT的正方晶显示中的(004)面的衍射峰的衍射角度设为2θ004时,2θ004=96.7°。因此,在图19和图20所示的例(比较例)中,可知2θ004不满足2θ004≤96.5°,不满足上述式(式1)。
对于实施例,进行基于XRD法的极点图的测定,调查各层的膜的面内的取向的关系。图21至图24分别是示出实施例的膜结构体的基于XRD法的极点图的例子的曲线图。图21是Si(220)面的极点图,图22是ZrO2(220)面的极点图,图23是Pt(220)面的极点图,图24是PZT(202)面的极点图。
如前所述,取向膜12具有立方晶的晶体结构,且包含(100)取向的氧化锆膜12f(参照图10)。在这样的情况下,如图21和图22所示,可知氧化锆膜12f以氧化锆膜12f的沿着由硅基板构成的基板11的作为主面的上表面11a的<100>方向与基板11自身的沿着上表面11a的<100>方向平行的方式进行取向。换言之,可知氧化锆膜12f以氧化锆膜12f的沿着由硅基板构成的基板11的作为主面的上表面11a的<110>方向与基板11自身的沿着上表面11a的<110>方向平行的方式进行取向。
另外,导电膜13具有立方晶的晶体结构,且包含(100)取向的铂膜13a(参照图10)。在这样的情况下,如图21和图23所示,可知铂膜13a以铂膜13a的沿着由硅基板构成的基板11的上表面11a的<100>方向与基板11自身的沿着上表面11a的<100>方向平行的方式进行取向。换言之,可知铂膜13a以铂膜13a的沿着由硅基板构成的基板11的上表面11a的<110>方向与基板11自身的沿着上表面11a的<110>方向平行的方式进行取向。
另外,压电膜15具有正方晶的晶体结构,且包含(001)取向的锆钛酸铅膜15a(参照图10)。在这样的情况下,如图21和图24所示,可知锆钛酸铅膜15a以锆钛酸铅膜15a的沿着由硅基板构成的基板11的上表面11a的<100>方向与基板11自身的沿着上表面11a的<100>方向平行的方式进行取向。换言之,可知锆钛酸铅膜15a以锆钛酸铅膜15a的沿着由硅基板构成的基板11的上表面11a的<110>方向与基板11自身的沿着上表面11a的<110>方向平行的方式进行取向。
对于实施例,在基板11上形成取向膜12、导电膜13、膜14及压电膜15时,为了测定各层具有的应力,测定了基板11的翘曲量。图25是用于说明通过XRD法测定基板的翘曲量的方法的图。图26是示出通过XRD法测定基板的翘曲量的结果的曲线图。
如图25所示,关于基板11的翘曲量,在将从基板11的上表面11a的中心11b到测定部分11c的沿着基板11的上表面11a的距离设为距离ΔX,将基于XRD法的摇摆曲线(ω)扫描)的峰角度相对于基准角度的差量(偏移量)设为角度Δω时,表示基板11的翘曲量的程度的曲率半径R可以通过R=ΔX/sin(Δω)的计算式计算。
因此,在通过基板11的上表面11a的中心11b且沿着基板11的上表面11a的某条直线上的各位置,进行基于XRD法的摇摆曲线(ω扫描)的测定,求出该摇摆曲线的峰角度ω的相对于基板11的上表面11a的中心11b的距离依赖性。图26示出其结果。需要说明的是,在图26中,例如将形成了ZrO2膜的时间点的测定结果标记为“ZrO2”。
如图26所示,在基板11形成了取向膜12的时间点(图26的“ZrO2”),基板11具有压缩应力。因此,在基板11上形成了取向膜12的时间点,取向膜12具有拉伸应力。另外,曲率半径R为66.1mm。
另外,如图26所示,在取向膜12上形成了导电膜13的时间点(图26的“Pt”),基板11所具有的压缩应力增加。另外,曲率半径R为46.7mm。因此,在取向膜12上形成了导电膜13的时间点,如使用前述的图6所说明的那样,可知导电膜13具有拉伸应力TS1,取向膜12具有压缩应力CS1、或者具有比拉伸应力TS1小的拉伸应力TS2。
