CN111323899B - 用于通过子像素对准使高密度生化阵列成像的方法和系统 - Google Patents
用于通过子像素对准使高密度生化阵列成像的方法和系统 Download PDFInfo
- Publication number
- CN111323899B CN111323899B CN202010000698.2A CN202010000698A CN111323899B CN 111323899 B CN111323899 B CN 111323899B CN 202010000698 A CN202010000698 A CN 202010000698A CN 111323899 B CN111323899 B CN 111323899B
- Authority
- CN
- China
- Prior art keywords
- tdi
- axis
- camera
- rotational symmetry
- imaging
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03B—APPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
- G03B17/00—Details of cameras or camera bodies; Accessories therefor
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/36—Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
- G02B21/365—Control or image processing arrangements for digital or video microscopes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01B—MEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
- G01B11/00—Measuring arrangements characterised by the use of optical techniques
- G01B11/26—Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
- G01B11/27—Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
- G01B11/272—Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/0004—Microscopes specially adapted for specific applications
- G02B21/002—Scanning microscopes
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/02—Objectives
- G02B21/025—Objectives with variable magnification
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B21/00—Microscopes
- G02B21/36—Microscopes arranged for photographic purposes or projection purposes or digital imaging or video purposes including associated control and data processing arrangements
- G02B21/361—Optical details, e.g. image relay to the camera or image sensor
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B7/00—Mountings, adjusting means, or light-tight connections, for optical elements
- G02B7/003—Alignment of optical elements
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N7/00—Television systems
- H04N7/18—Closed-circuit television [CCTV] systems, i.e. systems in which the video signal is not broadcast
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04N—PICTORIAL COMMUNICATION, e.g. TELEVISION
- H04N25/00—Circuitry of solid-state image sensors [SSIS]; Control thereof
- H04N25/70—SSIS architectures; Circuits associated therewith
- H04N25/71—Charge-coupled device [CCD] sensors; Charge-transfer registers specially adapted for CCD sensors
- H04N25/711—Time delay and integration [TDI] registers; TDI shift registers
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Multimedia (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Signal Processing (AREA)
- Microscoopes, Condenser (AREA)
- Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
Abstract
用于对高密度生化阵列成像的系统和相关方法包括一个或多个成像通道和相应的一个或多个时间延迟积分型成像相机,其中成像通道共用公共的物镜,时间延迟积分型成像相机具有光学对准机构,其允许四个自由度X、Y、旋转和比例中每一个进行独立的通道内调整和通道间调整。成像通道被配置成独立检查生化阵列中图像的不同光谱。
Description
发明背景
本公开一般涉及用于高密度生化阵列的成像系统的领域。
高密度生化阵列和相关的机器允许多个生化实验(有时为数十亿)并行进行。这种能力是通过以极小体积进行每次实验并将实验非常紧密地封装在一起的技术发展积累获得的。为了有效地观察实验,需要与其他高技术产业中的小型化进步相似的进步。具体地,需要的是快速、准确、可重复且耐用的用于生化阵列的成像技术。
发明内容
根据本发明,用于对高密度生化阵列成像的系统和相关方法包括一个或多个成像通道和相应的一个或多个时间延迟积分型成像相机,其中一个或多个成像通道共用公共的物镜,时间延迟积分型成像相机具有光学对准机构,其允许四个自由度:X、Y、旋转和比例中每一个进行独立的通道内和通道间调整。成像通道被配置成独立检查生化阵列中的图像的不同波长。
通过参考以下参照附图的详细描述,可以更好地理解本发明。
附图说明
图1A为第一多通道生化阵列成像系统的示意图。
图1B为第二多通道生化阵列成像系统的示意图。
图1C为第三多通道生化阵列成像系统的示意图。
图1D为第四多通道生化阵列成像系统的示意图。
图2为横向偏移板的示意图。
图3示出X和Y偏移。
图4示出X和Y的对准误差。
图5为使用时间延迟积分对具有像素阵列的点进行成像的概念图。