需要说明的是,如图26所示,在取向膜12上形成了导电膜13后,在导电膜13上形成了膜14和压电膜15的时间点(图26的“SRO”和“PZT”),基板11所具有的压缩应力几乎不变化。另外,曲率半径R分别为45.4mm、44.1mm。因此,可知即使在导电膜13上形成了膜14和压电膜15的时间点,导电膜13具有拉伸应力TS1,取向膜12具有压缩应力CS1、或者具有比拉伸应力TS1小的拉伸应力TS2。
关于实施例的膜结构体的晶体结构,通过透射型电子显微镜(TransmissionElectron Microscope:TEM)拍摄与基板11的上表面11a垂直的剖面的图像(剖面TEM图像)。作为剖面TEM图像,拍摄了高角度环形暗场(High Angle Annular Dark Field:HAADF)像和明视野(Bright Field:BF)像。需要说明的是,作为与基板11的上表面11a垂直的剖面,拍摄了与基板11的Si的<110>方向垂直的剖面的图像。
图27是示出实施例的膜结构体的HAADF图像的照片。图28和图29是示出实施例的膜结构体的BF图像的照片。图30是示出实施例的膜结构体的HAADF图像的照片。
图27示出取向膜12(参照图5)所包含的ZrO2膜与导电膜13(参照图5)所包含的Pt膜的界面IF1(参照图5)附近的剖面区域,图28示出与图27所示的剖面区域相同的剖面区域。另外,图29是与图27和图28所示的剖面区域稍微分离的剖面区域,但示出界面IF1(参照图5)附近的剖面区域。图30示出压电膜15所包含的PZT膜的剖面区域。
如图27和图28所示,ZrO2膜与Pt膜的界面IF1不是平坦的,因此如使用前述的图5所说明的那样,可知取向膜12包含膜部12a和突出部12b。另外,在图27和图28所示的剖面区域中,突出部12b的高度为6nm,若也包含除此以外的剖面区域,则突出部12b的高度的平均值为6nm,突出部12b的高度的标准偏差的3倍即3σ为2nm。因此,突出部12b的高度为4~8nm。
另外,若放大图28的区域RG5,则观察到沿着水平方向、即与基板11的上表面11a平行的方向,每2nm排列有5.5个左右或6个左右的ZrO2的单位格子。另外,在图29的“6”的文字附近的剖面区域中,沿着水平方向,每2nm排列有5.5个左右或6个左右的ZrO2的单位格子,但在图29的“5”的文字附近的剖面区域中,沿着水平方向,每2nm排列有5个左右的ZrO2的单位格子,ZrO2膜的上层部与ZrO2膜中的下层部相比,在水平方向上被拉伸而变形。由此,可知取向膜12的上层部具有压缩应力CS2,取向膜12的下层部具有拉伸应力TS3。
另外,如图30所示,压电膜15所包含的PZT膜未观察到转移等晶格的紊乱,确认为单晶。图30所示的晶格表示从PZT的<110>方向观察情况下的晶格,从图11的箭头AR1的方向观察图11的PZT的晶格时,即示出作为PZT的(110)面的平面PLU内的晶格。
根据图30的剖面TEM图像,求出正方晶PZT的正方晶PZT的a轴方向的晶格常数a和c轴方向的晶格常数c。其结果是,晶格常数a为0.410nm,晶格常数c为0.415nm,晶格常数比(c/a比)为1.016。另一方面,根据基于θ-2θ法的X射线衍射图案求出晶格常数a和晶格常数c,结果晶格常数a为0.408nm,晶格常数c为0.414nm,晶格常数比(c/a比)为1.015。因此,由剖面TEM图像求出的晶格常数与根据基于θ-2θ法的X射线衍射图案求出的晶格常数大致一致。
例如在从国际衍射数据中心(International Centrefor Diffraction Data:ICDD)的PDF(Powder Diffraction File)使用维加德定律计算出的上述通式(化学式3)中,u=0.42的组成(Zr/Ti=58/42)中的菱面体晶PZT的晶格常数a为0.4081nm。因此,可知本实施方式的膜结构体具有的压电膜15所包含的PZT膜的晶格常数与通常的Zr/Ti=58/42中的菱面体晶PZT的晶格常数a完全不同。
另外,通常的正方晶PZT的晶格常数比(c/a比)小于1.010。另一方面,可知本实施方式的膜结构体具有的压电膜15中的正方晶PZT的c/a比为1.010以上,最大可以提高至1.016。
另外,关于实施例的膜结构体,对导电膜13与导电膜18之间施加电压而测定了极化的电压依赖性。图31是示出实施例的膜结构体的极化的电压依赖性的曲线图。另外,关于实施例的膜结构体,形成悬臂,使用形成的悬臂来测定实施例的膜结构体的位移的电压依赖性。图32是示出实施例的膜结构体的位移的电压依赖性的曲线图。
根据图31,在实施例的膜结构体中,相对介电常数εr为216,残留极化值Pr为57μC/cm2。另外,根据图32,压电常数d31为230pm/V。
在此,对于取向膜12不具有突出部12b的比较例的膜结构体也测定极化和位移的电压依赖性,结果为,相对介电常数εr为580,残留极化值Pr为18μC/cm2,压电常数d31为178pm/V。即,实施例的膜结构体相对于比较例的膜结构体具有极其优异的残留极化特性和压电特性。因此,可知通过取向膜12具有突出部12b,提高了膜结构体的压电特性。
进而,在30~200℃的温度范围内,一边变更温度一边对导电膜13与导电膜18之间施加电压来测定极化的电压依赖性,测定残留极化值Pr、以及抗电压值Vc的温度依赖性。图33是示出实施例的膜结构体的残留极化值的温度依赖性的曲线图。图34是示出实施例的膜结构体的抗电压值的温度依赖性的曲线图。图33的纵轴表示残留极化值Pr的平方,图34的纵轴表示抗电压值Vc的2/3次方。
如图33所示,残留极化值Pr的平方的温度依赖性具有直线性,如图34所示,抗电压值Vc的2/3次方的温度依赖性示出了直线性。关于图33的残留极化值,考虑高温下的泄漏的影响,在居里温度Tc的评价中未使用,但关于图34的抗电压值,通过最小二乘法计算测定数据的近似直线,并对所计算出的近似直线与温度轴交叉的温度进行计算,将所计算出的温度作为居里温度Tc进行评价,结果谓,居里温度Tc为587℃,示出了极高的值。
因此,根据取向膜12具有突出部12b的实施例的膜结构体,可知具有极为接近PZT的居里温度的理论值的高居里温度。因此,根据本实施方式的膜结构体,可知压电膜15所包含的PZT为单晶,因此压电特性提高了。
以上,根据其实施方式具体说明了本发明人完成的发明,本发明并不限于上述述实施方式,当然可以在不脱离其主旨的范围内进行各种变更。
在本发明的思想的范畴内,只要是本领域技术人员,就能够想到各种变更例及修正例,针对这些变更例及修正例也应该理解为属于本发明的范围。
例如,对于前述的各实施方式,本领域技术人员适当地进行了构成要素的追加、删除或设计变更、或者进行了工序的追加、省略或条件变更,只要具备本发明的主旨,也包含在本发明的范围内。
附图标记说明:
10...膜结构体;
11...基板;
11a、12c...上表面;
11b...中心;
11c...测定部分;
12...取向膜;
12a...膜部;
12b...突出部;
12d...上层部;
12e...下层部;
12f...氧化锆膜;
13、18...导电膜;
13a...铂膜;
14...膜;
14a...SRO膜;
15、16、17...压电膜;
15a、16a、17a...锆钛酸铅膜;
16g、17g...晶粒;
17f...膜;
AR1...箭头;
CP1...强电介质电容器;
CS1、CS2...压缩应力;
EP...终点;
HT1...突出高度;
IF1、IF2...界面;
P1...极化成分;
PLU...平面;
RG5...区域;
SP...起点;
TS1~TS4...拉伸应力。