图6为图5的时间延迟积分成像的结果的概念图。
图7示出了在对准前两个相机、载物片和定位台之间的转动对准关系。
图8示出了在对准后两个相机、载物片和定位台之间的转动对准关系。
图9示出了在载物片对准中使用的参考框。
具体实施方式
人类基因组研究和生化阵列的其他用途需要先进的成像系统来实现商业上可行的数据采集率。除其他因素外,每单位时间的可采集数据的生化实验的次数取决于阵列密度和图像获取速度。增加的阵列密度会使图像获取问题复杂化,因为其使得对图像中的每个实验(数以百万计)的特性保持跟踪具有挑战性。
对于DNA阵列,所需的数据通常为四进制的;核苷酸可为A、C、G或T。这些可能性标有一组四个不同颜色的荧光分子标记。每个荧光标记吸收一定波长的光并发出较长波长的光。多通道成像仪同时采集四种可能波长范围中尽可能多的波长的数据。
图1A至图1D为多通道生化阵列成像系统。这些多通道系统中的每个成像通道对于图像旋转、x和y偏移以及比例(放大率)均都具有其自身独立的调整,在下文中被称为通道内和通道间调整的独立性。图1A示出了双通道系统。图1B和图1C示出了具有调整x和y图像偏移的替代装置的图1A的系统。图1D示出了多个四自由度的成像通道可如何被添加至多通道系统。
图1A的系统具有两个同时成像的通道,其中每个通道具有用于图像调整的四个自由度:旋转、x和y偏移以及比例或放大率。高精度定位台扫描显微镜物镜下的载物片,载物片以旋转对称轴表征。
在图1A中,常规的时间延迟积分(TDI,time delay integration)式相机105安装在旋转台102上。相机105可根据系统进行的何种操作而以TDI模式或全帧模式操作。横向偏移板110移动相机105中的图像位置。镜筒透镜117和辅助透镜115共同形成变焦透镜系统以聚焦并改变相机105中的图像的尺寸。旋转台102被配置成将TDI相机105绕共同的旋转对称轴线106转动,以使TDI相机105的内部CCD阵列(未示出)相对于样本145定向使得能够沿扫描轴线104(穿过图的平面)适当地对样本145进行扫描。相机105、旋转台102、板110以及由镜筒透镜117和辅助透镜115形成的变焦透镜系统共同形成一个独立成像通道139。第二独立成像通道140包括第二相机、偏移板和变焦透镜系统,第二相机安装在旋转台上。分束器和滤波器组件127将不同波长的光引导至不同的成像通道139、140。在图1A中仅示出了一个分束器/滤波器组件127。然而,在系统的其他实施方式中,额外的分束器和/或滤波器可通过机器人移入或移出机械系统。块125表示自动聚焦和照明系统。所有成像通道共用的显微镜物镜130被聚焦在生化阵列载物片形式的样本145上,生化阵列载物片安装在包括旋转台135和X-Y台137的定位台上。
由荧光标记的生物分子所发出的光通过显微镜物镜采集并根据波长被聚焦至一个或其他TDI相机中的像素上。具有两个成像通道的系统可同时记录两个波长范围内的图像数据。不同的二色性或多色性分束器和/或滤波器127的替换允许在另外的波长“范围(bin)”内的图像数据被采集。每个成像通道具有其自身的变焦透镜系统以调整图像焦点和放大率。这样的调整例如通常在更换二色性滤波器时进行。每个相机可独立旋转,阵列载物片还可在其X-Y定位系统的顶部旋转。
变焦系统是非典型的,其提供了受约束且非常有限的放大率(比例)调整范围,但以很高精度和稳定性进行此调整。透镜115和117安装在精密台上(未示出),精密台使透镜115和117以1微米步长沿透镜轴线移动。在示例性的系统中,焦距f1和f2分别为约500mm和165mm,并且其最大比例改变不超过3%。该精密的变焦系统允许标定16X的显微镜的放大率逐步调整至约0.00009X那么小,并同时保持聚焦。
图1B示出了图1A的系统的变型。在图1B中,镜子111取代了图1A的偏移板110。镜子提供了使相机105中的图像偏移的替代装置。出于清楚显示的目的,在图1B中未示出第二成像通道140。
图1C示出了图1A和图1B的系统的变型。在图1C中,相机105被安装在x-y定位台103以及旋转台102上。在图1C的系统的通道中既没有包含偏移板(例如图1A中的110),也没有包含偏移镜(例如图1B中的111)。相反地,机械x-y定位台103为相机105提供横向偏移控制。
图1D示出了与图1A至图1C所示的那些类似的系统可如何被构造成具有任意数量的成像通道,每个成像通道具有能够彼此独立调整的参数并且每个通道还能够独立于任意其他通道进行调整以使得在一个通道中的调整不影响其他通道。这种通道内和通道间调整的独立性在本文中被称为四自由度成像通道独立性。在图1D中,分束器/滤波器组件128和129将不同波长的光分别引导至成像通道141和142。每个成像通道可包含用于图像旋转、x和y偏移、以及比例或放大率的独立调整。x和y偏移控制可通过倾斜板(例如板110)、镜子(例如镜子111)、时间延迟积分脉冲定时(如下所述)或技术组合来实现。下面将参照图2更详细地描述横向偏移板。
图2为横向偏移板110的示意图。板110使相机105中图像的位置移动。在图2中,示出了光束150穿过板110并呈现为光束152。因为光束以非垂直入射的方式穿过板,所以其位置偏移了Δx量,Δx量由下式给出:
其中,t为板的厚度,n为其折射率,θ为入射角度。常见的直径约为2.5cm、厚度约为3.5mm的玻璃板(n~1.5)的重量只有几克并可安装在振镜(galvo)旋转机构上以快速且准确移动。五度的倾斜产生约100μm的偏移。
通过在相机105中使用时间延迟积分(TDI)脉冲定时,图像能够以相对于X轴线垂直的方向(即Y方向)平移。图3示出了X和Y偏移。点205为成像在像素阵列210上的光点。箭头指示该点可相对于像素阵列如何移动。如上所述,X偏移通过振镜和偏移板系统进行调整,而Y偏移通过TDI脉冲定时进行调整。在时间延迟积分中,以与从像素读出图像数据的(标定地)相同速率经过像素来扫描相机中的图像。数据读出速率(或扫描速率或两者)的微小改变实际上沿第一轴线平移所记录的图像位置,而振镜控制的偏移板绕第一轴线的角度的微小改变可沿与第一轴线垂直的轴线平移所记录的图像位置。因此,具有可调整的定时的TDI相机与振镜控制的偏移板的组合快速且准确地将由相机记录的图像中的独立的、二维的、横向偏移引入多通道成像系统的成像通道中。此外,引入图像偏移的这种方法不依赖于载物片相对于物镜的移动。
上述振镜控制的板和TDI偏移系统对于进行小的校正以将生化阵列的图像与相机中的像素阵列对准是有用的。(控制机制超出了本公开的范围。)图4示出了图像中的点305与像素315的阵列之间的X和Y对准误差。在图3中,虚线圆和加号标志310表示像素中心。包括实心圆和加号标志305的符号指示图像中的点的实际位置。“Δx”和“Δy”示出位置305与310之间的差。在一个特定的系统中,每个8μm乘8μm的基于相机的像素成像并因此对应于面积为500nm乘500nm的生化阵列。已发现,成像系统例如图1中示出的成像系统能够以比20nm更好的精度与生化阵列保持对准,并同时每秒扫描超过一百万个数据点。
在高密度阵列的情况下实现高流通量部分取决于精确的机械扫描台。原则上,图1中示出的X-Y台137能够在X-Y平面中以任意方向移动。通过X移动和Y移动的组合产生对角线移动。然而,实际上,如果一个维度(例如X)固定而发生另一维度(例如Y)的移动,台的精度最佳。
类似地,当以与读出数据的方向平行的方向进行扫描时,时间延迟积分式相机实现最高的准确度。图5为使用时间延迟积分对具有像素阵列的点进行成像的概念图。未对准导致如图6所示的图像模糊,图6为图5的时间延迟积分的结果的概念图。
通过像素阵列415对点405进行成像。点和像素阵列的相对移动由始于点405的虚线箭头示出。箭头没有与像素阵列对准,模糊的图像420是不良的结果。还通过像素阵列415对点410进行成像,但这次点与像素阵列的相对移动由始于点410的虚线箭头示出。该箭头与像素阵列对准因此产生了图像425。
定位台和相机时间延迟积分系统的实际限制突出了提供每个相机和具有旋转台的载物片X-Y台的效用。图7和图8示出了两个相机、载物片和定位台之间的旋转对准关系。如果这四个部件中的一个部件被认为是固定的,则需要3个旋转自由度以与另三个部件对准。