Claims (22)

1.一种膜结构体,其中,
所述膜结构体具有:
硅基板,其包含由(100)面构成的主面;
第一膜,其形成于所述主面上,具有立方晶的晶体结构,且包含(100)取向的第一氧化锆膜;以及
导电膜,其形成于所述第一膜上,具有立方晶的晶体结构,且包含(100)取向的铂膜,
所述第一膜与所述导电膜之间的第一界面的第一平均界面粗糙度比所述硅基板与所述第一膜之间的第二界面的第二平均界面粗糙度大。
2.根据权利要求1所述的膜结构体,其中,
所述第一膜包含:
膜部,其形成于所述主面上;以及
多个突出部,它们分别从所述膜部的上表面突出,
所述膜部具有立方晶的晶体结构,且包含(100)取向的第二氧化锆膜,
所述多个突出部分别具有立方晶的晶体结构,且包含(100)取向的第三氧化锆膜。
3.根据权利要求2所述的膜结构体,其中,
所述突出部的与沿着所述主面的第一方向垂直的剖面形状为三角形状,
所述突出部的沿着所述主面且与所述第一方向垂直的方向即第二方向上的宽度从所述膜部侧朝向与所述膜部侧相反的一侧减小。
4.根据权利要求2或3所述的膜结构体,其中,
所述膜部的厚度为11~18nm,
所述多个突出部分别从所述膜部的上表面突出的突出高度为4~8nm。
5.根据权利要求2至4中任一项所述的膜结构体,其中,
所述导电膜覆盖所述多个突出部,
在相邻的两个所述突出部之间埋入有所述导电膜。
6.根据权利要求1至5中任一项所述的膜结构体,其中,
所述导电膜具有第一拉伸应力,
所述第一膜具有第一压缩应力、或者具有比所述第一拉伸应力小的第二拉伸应力。
7.根据权利要求6所述的膜结构体,其中,
所述第一膜的上层部具有第二压缩应力,
所述第一膜的下层部具有第三拉伸应力,
在所述第一膜具有所述第一压缩应力时,所述第二压缩应力比所述第一压缩应力大,
在所述第一膜具有所述第二拉伸应力时,所述第三拉伸应力比所述第二拉伸应力大。
8.根据权利要求1至7中任一项所述的膜结构体,其中,
所述膜结构体具有压电膜,该压电膜形成于所述导电膜上,具有正方晶的晶体结构,且包含(001)取向的锆钛酸铅膜。
9.根据权利要求1至8中任一项所述的膜结构体,其中,
所述第一氧化锆膜以所述第一氧化锆膜的沿着所述主面的<100>方向与所述硅基板的沿着所述主面的<100>方向平行的方式取向,
所述铂膜以所述铂膜的沿着所述主面的<100>方向与所述硅基板的沿着所述主面的<100>方向平行的方式取向。
10.根据权利要求8所述的膜结构体,其中,
所述第一氧化锆膜以所述第一氧化锆膜的沿着所述主面的<100>方向与所述硅基板的沿着所述主面的<100>方向平行的方式取向,
所述铂膜以所述铂膜的沿着所述主面的<100>方向与所述硅基板的沿着所述主面的<100>方向平行的方式取向,
所述锆钛酸铅膜以所述锆钛酸铅膜的沿着所述主面的<100>方向与所述硅基板的沿着所述主面的<100>方向平行的方式取向。
11.根据权利要求8或10所述的膜结构体,其中,
所述锆钛酸铅膜具有下述通式(化学式1)表示的由锆钛酸铅构成的复合氧化物,
Pb(Zr1-xTix)O3···(化学式1)
所述x满足0.32≤x≤0.52,
所述锆钛酸铅的c轴方向的第二晶格常数相对于a轴方向的第一晶格常数的晶格常数比为1.010~1.016。
12.一种膜结构体的制造方法,其中,
所述膜结构体的制造方法包括如下工序:
(a)准备包含由(100)面构成的主面的硅基板;
(b)在所述主面上形成具有立方晶的晶体结构且包含(100)取向的第一氧化锆膜的第一膜;
(c)在所述第一膜上形成具有立方晶的晶体结构且包含(100)取向的铂膜的导电膜,
所述第一膜与所述导电膜之间的第一界面的第一平均界面粗糙度比所述硅基板与所述第一膜之间的第二界面的第二平均界面粗糙度大。