在图7和图8中,X轴线和Y轴线505表示台例如图1中的X-Y台137的方位。第一成像通道中的相机(例如图1中的相机105)和第二成像通道中的相机的方位分别由510和520表示。载物片例如图1中的载物片145的方位由525表示。在图7中,两个相机、载物片和台均相对于彼此未对准地转动。
如图8所示,所有这些部件的对准可通过以下过程实现:将相机510、520与载物片525对准,以及将载物片525与X-Y台对准。这个过程的示例为:
A.使用一个相机获取载物片上的生化实验阵列的图像。
B.使用图像对准程序计算相机与载物片之间的角度θ相机-载物片,存储该角度供以后使用。
C.使用下面描述的载物片对准过程找出载物片与X-Y台之间的角度θ载物片-台。
D.将载物片转动在步骤(C)中找出的角度以使其与X-Y台轴线对准。
E.将相机转动在步骤(B)和(C)中找到的角度之和以使其与台对准。
F.重复步骤(C)的载物片对准过程以获得新的载物片定位。
G.重复步骤(B)和(C)以确认所有的角度等于0。如果不是,则重复整个过程。
H.为另一相机重复整个过程。
载物片与X-Y台的对准如图9所示的那样进行,图9示出了在载物片对准过程中使用的参考框。在图9中,参考框605与X-Y台(例如图1中的X-Y台137)对准。参考框610与载物片(例如图1中的载物片145)对准。两个参考框可通过旋转台(例如图1中的旋转台135)相对于彼此旋转。为了确定所需的旋转角度(以及偏移与比例关系),在每个参考框中对载物片上的若干点(例如图9中的点“a”和“b”)进行测量。台参考框中的点的位置(x,y)可从发送至台的数字定位命令中已知。载物片参考框中的点的位置(x’,y’)在图像对准过程中确定。如果在两个参考框中测量了N个点(由i=1至N索引),则对于点i,可被写成:
以上展开式已进行至二阶。可使用至更高阶或其他坐标系统中的展开式等而不失一般性。接下来,误差项可被构造为:
然后,χ2被最小化以找出系数a00、a10、a01…b00、b10、b01…等。最终,可通过这些系数计算出参考框之间的角度。
一旦相机、载物片和台对准,则可开始数据采集。图1的成像系统具有静态和动态图像调整能力。静态调整包括通过变焦透镜系统进行放大、通过一组机械旋转台进行旋转以及通过分束器和滤波选择进行波长选择。静态调整在载物片扫描操作开始之前进行,而动态调整可在扫描操作过程中进行。
动态调整包括通过TDI脉冲定时和透明平板(例如110)的振镜驱动旋转、镜子(例如111)的旋转或台(例如103)的平移进行的小的X和Y偏移改变。动态调整可形成基于图像的控制循环的一部分,该控制循环校正扫描操作过程中的定位误差。控制循环包括采集相机中的图像、时钟输出来自相机的图像数据、分析数据、计算误差校正以及通过TDI脉冲定时和振镜板角度调整X和Y偏移。
通过本文所公开的实施方式,本领域技术人员将容易理解,可根据本发明利用目前现存或以后将被开发的执行与本文所述的相应实施方式基本相同的功能或实现与本文所述的相应实施方式基本相同的结果的过程、机械、制造、装置、方法或步骤。因此,所附的权利要求旨在包括落入其范围内的过程、机械、制造、装置、方法或步骤。
以上对示出的系统和方法的实施方式的描述并不是全面的或旨在将系统和方法限制于所公开的具体形式。虽然出于说明的目的示出了本文所述的系统和方法的特定实施方式和示例,但是本领域技术人员能够理解,在系统和方法的范围内进行各种等同修改也是可能的。本文提供的系统和方法的教导可应用于其他系统和方法,而不仅用于上述的系统和方法。
在所附的权利要求中,所使用的用语不应被理解为将系统和方法限制于说明书和权利要求中公开的特定实施方式,而应被理解为包括在权利要求下运行的所有系统。因此,本发明并不由公开内容限制,除非权利要求中有所指示。
Claims (26)
1.一种时间延迟积分TDI成像系统,包括:
显微镜物镜;
TDI相机,配置成通过沿与所述显微镜物镜的旋转对称轴线垂直的扫描轴线扫描样本来产生图像;以及
旋转台,所述旋转台支持所述时间延迟积分TDI相机,所述旋转台能够在所述时间延迟积分TDI相机处绕所述旋转对称轴线独立旋转;
沿所述旋转对称轴线的横向偏移系统,所述横向偏移系统配置成独立地移动所述TDI相机中的所述图像在垂直于所述扫描轴线的平面中的位置,其中,所述横向偏移系统包括偏移板,所述偏移板安装至振镜机构。
2.一种时间延迟积分TDI成像系统,包括:
显微镜物镜;
TDI相机,配置成通过沿与所述显微镜物镜的旋转对称轴线垂直的扫描轴线扫描样本来产生图像;
旋转台,所述旋转台支持所述时间延迟积分TDI相机,所述旋转台能够在所述时间延迟积分TDI相机处绕所述旋转对称轴线独立旋转;以及
沿所述旋转对称轴线的横向偏移系统,所述横向偏移系统配置成独立地移动所述TDI相机中的所述图像在垂直于所述扫描轴线的平面中的位置,其中,所述横向偏移系统包括x-y定位台,以及其中,所述TDI相机被安装至所述旋转台和所述x-y定位台上。
3.如权利要求1所述的TDI成像系统,其中,所述样本包括被安装在x-y定位台上的生化阵列。
4.如权利要求1所述的TDI成像系统,还包括变焦透镜系统,所述变焦透镜系统配置为改变沿所述旋转对称轴线被引导至所述TDI相机的所述图像的比例。
5.一种时间延迟积分TDI成像系统,包括:
显微镜物镜;
TDI相机,配置成通过沿与所述显微镜物镜的旋转对称轴线垂直的扫描轴线扫描样本来产生图像;以及
沿所述旋转对称轴线的横向偏移系统,所述横向偏移系统配置成独立地移动所述TDI相机中的所述图像在垂直于所述扫描轴线的平面中的位置;
所述成像系统还包括:
支持所述TDI相机的旋转台,所述旋转台能够在所述时间延迟积分TDI相机处绕所述旋转对称轴线独立旋转。
6.如权利要求5所述的TDI成像系统,还包括定位台,所述定位台能够在垂直于所述旋转对称轴线的平面中,在X方向和Y方向上平移,其中,所述样本包括被安装至所述定位台上的生化阵列。
7.如权利要求6所述的TDI成像系统,其中,所述TDI相机配置成执行在所述Y方向上的对准。
8.一种时间延迟积分TDI成像系统,包括:
显微镜物镜;
TDI相机,配置成通过沿与所述显微镜物镜的旋转对称轴线垂直的扫描轴线扫描样本来产生图像;
旋转台,所述旋转台支持所述时间延迟积分TDI相机,所述旋转台能够在所述时间延迟积分TDI相机处绕所述旋转对称轴线独立旋转;以及
沿所述旋转对称轴线的横向偏移系统,所述横向偏移系统配置成独立地移动所述TDI相机中的所述图像在垂直于所述扫描轴线的平面中的位置;
其中,所述TDI相机是第一相机,以及所述横向偏移系统是第一横向偏移系统;以及
其中,所述成像系统还包括:
第一成像通道,包括所述第一相机和所述第一横向偏移系统;
第二成像通道,包括第二相机和第二横向偏移系统;
分束器,配置成将所述图像的第一选择光谱引导至所述第一成像通道,以及将所述图像的第二选择光谱引导至所述第二成像通道。
9.如权利要求8所述的TDI成像系统,还包括多色性滤波器系统,所述多色性滤波器系统沿所述旋转对称轴线设置,并且配置为至少:
使第一光经过所述第一成像通道,所述第一光的波长与第一荧光染料的发射光谱相对应;以及
使第二光经过所述第二成像通道,所述第二光的波长与第二荧光染料的发射光谱相对应。
10.如权利要求8所述的TDI成像系统,还包括:
第三成像通道,包括第三相机和第三横向偏移系统;
第四成像通道,包括第四相机和第四横向偏移系统;
一个或多个附加的分束器,配置成将所述图像的第三选择光谱引导至所述第三成像通道,以及将所述图像的第四选择光谱引导至所述第四成像通道。
11.如权利要求10所述的TDI成像系统,还包括多色性滤波器系统,所述多色性滤波器系统沿所述旋转对称轴线设置,并且配置为至少:
使第一光经过所述第一成像通道,所述第一光的波长与第一荧光染料的发射光谱相对应;
使第二光经过所述第二成像通道,所述第二光的波长与第二荧光染料的发射光谱相对应;
使第三光经过第三成像通道,所述第三光的波长与第三荧光染料的发射光谱相对应;以及
使第四光经过第四成像通道,所述第四光的波长与第四荧光染料的发射光谱相对应。