13.根据权利要求12所述的膜结构体的制造方法,其中,
在所述(b)工序中,形成包含形成于所述主面上的膜部、以及分别从所述膜部的上表面突出的多个突出部的所述第一膜,
所述膜部具有立方晶的晶体结构,且包含(100)取向的第二氧化锆膜,
所述多个突出部分别具有立方晶的晶体结构,且包含(100)取向的第三氧化锆膜。
14.根据权利要求13所述的膜结构体的制造方法,其中,
所述突出部的与沿着所述主面的第一方向垂直的剖面形状为三角形状,
所述突出部的沿着所述主面且与所述第一方向垂直的方向即第二方向上的宽度从所述膜部侧朝向与所述膜部侧相反的一侧减小。
15.根据权利要求13或14所述的膜结构体的制造方法,其中,
所述膜部的厚度为11~18nm,
所述多个突出部分别从所述膜部的上表面突出的突出高度为4~8nm。
16.根据权利要求13至15中任一项所述的膜结构体的制造方法,其中,
在所述(c)工序中,形成覆盖所述多个突出部的所述导电膜,
在所述(c)工序中,在相邻的两个所述突出部之间埋入所述导电膜。
17.根据权利要求12至16中任一项所述的膜结构体的制造方法,其中,
所述导电膜具有第一拉伸应力,
所述第一膜具有第一压缩应力、或者具有比所述第一拉伸应力小的第二拉伸应力。
18.根据权利要求17所述的膜结构体的制造方法,其中,
所述第一膜的上层部具有第二压缩应力,
所述第一膜的下层部具有第三拉伸应力,
在所述第一膜具有所述第一压缩应力时,所述第二压缩应力比所述第一压缩应力大,
在所述第一膜具有所述第二拉伸应力时,所述第三拉伸应力比所述第二拉伸应力大。
19.根据权利要求12至18中任一项所述的膜结构体的制造方法,其中,
所述膜结构体的制造方法还包括如下工序:
(d)在所述导电膜上形成压电膜,该压电膜具有正方晶的晶体结构,且包含(001)取向的锆钛酸铅膜。
20.根据权利要求12至19中任一项所述的膜结构体的制造方法,其中,
所述第一氧化锆膜以所述第一氧化锆膜的沿着所述主面的<100>方向与所述硅基板的沿着所述主面的<100>方向平行的方式取向,
所述铂膜以所述铂膜的沿着所述主面的<100>方向与所述硅基板的沿着所述主面的<100>方向平行的方式取向。
21.根据权利要求19所述的膜结构体的制造方法,其中,
所述第一氧化锆膜以所述第一氧化锆膜的沿着所述主面的<100>方向与所述硅基板的沿着所述主面的<100>方向平行的方式取向,
所述铂膜以所述铂膜的沿着所述主面的<100>方向与所述硅基板的沿着所述主面的<100>方向平行的方式取向,
所述锆钛酸铅膜以所述锆钛酸铅膜的沿着所述主面的<100>方向与所述硅基板的沿着所述主面的<100>方向平行的方式取向。
22.根据权利要求19或21所述的膜结构体的制造方法,其中,
所述锆钛酸铅膜具有下述通式(化学式1)表示的由锆钛酸铅构成的复合氧化物,
Pb(Zr1-xTix)O3···(化学式1)
所述x满足0.32≤x≤0.52,
所述锆钛酸铅的c轴方向的第二晶格常数相对于a轴方向的第一晶格常数的晶格常数比为1.010~1.016。
CN201880073619.1A 2017-11-13 2018-11-09 膜结构体及其制造方法 Active CN111344876B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2017-218134 2017-11-13
JP2017218134 2017-11-13
PCT/JP2018/041647 WO2019093471A1 (ja) 2017-11-13 2018-11-09 膜構造体及びその製造方法