12.如权利要求11所述的TDI成像系统,其中,所述第一成像通道、所述第二成像通道、所述第三成像通道、以及所述第四成像通道中的每个都能够独立于所述第一成像通道、所述第二成像通道、所述第三成像通道、以及所述第四成像通道中的任何不同的一个,关于图像旋转、X偏移和Y偏移、比例、以及放大率中的一个或多个进行调整。
13.一种时间延迟积分TDI成像系统,包括:
显微镜物镜;
时间延迟积分式相机,配置成通过沿与所述显微镜物镜的旋转对称轴线垂直的扫描轴线扫描样本来产生图像,所述图像是每次沿一条直线的像素,其中,所述像素以不同于所述像素的扫描速率的速率输出;
旋转台,所述旋转台支持所述时间延迟积分TDI相机,所述旋转台能够在所述时间延迟积分TDI相机处绕所述旋转对称轴线独立旋转;以及
沿所述旋转对称轴线的横向偏移系统,所述横向偏移系统配置成独立地移动所述TDI相机中的所述图像在垂直于所述扫描轴线的平面中的位置。
14.如权利要求13所述的TDI成像系统,其中,所述横向偏移系统包括使所述旋转对称轴线改变方向的镜子。
15.如权利要求13所述的TDI成像系统,其中,所述样本包括被安装至x-y定位台的生化阵列。
16.如权利要求13所述的TDI成像系统,还包括变焦透镜系统,所述变焦透镜系统配置成改变沿所述旋转对称轴线被引导至所述TDI相机的所述图像的比例。
17.如权利要求13所述的TDI成像系统,还包括定位台,所述定位台能够在垂直于所述旋转对称轴线的平面中,在X方向上和Y方向上平移,其中,所述样本包括被安装至所述定位台上的生化阵列。
18.如权利要求13所述的TDI成像系统,其中,所述时间延迟积分式相机配置为执行在Y方向上的对准。
19.一种时间延迟积分TDI成像系统,包括,
显微镜物镜;
TDI相机,配置成通过沿与所述显微镜物镜的旋转对称轴线垂直的扫描轴线扫描样本,以产生图像;
沿所述旋转对称轴线的横向偏移系统,所述横向偏移系统配置成独立地移动所述TDI相机中的所述图像在垂直于所述扫描轴线的平面中的位置;
支持所述TDI相机的旋转台,所述旋转台能够在所述时间延迟积分TDI相机处围绕所述旋转对称轴线独立旋转;以及
变焦透视系统,配置成改变沿所述旋转对称轴线被引导至所述TDI相机的所述图像的比例。
20.如权利要求19所述的TDI成像系统,其中,所述变焦透视系统配置成在放大中进行静态调整。
21.如权利要求19所述的TDI成像系统,其中,所述旋转台配置成在所述旋转台围绕所述旋转对称轴线旋转中进行静态调整。
22.如权利要求19所述的TDI成像系统,配置成进行动态X偏移和Y偏移调整。
23.如权利要求19所述的TDI成像系统,其中,所述TDI相机配置成以TDI模式或全帧模式进行操作。
24.如权利要求19所述的TDI成像系统,其中,所述TDI相机配置成以全帧模式进行操作。
25.如权利要求19所述的TDI成像系统,还包括定位台,所述定位台能够在垂直于所述旋转对称轴线的平面中,在X方向上和Y方向上平移,其中,所述样本被安装在所述定位台上。
26.如权利要求25所述的TDI成像系统,其中,所述样本包括安装在所述定位台上的生化阵列。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US12/912,641 US8175452B1 (en) | 2010-10-26 | 2010-10-26 | Method and system for imaging high density biochemical arrays with sub-pixel alignment |
US12/912,641 | 2010-10-26 | ||
PCT/US2011/056211 WO2012058014A2 (en) | 2010-10-26 | 2011-10-13 | Method and system for imaging high density biochemical arrays with sub-pixel alignment |
CN201180051638.2A CN103635848B (zh) | 2010-10-26 | 2011-10-13 | 显微镜 |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201180051638.2A Division CN103635848B (zh) | 2010-10-26 | 2011-10-13 | 显微镜 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111323899A CN111323899A (zh) | 2020-06-23 |
CN111323899B true CN111323899B (zh) | 2022-11-22 |
Family
ID=45973104
Family Applications (5)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201180051638.2A Active CN103635848B (zh) | 2010-10-26 | 2011-10-13 | 显微镜 |
CN201610829299.0A Active CN106226979B (zh) | 2010-10-26 | 2011-10-13 | 用于通过子像素对准使高密度生化阵列成像的方法和系统 |
CN201610829165.9A Active CN106226978B (zh) | 2010-10-26 | 2011-10-13 | 用于通过子像素对准使高密度生化阵列成像的方法和系统 |
CN202010000698.2A Active CN111323899B (zh) | 2010-10-26 | 2011-10-13 | 用于通过子像素对准使高密度生化阵列成像的方法和系统 |
CN202211332719.6A Pending CN115542529A (zh) | 2010-10-26 | 2011-10-13 | 用于通过子像素对准使高密度生化阵列成像的方法和系统 |
Family Applications Before (3)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201180051638.2A Active CN103635848B (zh) | 2010-10-26 | 2011-10-13 | 显微镜 |
CN201610829299.0A Active CN106226979B (zh) | 2010-10-26 | 2011-10-13 | 用于通过子像素对准使高密度生化阵列成像的方法和系统 |
CN201610829165.9A Active CN106226978B (zh) | 2010-10-26 | 2011-10-13 | 用于通过子像素对准使高密度生化阵列成像的方法和系统 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202211332719.6A Pending CN115542529A (zh) | 2010-10-26 | 2011-10-13 | 用于通过子像素对准使高密度生化阵列成像的方法和系统 |
Country Status (6)
Country | Link |
---|---|
US (5) | US8175452B1 (zh) |
EP (1) | EP2633359B1 (zh) |
CN (5) | CN103635848B (zh) |
AU (1) | AU2011320774B2 (zh) |
HK (1) | HK1195637A1 (zh) |
WO (1) | WO2012058014A2 (zh) |
Families Citing this family (50)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9382585B2 (en) | 2007-10-30 | 2016-07-05 | Complete Genomics, Inc. | Apparatus for high throughput sequencing of nucleic acids |
US8774494B2 (en) | 2010-04-30 | 2014-07-08 | Complete Genomics, Inc. | Method and system for accurate alignment and registration of array for DNA sequencing |
US9880089B2 (en) | 2010-08-31 | 2018-01-30 | Complete Genomics, Inc. | High-density devices with synchronous tracks for quad-cell based alignment correction |
US9671344B2 (en) | 2010-08-31 | 2017-06-06 | Complete Genomics, Inc. | High-density biochemical array chips with asynchronous tracks for alignment correction by moiré averaging |
US8175452B1 (en) * | 2010-10-26 | 2012-05-08 | Complete Genomics, Inc. | Method and system for imaging high density biochemical arrays with sub-pixel alignment |
FR2980628B1 (fr) | 2011-09-22 | 2014-07-25 | Schneider Electric Ind Sas | Melange d'hydrofluoroolefine et de fluorocetone pour l'utilisation comme milieu d'isolation et/ou d'extinction d'arc et appareil electrique moyenne tension a isolation gazeuse le comprenant |
ES2953897T3 (es) | 2012-05-02 | 2023-11-16 | Leica Biosystems Imaging Inc | Enfoque en tiempo real en imagenología de exploración lineal |
US9628676B2 (en) * | 2012-06-07 | 2017-04-18 | Complete Genomics, Inc. | Imaging systems with movable scan mirrors |
US9488823B2 (en) | 2012-06-07 | 2016-11-08 | Complete Genomics, Inc. | Techniques for scanned illumination |
US10378053B2 (en) | 2017-03-17 | 2019-08-13 | Apton Biosystems, Inc. | Sequencing and high resolution imaging |
JP6395718B2 (ja) | 2012-11-19 | 2018-09-26 | アプトン バイオシステムズ インコーポレイテッド | 単一分子検出を用いた分子分析物のデジタル分析の方法 |
US10829816B2 (en) | 2012-11-19 | 2020-11-10 | Apton Biosystems, Inc. | Methods of analyte detection |
US20160201119A1 (en) | 2013-08-22 | 2016-07-14 | Apton Biosystems, Inc. | Digital Analysis of Molecular Analytes Using Electrical Methods |
FR3019316B1 (fr) * | 2014-03-28 | 2017-08-11 | Sagem Defense Securite | Systeme de veille optronique a champ optique variable |
CN104407436B (zh) * | 2014-09-05 | 2019-01-11 | 北京大学 | 一种基于轴向超高速扫描的三轴数字扫描光片显微镜 |
WO2016055177A1 (de) * | 2014-10-06 | 2016-04-14 | Leica Microsystems (Schweiz) Ag | Mikroskop |
EP3204809B1 (de) * | 2014-10-06 | 2021-04-21 | Leica Microsystems (Schweiz) AG | Mikroskop |
CN106796338B (zh) * | 2014-10-06 | 2019-11-08 | 徕卡显微系统(瑞士)股份公司 | 显微镜 |
JP6562626B2 (ja) * | 2014-12-10 | 2019-08-21 | キヤノン株式会社 | 顕微鏡システム |
JP6562627B2 (ja) | 2014-12-10 | 2019-08-21 | キヤノン株式会社 | 顕微鏡システム |
JP6478605B2 (ja) | 2014-12-10 | 2019-03-06 | キヤノン株式会社 | 顕微鏡システムおよびその制御方法 |
DE102015100695A1 (de) * | 2015-01-19 | 2016-07-21 | Carl Zeiss Ag | Optische Anordnung für ein Laser-Scanner-System |
JP6266574B2 (ja) * | 2015-09-10 | 2018-01-24 | 株式会社日立ハイテクサイエンス | X線検査方法及びx線検査装置 |
CN108139650B (zh) | 2015-09-24 | 2020-10-30 | 徕卡生物系统公司 | 线扫描成像中的实时聚焦 |
TWI599793B (zh) * | 2015-11-23 | 2017-09-21 | 財團法人金屬工業研究發展中心 | 組織玻片影像掃描系統 |
JP6643071B2 (ja) | 2015-12-10 | 2020-02-12 | キヤノン株式会社 | 顕微鏡システム |
JP6609174B2 (ja) * | 2015-12-10 | 2019-11-20 | キヤノン株式会社 | 顕微鏡システムおよびその制御方法 |
JP6643072B2 (ja) * | 2015-12-10 | 2020-02-12 | キヤノン株式会社 | 顕微鏡システムおよびその制御方法 |
US10432857B2 (en) | 2016-10-13 | 2019-10-01 | Life Technologies Holdings Pte Limited | Systems, methods, and apparatuses for optimizing field of view |
EP3538941A4 (en) | 2016-11-10 | 2020-06-17 | The Trustees of Columbia University in the City of New York | METHODS FOR FAST IMAGING OF HIGH RESOLUTION LARGE SAMPLES |
EP3542204B1 (en) * | 2016-11-18 | 2021-02-17 | Ventana Medical Systems, Inc. | Method and system to detect substrate placement accuracy |