Publications (2)

Publication Number Publication Date
CN111344876A true CN111344876A (zh) 2020-06-26
CN111344876B CN111344876B (zh) 2023-10-17

Family

ID=66438857

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880073619.1A Active CN111344876B (zh) 2017-11-13 2018-11-09 膜结构体及其制造方法

Country Status (5)

Country Link
US (1) US11785854B2 (zh)
EP (1) EP3712974A4 (zh)
CN (1) CN111344876B (zh)
TW (1) TWI813599B (zh)
WO (1) WO2019093471A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI780167B (zh) * 2018-06-26 2022-10-11 晶元光電股份有限公司 半導體基底以及半導體元件
TWI742850B (zh) * 2020-09-14 2021-10-11 馗鼎奈米科技股份有限公司 壓電薄膜之極化方法
FR3121784B1 (fr) * 2021-04-09 2023-10-06 Commissariat Energie Atomique Dispositif et un procédé de détermination d’un coefficient piézoélectrique effectif d’un matériau

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256098A (ja) * 1999-03-10 2000-09-19 Tdk Corp 積層薄膜
CN1274954A (zh) * 1999-05-20 2000-11-29 Tdk株式会社 薄膜压电装置
JP2002164586A (ja) * 2000-11-24 2002-06-07 Tdk Corp 電子デバイス用基板及びこれを用いた薄膜圧電体素子、並びに電子デバイス用基板の製造方法
JP2004165650A (ja) * 2002-10-21 2004-06-10 Kyocera Corp アクチュエータ及び印刷ヘッド
JP2007013096A (ja) * 2005-05-31 2007-01-18 Kyocera Corp 圧電アクチュエータおよびその駆動方法、並びに印刷ヘッド
JP2007036612A (ja) * 2005-07-26 2007-02-08 Tdk Corp 圧電薄膜振動子およびその製造方法、並びにそれを用いた駆動装置および圧電モータ
JP2007157910A (ja) * 2005-12-02 2007-06-21 Denso Corp 圧電セラミックス、積層圧電セラミック素子及びその製造方法
JP2007250626A (ja) * 2006-03-14 2007-09-27 Seiko Epson Corp 圧電素子の製造方法、アクチュエータ装置の製造方法、液体噴射ヘッドの製造方法、液体噴射装置の製造方法および圧電素子
JP2007266566A (ja) * 2005-09-14 2007-10-11 Kyocera Corp 積層圧電アクチュエータ、その製造方法、および印刷ヘッド
JP2008098381A (ja) * 2006-10-11 2008-04-24 Seiko Epson Corp アクチュエータ装置の製造方法及びアクチュエータ装置並びに液体噴射ヘッド
US20100244632A1 (en) * 2009-03-31 2010-09-30 Tdk Corporation Piezoelectric element and gyroscope
WO2012165110A1 (ja) * 2011-05-31 2012-12-06 コニカミノルタホールディングス株式会社 強誘電体膜およびそれを備えた圧電素子
JP2015128089A (ja) * 2013-12-27 2015-07-09 株式会社ユーテック 圧電体膜、強誘電体セラミックス及び圧電体膜の検査方法
JP2016149478A (ja) * 2015-02-13 2016-08-18 新科實業有限公司SAE Magnetics(H.K.)Ltd. 薄膜圧電体基板、薄膜圧電体素子およびその製造方法並びにそれを有するヘッドジンバルアセンブリ、ハードディスク装置、インクジェットヘッド、可変焦点レンズおよびセンサ