EP3563292A4 (en) * | 2016-12-30 | 2020-08-12 | Leica Biosystems Imaging, Inc. | LOW RESOLUTION SLIDE IMAGING AND SLIDE LABEL IMAGING AND HIGH RESOLUTION SLIDE IMAGING USING TWO OPTICAL PATHS AND A SINGLE IMAGING SENSOR |
US10477097B2 (en) * | 2017-01-03 | 2019-11-12 | University Of Connecticut | Single-frame autofocusing using multi-LED illumination |
KR102414312B1 (ko) * | 2017-02-10 | 2022-06-28 | 나노트로닉스 이미징, 인코포레이티드 | 현미경 검사에서 대 영역 이미징을 용이하게 하는 카메라 및 표본 정렬 |
CN111183385B (zh) * | 2017-09-29 | 2022-04-08 | 徕卡生物系统成像股份有限公司 | 实时自动聚焦扫描 |
EP3625605B1 (en) | 2017-09-29 | 2022-08-17 | Leica Biosystems Imaging, Inc. | Two-dimensional and three-dimensional fixed z scanning |
KR102419163B1 (ko) * | 2017-09-29 | 2022-07-08 | 라이카 바이오시스템즈 이미징 인크. | 실시간 오토포커스 포커싱 알고리즘 |
JP7009619B2 (ja) | 2017-09-29 | 2022-01-25 | ライカ バイオシステムズ イメージング インコーポレイテッド | 2回通過式マクロ画像 |
DE102018124129A1 (de) * | 2017-12-04 | 2019-06-06 | Leica Microsystems Cms Gmbh | Mikroskopsystem und Verfahren zur mikroskopischen Abbildung mit einem solchen Mikroskopsystem |
DE102018129833B4 (de) * | 2017-12-04 | 2020-01-02 | Leica Microsystems Cms Gmbh | Mikroskopsystem, Detektionseinheit für Mikroskopsystem und Verfahren zur mikroskopischen Abbildung einer Probe |
US10247910B1 (en) | 2018-03-14 | 2019-04-02 | Nanotronics Imaging, Inc. | Systems, devices and methods for automatic microscopic focus |
US10146041B1 (en) | 2018-05-01 | 2018-12-04 | Nanotronics Imaging, Inc. | Systems, devices and methods for automatic microscope focus |
EP3614191A1 (en) * | 2018-08-20 | 2020-02-26 | Till GmbH | Microscope device |
WO2020061237A1 (en) | 2018-09-19 | 2020-03-26 | Apton Biosystems, Inc. | Densely-packed analyte layers and detection methods |
CN112066158A (zh) * | 2019-12-10 | 2020-12-11 | 天目爱视(北京)科技有限公司 | 一种智能管道机器人 |
US11889049B2 (en) | 2020-08-14 | 2024-01-30 | Raytheon Company | Gain map generation with rotation compensation |
US11563899B2 (en) | 2020-08-14 | 2023-01-24 | Raytheon Company | Parallelization technique for gain map generation using overlapping sub-images |
CA3226482A1 (en) * | 2021-07-21 | 2023-01-26 | Element Biosciences, Inc. | Optical systems for nucleic acid sequencing and methods thereof |
EP4170405A1 (en) * | 2021-10-19 | 2023-04-26 | Leica Microsystems CMS GmbH | Optical adjustment device and microscope comprising such |
EP4446793A1 (en) * | 2023-04-13 | 2024-10-16 | Leica Microsystems CMS GmbH | Control arrangement for controlling an optical adjustment device and method |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4589140A (en) * | 1983-03-21 | 1986-05-13 | Beltronics, Inc. | Method of and apparatus for real-time high-speed inspection of objects for identifying or recognizing known and unknown portions thereof, including defects and the like |
US6580502B1 (en) * | 1999-05-12 | 2003-06-17 | Tokyo Seimitsu Co., Ltd. | Appearance inspection method and apparatus |
JP2006259377A (ja) * | 2005-03-17 | 2006-09-28 | Hamamatsu Photonics Kk | 顕微鏡システム |
JP2007310202A (ja) * | 2006-05-19 | 2007-11-29 | Tokyo Seimitsu Co Ltd | 共焦点顕微鏡 |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
BE689477A (fr) * | 1966-11-09 | 1967-05-09 | Acec | Optique pour caméra |
DE2717033C2 (de) * | 1977-04-18 | 1986-01-30 | Ernst Leitz Wetzlar Gmbh, 6330 Wetzlar | Mikrofotografische Lichtmeßeinrichtung |
DE2924053A1 (de) * | 1979-06-15 | 1980-12-18 | Leitz Ernst Gmbh | Aufsatzkamera fuer mikroskope |
JPS60122304A (ja) * | 1983-11-09 | 1985-06-29 | Shinetsu Eng Kk | 自動寸法測定装置 |