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5650362A (en) * 1993-11-04 1997-07-22 Fuji Xerox Co. Oriented conductive film and process for preparing the same
JP3137880B2 (ja) 1995-08-25 2001-02-26 ティーディーケイ株式会社 強誘電体薄膜、電子デバイスおよび強誘電体薄膜の製造方法
US6258459B1 (en) 1998-04-28 2001-07-10 Tdk Corporation Multilayer thin film
JP3817068B2 (ja) 1998-04-28 2006-08-30 Tdk株式会社 積層薄膜
JP2001313429A (ja) 2000-04-27 2001-11-09 Tdk Corp 積層薄膜その製造方法および電子デバイス
WO2005086248A1 (ja) * 2004-03-05 2005-09-15 Matsushita Electric Industrial Co., Ltd. 圧電体素子、インクジェットヘッド、角速度センサ、これらの製造方法及びインクジェット式記録装置
JP2014084494A (ja) 2012-10-23 2014-05-12 Tohoku Univ 結晶配向制御装置、及びそれを備えた成膜装置、アニール装置並びに結晶配向制御方法
US8962350B2 (en) * 2013-02-11 2015-02-24 Texas Instruments Incorporated Multi-step deposition of ferroelectric dielectric material
US9887344B2 (en) * 2014-07-01 2018-02-06 Seiko Epson Corporation Piezoelectric element, piezoelectric actuator device, liquid ejecting head, liquid ejecting apparatus, and ultrasonic measuring apparatus
US20170158571A1 (en) 2014-07-16 2017-06-08 Youtec Co., Ltd. Ferroelectric ceramics and manufacturing method of same
JP6481153B2 (ja) 2014-08-14 2019-03-13 アドバンストマテリアルテクノロジーズ株式会社 強誘電体セラミックス及びその製造方法
TWI713509B (zh) 2015-06-29 2020-12-21 日商前進材料科技股份有限公司 強介電體陶瓷及其製造方法
JP6814916B2 (ja) 2015-12-18 2021-01-20 アドバンストマテリアルテクノロジーズ株式会社 膜構造体、アクチュエータ、モータ及び膜構造体の製造方法

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000256098A (ja) * 1999-03-10 2000-09-19 Tdk Corp 積層薄膜
CN1274954A (zh) * 1999-05-20 2000-11-29 Tdk株式会社 薄膜压电装置
JP2002164586A (ja) * 2000-11-24 2002-06-07 Tdk Corp 電子デバイス用基板及びこれを用いた薄膜圧電体素子、並びに電子デバイス用基板の製造方法
JP2004165650A (ja) * 2002-10-21 2004-06-10 Kyocera Corp アクチュエータ及び印刷ヘッド
JP2007013096A (ja) * 2005-05-31 2007-01-18 Kyocera Corp 圧電アクチュエータおよびその駆動方法、並びに印刷ヘッド
JP2007036612A (ja) * 2005-07-26 2007-02-08 Tdk Corp 圧電薄膜振動子およびその製造方法、並びにそれを用いた駆動装置および圧電モータ
JP2007266566A (ja) * 2005-09-14 2007-10-11 Kyocera Corp 積層圧電アクチュエータ、その製造方法、および印刷ヘッド
JP2007157910A (ja) * 2005-12-02 2007-06-21 Denso Corp 圧電セラミックス、積層圧電セラミック素子及びその製造方法
JP2007250626A (ja) * 2006-03-14 2007-09-27 Seiko Epson Corp 圧電素子の製造方法、アクチュエータ装置の製造方法、液体噴射ヘッドの製造方法、液体噴射装置の製造方法および圧電素子
JP2008098381A (ja) * 2006-10-11 2008-04-24 Seiko Epson Corp アクチュエータ装置の製造方法及びアクチュエータ装置並びに液体噴射ヘッド
US20100244632A1 (en) * 2009-03-31 2010-09-30 Tdk Corporation Piezoelectric element and gyroscope
WO2012165110A1 (ja) * 2011-05-31 2012-12-06 コニカミノルタホールディングス株式会社 強誘電体膜およびそれを備えた圧電素子
JP2015128089A (ja) * 2013-12-27 2015-07-09 株式会社ユーテック 圧電体膜、強誘電体セラミックス及び圧電体膜の検査方法
JP2016149478A (ja) * 2015-02-13 2016-08-18 新科實業有限公司SAE Magnetics(H.K.)Ltd. 薄膜圧電体基板、薄膜圧電体素子およびその製造方法並びにそれを有するヘッドジンバルアセンブリ、ハードディスク装置、インクジェットヘッド、可変焦点レンズおよびセンサ