WO1996039619A1 (en) * | 1995-06-06 | 1996-12-12 | Kla Instruments Corporation | Optical inspection of a specimen using multi-channel responses from the specimen |
US6288780B1 (en) * | 1995-06-06 | 2001-09-11 | Kla-Tencor Technologies Corp. | High throughput brightfield/darkfield wafer inspection system using advanced optical techniques |
JPH09320933A (ja) * | 1996-05-28 | 1997-12-12 | Nikon Corp | 走査型露光装置 |
JPH1064981A (ja) * | 1996-08-13 | 1998-03-06 | Fujitsu Ltd | ウェハのアライメント方法 |
DE19714221A1 (de) * | 1997-04-07 | 1998-10-08 | Zeiss Carl Fa | Konfokales Mikroskop mit einem motorischen Scanningtisch |
CA2246404A1 (en) * | 1997-08-28 | 1999-02-28 | Koichi Shimada | Image sensing apparatus utilizing pixel-shifting |
US6388788B1 (en) * | 1998-03-16 | 2002-05-14 | Praelux, Inc. | Method and apparatus for screening chemical compounds |
US6310710B1 (en) * | 1999-04-23 | 2001-10-30 | Arie Shahar | High-resolution reading and writing using beams and lenses rotating at equal or double speed |
WO2000072509A2 (en) * | 1999-05-26 | 2000-11-30 | Bigband Networks, Inc. | Communication management system and method |
US6917433B2 (en) * | 2000-09-20 | 2005-07-12 | Kla-Tencor Technologies Corp. | Methods and systems for determining a property of a specimen prior to, during, or subsequent to an etch process |
US7372985B2 (en) * | 2003-08-15 | 2008-05-13 | Massachusetts Institute Of Technology | Systems and methods for volumetric tissue scanning microscopy |
JP2005283190A (ja) * | 2004-03-29 | 2005-10-13 | Hitachi High-Technologies Corp | 異物検査方法及びその装置 |
US7420592B2 (en) * | 2004-06-17 | 2008-09-02 | The Boeing Company | Image shifting apparatus for enhanced image resolution |
US7777199B2 (en) * | 2004-09-17 | 2010-08-17 | Wichita State University | System and method for capturing image sequences at ultra-high framing rates |
US8164622B2 (en) * | 2005-07-01 | 2012-04-24 | Aperio Technologies, Inc. | System and method for single optical axis multi-detector microscope slide scanner |
KR101322292B1 (ko) * | 2005-07-08 | 2013-10-28 | 일렉트로 싸이언티픽 인더스트리이즈 인코포레이티드 | 텔레센트릭 축상 암 시야 조명으로 구현된 광학 시스템의 사용과 성능의 최적화 |
JP2007121611A (ja) * | 2005-10-27 | 2007-05-17 | Sony Corp | ズームレンズ及び撮像装置 |
JP4572162B2 (ja) * | 2005-11-22 | 2010-10-27 | 株式会社ジーオングストローム | 顕微鏡装置 |
AU2007215302A1 (en) * | 2006-02-10 | 2007-08-23 | Hologic, Inc. | Method and apparatus and computer program product for collecting digital image data from microscope media-based specimens |
JP4979246B2 (ja) * | 2006-03-03 | 2012-07-18 | 株式会社日立ハイテクノロジーズ | 欠陥観察方法および装置 |
JP4890096B2 (ja) * | 2006-05-19 | 2012-03-07 | 浜松ホトニクス株式会社 | 画像取得装置、画像取得方法、及び画像取得プログラム |
DE102006034205B4 (de) * | 2006-07-25 | 2012-03-01 | Carl Mahr Holding Gmbh | Dynamische Bildaufnahme mit bildgebenden Sensoren |
US7714996B2 (en) * | 2007-01-23 | 2010-05-11 | 3i Systems Corporation | Automatic inspection system for flat panel substrate |
JP2010517056A (ja) * | 2007-01-30 | 2010-05-20 | ジーイー・ヘルスケア・バイオサイエンス・コーポレイション | 時間分解蛍光イメージングシステム |
WO2008137746A1 (en) * | 2007-05-04 | 2008-11-13 | Aperio Technologies, Inc. | Rapid microscope scanner for volume image acquisition |
CN201397422Y (zh) * | 2009-03-16 | 2010-02-03 | 周纪文 | 数字化显微分析仪 |
US8175452B1 (en) * | 2010-10-26 | 2012-05-08 | Complete Genomics, Inc. | Method and system for imaging high density biochemical arrays with sub-pixel alignment |
-
2010
- 2010-10-26 US US12/912,641 patent/US8175452B1/en active Active
-
2011
- 2011-10-13 CN CN201180051638.2A patent/CN103635848B/zh active Active
- 2011-10-13 CN CN201610829299.0A patent/CN106226979B/zh active Active
- 2011-10-13 WO PCT/US2011/056211 patent/WO2012058014A2/en active Application Filing
- 2011-10-13 CN CN201610829165.9A patent/CN106226978B/zh active Active
- 2011-10-13 AU AU2011320774A patent/AU2011320774B2/en active Active
- 2011-10-13 CN CN202010000698.2A patent/CN111323899B/zh active Active
- 2011-10-13 EP EP11836850.5A patent/EP2633359B1/en active Active
- 2011-10-13 CN CN202211332719.6A patent/CN115542529A/zh active Pending
-
2012
- 2012-04-20 US US13/451,678 patent/US8428454B2/en active Active
-
2013
- 2013-04-03 US US13/856,369 patent/US8660421B2/en active Active
-
2014
- 2014-02-19 US US14/184,473 patent/US8965196B2/en active Active
- 2014-09-02 HK HK14108920.2A patent/HK1195637A1/zh unknown
-
2015
- 2015-01-12 US US14/594,979 patent/US9285578B2/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4589140A (en) * | 1983-03-21 | 1986-05-13 | Beltronics, Inc. | Method of and apparatus for real-time high-speed inspection of objects for identifying or recognizing known and unknown portions thereof, including defects and the like |
US6580502B1 (en) * | 1999-05-12 | 2003-06-17 | Tokyo Seimitsu Co., Ltd. | Appearance inspection method and apparatus |
JP2006259377A (ja) * | 2005-03-17 | 2006-09-28 | Hamamatsu Photonics Kk | 顕微鏡システム |
JP2007310202A (ja) * | 2006-05-19 | 2007-11-29 | Tokyo Seimitsu Co Ltd | 共焦点顕微鏡 |
Also Published As
Publication number | Publication date |
---|---|
HK1195637A1 (zh) | 2014-11-14 |
EP2633359B1 (en) | 2021-11-17 |
US20120099852A1 (en) | 2012-04-26 |
US9285578B2 (en) | 2016-03-15 |
AU2011320774A1 (en) | 2013-05-02 |
US20150160451A1 (en) | 2015-06-11 |
CN106226979A (zh) | 2016-12-14 |
AU2011320774B2 (en) | 2014-10-09 |
CN103635848B (zh) | 2016-10-19 |
CN115542529A (zh) | 2022-12-30 |
US8428454B2 (en) | 2013-04-23 |
WO2012058014A3 (en) | 2014-04-03 |
US8965196B2 (en) | 2015-02-24 |
US8660421B2 (en) | 2014-02-25 |
EP2633359A4 (en) | 2015-07-29 |
CN106226978A (zh) | 2016-12-14 |
CN103635848A (zh) | 2014-03-12 |
EP2633359A2 (en) | 2013-09-04 |
CN106226978B (zh) | 2019-04-16 |
US8175452B1 (en) | 2012-05-08 |
CN111323899A (zh) | 2020-06-23 |
CN106226979B (zh) | 2021-11-02 |
US20140232845A1 (en) | 2014-08-21 |
US20130222570A1 (en) | 2013-08-29 |
US20120200692A1 (en) | 2012-08-09 |
WO2012058014A2 (en) | 2012-05-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111323899B (zh) | 用于通过子像素对准使高密度生化阵列成像的方法和系统 | |
CA2641635A1 (en) | Method and apparatus and computer program product for collecting digital image data from microscope media-based specimens | |
US10502941B2 (en) | Two-dimensional and three-dimensional fixed Z scanning | |
WO2010018515A1 (en) | Measuring and correcting lens distortion in a multispot scanning device. | |
CN108519329A (zh) | 一种多路扫描与探测的线共聚焦成像装置 | |
JP2017538139A (ja) | リソグラフィ構造を生成するための光学系 | |
JP2012512426A (ja) | 走査型顕微鏡 | |
AU2013204546B9 (en) | Method and system for imaging high density biochemical arrays with sub-pixel alignment | |
WO2024217203A1 (zh) | 一种单物镜光片三维荧光成像系统 | |
US20230232124A1 (en) | High-speed imaging apparatus and imaging method | |
JPH1131644A (ja) | 近接露光に適用される位置検出装置及び位置検出方法 | |
JPWO2013051147A1 (ja) | 画像取得装置の調整方法、画像取得装置および画像取得装置の製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
REG | Reference to a national code |
Ref country code: HK Ref legal event code: DE Ref document number: 40023115 Country of ref document: HK |
|
GR01 | Patent grant | ||
GR01 | Patent grant |