Also Published As

Publication number Publication date
US11785854B2 (en) 2023-10-10
US20200357978A1 (en) 2020-11-12
EP3712974A1 (en) 2020-09-23
CN111344876B (zh) 2023-10-17
WO2019093471A1 (ja) 2019-05-16
TWI813599B (zh) 2023-09-01
TW201925140A (zh) 2019-07-01
EP3712974A4 (en) 2021-09-22

Similar Documents

Publication Publication Date Title
JP6498821B1 (ja) 膜構造体及びその製造方法
TWI791546B (zh) 膜構造體及其製造方法
US20130093288A1 (en) Thermally oxidized seed layers for the production of textured electrodes and pzt devices and method of making
CN111344876B (zh) 膜结构体及其制造方法
US20220181541A1 (en) Film structure, piezoelectric film and superconductor film
JP2013168530A (ja) ペロブスカイト機能積層膜
JP7307302B2 (ja) 膜構造体及びその製造方法
Lin et al. Microstructures and ferroelectric properties of PbTiO3/PbZrO3 superlattices deposited by pulse laser deposition
Belhadi et al. Growth mode and strain effect on relaxor ferroelectric domains in epitaxial 0.67 Pb (Mg 1/3 Nb 2/3) O 3–0.33 PbTiO 3/SrRuO 3 heterostructures
Wang et al. High performance LaNiO3-buffered,(001)-oriented PZT piezoelectric films integrated on (111) Si
CN109196672B (zh) 膜结构体及其制造方法
TW201900414A (zh) 膜構造體及其製造方法
TWI760346B (zh) 成膜裝置
Qiao et al. Microstructural orientation, strain state and diffusive phase transition of pure argon sputtered BaTiO3 film
JP2009208985A (ja) 機能性酸化物構造体、及び機能性酸化物構造体の製造方法
Wang et al. High performance LaNiO
KR20230097358A (ko) 격자변형 제어를 이용한 무결점 강유전체 박막 제조 방법
Harris Liquid-Phase Processing of Barium Titanate Thin Films

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20211026

Address after: Chiba County, Japan

Applicant after: ADVANCED MATERIAL TECHNOLOGIES Inc.

Applicant after: Weixinchuang Research Institute Co.,Ltd.

Address before: Chiba County, Japan

Applicant before: ADVANCED MATERIAL TECHNOLOGIES Inc.

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20211125

Address after: Tokyo, Japan

Applicant after: UMI 1 investment business limited liability partnership

Applicant after: Weixinchuang Research Institute Co.,Ltd.

Address before: Chiba County, Japan

Applicant before: ADVANCED MATERIAL TECHNOLOGIES Inc.

Applicant before: Weixinchuang Research Institute Co.,Ltd.

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20220812

Address after: Yamaguchi Prefecture, Japan

Applicant after: Christo Co., Ltd.

Applicant after: Weixinchuang Research Institute Co.,Ltd.

Address before: Tokyo, Japan

Applicant before: UMI 1 investment business limited liability partnership

Applicant before: Weixinchuang Research Institute Co.,Ltd.

TA01 Transfer of patent application right
CB02 Change of applicant information

Address after: Yamaguchi Prefecture, Japan

Applicant after: Nissan Aibo Piezoelectric Strategy Co.,Ltd.

Address before: Yamaguchi Prefecture, Japan

Applicant before: Christo Co.,Ltd.

CB02 Change of applicant information
TA01 Transfer of patent application right

Effective date of registration: 20230506

Address after: Yamaguchi Prefecture, Japan

Applicant after: Christo Co.,Ltd.

Address before: Yamaguchi Prefecture, Japan

Applicant before: Christo Co.,Ltd.

Applicant before: Weixinchuang Research Institute Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant