CN111302798A - 一种氧化镧掺杂改性的铌酸钾钠基透明陶瓷及其制备方法 - Google Patents

一种氧化镧掺杂改性的铌酸钾钠基透明陶瓷及其制备方法 Download PDF

Info

Publication number
CN111302798A
CN111302798A CN202010114210.9A CN202010114210A CN111302798A CN 111302798 A CN111302798 A CN 111302798A CN 202010114210 A CN202010114210 A CN 202010114210A CN 111302798 A CN111302798 A CN 111302798A
Authority
CN
China
Prior art keywords
sodium niobate
powder
ball milling
oxide doped
lanthanum oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010114210.9A
Other languages
English (en)
Other versions
CN111302798B (zh
Inventor
戴中华
郭恕璇
李定妍
刘卫国
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Technological University
Original Assignee
Xian Technological University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Technological University filed Critical Xian Technological University
Priority to CN202010114210.9A priority Critical patent/CN111302798B/zh
Publication of CN111302798A publication Critical patent/CN111302798A/zh
Application granted granted Critical
Publication of CN111302798B publication Critical patent/CN111302798B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/495Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on vanadium, niobium, tantalum, molybdenum or tungsten oxides or solid solutions thereof with other oxides, e.g. vanadates, niobates, tantalates, molybdates or tungstates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B1/00Processes of grinding or polishing; Use of auxiliary equipment in connection with such processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/62615High energy or reactive ball milling
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/632Organic additives
    • C04B35/634Polymers
    • C04B35/63404Polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C04B35/63416Polyvinylalcohols [PVA]; Polyvinylacetates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Mechanical Engineering (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种氧化镧掺杂改性的铌酸钾钠基透明陶瓷及其制备方法。首先按照化学式0.825(K0.5Na0.5)NbO3‑0.175Sr1‑3x/2Lax(Sc0.5Nb0.5)O3进行配料,其中0≤x≤0.03。经球磨、干燥后获得原料粉体;将获得的原料粉体压制成片,于1200~1300℃下烧结,得到氧化镧掺杂的铌酸钾钠基透明陶瓷。本发明制备方法简单、重复性好、成品率高。通过稀土La的掺杂克服了纯铌酸钾钠基陶瓷性能的不足,制得的氧化斓掺杂的铌酸钾钠基陶瓷在可见光区域透射率最高可达65%,同时具有优异的储能特性,储能密度2.2518J/cm3,储能效率为81.9%。

Description

一种氧化镧掺杂改性的铌酸钾钠基透明陶瓷及其制备方法
技术领域
本发明属于功能陶瓷材料技术领域,具体涉及一种氧化镧掺杂改性的铌酸钾钠基透明陶瓷及其制备方法。
背景技术
透明陶瓷是一类备受关注的新型光功能材料。由于其具有优异的铁电、机械性能以及显著的电光效应,且还具有耐高温、耐腐蚀、高硬度和高透明度等特性,使该材料被用作核试验人员及飞行人员的各种军用防具、坦克透明防弹装甲、红外导弹的窗口和整流罩、大口径火炮的点火装置等,在军事、航空领域中占据极其重要的地位。同时透明铁电陶瓷能把光、电、机械性能耦合在一起,显示出多功能特性,因而成为光纤通信、集成光学和信息处理等技术领域的核心材料,可用于反射模显示器、电控光阀、图像存储器、光衰减器、偏振控制器、Q开关、可调谐光滤波器等器件中。除此之外,部分透明铁电陶瓷还具有储能性能,可以作为储能材料使用,这更是透明铁电陶瓷成为一些新兴学科和新兴技术得以实现的关键。
近年来,利用无压烧结法制备的KNN基透明铁电陶瓷由于其高的光学透过率、优异的显微结构特性(高密度、低孔隙率、晶粒细小又均匀)和良好的储能特性而受到关注。2016年,Du等人通过在铌酸钾钠中加入第二组元来抑制晶粒生长,从而制备出在可见光区透光率达到60%的0.8(K0.5Na0.5)NbO3-0.2Sr(Sc0.5Nb0.5)O3透明陶瓷。紧接着,该课题组又在铌酸钾钠中引入铌镁酸铋等其他第二组元,结果表明:细小晶粒和弛豫行为有利于提高储能密度。同年,陕西师范大学Yang等人通过传统固相法制备了(1-x)(K0.37Na0.63)NbO3-xCa(Sc0.5Nb0.5)O3透明铁电陶瓷,研究了密闭和不密闭烧结对陶瓷光学性能的影响,发现密闭条件下光学透过率明显大于非密闭条件下的光学透过率。随后,在Yang等人的研究基础上,同课题组又制备出了(1-x)(K0.5Na0.5)NbO3-xLaBiO3透明铁电陶瓷,在x=0.025时,陶瓷的透光率达到了最大,在可见光区达到了74%,不仅超过了之前KNN基陶瓷的报道值,也超过了大部分铅基透明陶瓷的报道值。
但是,在有关铌酸钾钠基透明陶瓷的报道中,为了获得高透明性或者高的储能密度,都是通过对铌酸钾钠基陶瓷进行固溶第二组元及加入低熔点氧化物,目前对于掺杂稀土元素在铌酸钾钠基透明陶瓷的应用与发展有待深入研究。
发明内容
本发明的目的在于提供一种氧化镧掺杂铌酸钾钠基透明陶瓷材料及其制备方法,以克服纯铌酸钾钠基陶瓷性能的不足及传统的制备方法所存在的缺陷;这种陶瓷材料具有高透明性和高储能密度,并且具有环境友好、实用性高等特性。
本发明采用的技术方案如下:
一种氧化镧掺杂改性的铌酸钾钠基透明陶瓷,其特征在于,所述氧化镧掺杂改性的铌酸钾钠基透明陶瓷的化学式为:0.825(K0.5Na0.5)NbO3-0.175Sr1-3x/2Lax(Sc0.5Nb0.5)O3,其中0≤x≤0.03。
上述铌酸钾钠基透明铁电陶瓷材料的制备方法如下:
(1)配料
按照0.825(K0.5Na0.5)NbO3-0.175Sr1-3x/2Lax(Sc0.5Nb0.5)O3的化学计量分别称取原料K2CO3、Na2CO3、Nb2O5、SrCO3、Sc2O3、La2O3混合均匀,将原料混合物装入球磨罐中,以锆球为磨球、无水乙醇为球磨介质,充分混合球磨16~24小时,将原料混合物在60~100℃下干燥1~2小时,过60目筛得到混合粉料。
(2)预烧
将步骤1过60目筛后的原料混合物置于氧化铝坩埚内,用玛瑙棒压实,900~950℃预烧,自然冷却至室温,用研钵研磨,得到预烧后的粉料。
(3)二次球磨
将预烧粉装入球磨罐中,以锆球为磨球、无水乙醇为球磨介质,充分混合球磨18~24小时,分离锆球,将预烧粉在80~100℃下干燥1~2小时,用研钵研磨,过120目筛得到二次球磨后得原料粉体。
(4)造粒
向步骤3获得的原料粉体中加入质量分数为8%的聚乙烯醇水溶液,聚乙烯醇水溶液的加入量为粉体质量的5~7%,进行造粒。
(5)压片
将步骤4获得的粉粒陈腐24小时后在200~250MPa的压力下压制成片,得到陶瓷材料生坯压片,再进行排胶处理得到试样。
(6)烧结
将步骤5排胶处理后的试样以3℃/min的升温速率升温至1200~1300℃,保温4~5h,随炉自然冷却至室温,得到透明陶瓷样品。
(7)抛光
将步骤6烧结后的陶瓷利用研磨粉进行打磨至0.3~0.5mm厚,再利用金相抛光机抛光,用酒精搽拭干净。
进一步地,步骤1中所用原料纯度均大于99.5%。
进一步地,步骤2中预烧升温速率为3~5℃/min,保温时间4~5h。
进一步地,步骤5中,排胶为1.5~3℃/min升到600℃保温2~5h。
本发明的有益效果:
本发明材料0.825(K0.5Na0.5)NbO3-0.175Sr1-3x/2Lax(Sc0.5Nb0.5)O3,通过控制氧化镧的掺杂量提高了未掺杂稀土元素的铌酸钾钠基陶瓷的介电性能及铁电弛豫程度,使得材料的极化强度增加从而提高了材料的储能密度。当x=0.03时,可以在提高Pmax的基础上获得高的击穿场强从而得到高的储能密度。因此本发明通过引入氧化镧并控制氧化镧的掺杂量克服了大多数陶瓷介质材料介电击穿场强和储能密度较低、介电损耗较大的缺点。
本发明制备方法简单、重复性好、成品率高,所得陶瓷材料为高对称性伪立方相结构保证了良好的光学透明性,在可见光区域透射率最高可达65%,同时具有较好的铁电性能,击穿场强达310kV/cm,储能密度在1.62~2.25J/cm3,储能效率在81.9~88.9%。本发明材料在光学上各向同性、实用性强、易于生产,能兼顾电学性能和光学性能,是一类性能优良的新型功能陶瓷。
附图说明
图1是本发明实施例1~4中提供的0.825(K0.5Na0.5)NbO3-0.175Sr1-3x/2Lax(Sc0.5Nb0.5)O3透明陶瓷材料的XRD图;
图2是本发明实施例1~4中提供的0.825(K0.5Na0.5)NbO3-0.175Sr1-3x/2Lax(Sc0.5Nb0.5)O3透明陶瓷材料在150kV/cm电场下的室温单极电滞回线。
图3是本发明实施例4中提供的0.825(K0.5Na0.5)NbO3-0.175Sr0.955La0.03(Sc0.5Nb0.5)O3透明陶瓷材料在室温下的单极电滞回线。
具体实施方式:
下面结合具体实施例对本发明进行详细描述。
实施例1
本例陶瓷材料的化学式为0.825(K0.5Na0.5)NbO3-0.175Sr1-3x/2Lax(Sc0.5Nb0.5)O3,其中x=0。其制备方法的步骤包括:
(1)配料
按照0.825(K0.5Na0.5)NbO3-0.175Sr1-3x/2Lax(Sc0.5Nb0.5)O3,x=0的化学计量分别称取原料K2CO3、Na2CO3、Nb2O5、SrCO3、Sc2O3、La2O3混合均匀,将原料混合物装入球磨罐中,以锆球为磨球、无水乙醇为球磨介质,充分混合球磨18小时,球磨转速为350r/min。将原料混合物在80℃下干燥1~2小时,过60目筛得到混合粉料;
(2)预烧
将步骤(1)过60目筛后的原料混合物置于氧化铝坩埚内,用玛瑙棒压实,以3℃/min的升温速率升温至950℃保温5h进行预烧,自然冷却至室温,用研钵研磨,得到预烧后的粉料。
(3)二次球磨
将预烧粉装入球磨罐中,以锆球为磨球、无水乙醇为球磨介质,充分混合球磨16小时,球磨转速为350r/min。分离锆球,将预烧粉在80℃下干燥1~2小时,用研钵研磨,过120目筛得到二次球磨后得原料粉体。
(4)造粒向步骤(3)获得的原料粉体中加入质量分数为8%的聚乙烯醇水溶液,聚乙烯醇水溶液的加入量为粉体质量的5~7%,进行造粒。
(5)压片
将步骤(4)获得的粉粒陈腐24小时后,经60目和120目的筛网过筛,取筛网中间层的粉体,在250MPa的压力下压制成片,得到陶瓷材料生坯压片,接着在600℃的温度下保温5h进行排胶,随炉自然冷却至室温得到试样。
(6)烧结
将步骤(5)排胶处理后的试样以3℃/min的升温速率升温至1263℃,保温5h,随炉自然冷却至室温得到试样。
(7)抛光
将步骤(6)烧结后的陶瓷利用研磨粉进行打磨至0.3mm厚,再利用金相抛光机抛光,用酒精搽拭干净,得到透明陶瓷样品。
将制得的透明陶瓷材料进行X射线衍射测试,如图1。
将抛光后的透明陶瓷样品两面涂覆低温银浆,在烘箱内150℃烘干,制成银电极。然后在室温于50Hz频率下测试其铁电性能,如图2所示为本实施例陶瓷材料在室温和150kV/cm的电场条件下测得的单极电滞回线图。本实施例透明陶瓷材料在室温下的介电特性见表1。
实施例2
本例陶瓷材料的化学式为0.825(K0.5Na0.5)NbO3-0.175Sr1-3x/2Lax(Sc0.5Nb0.5)O3,其中x=0.01。其制备方法按上述配方重复实施例1的制备方法,得到所述氧化镧掺杂的铌酸钾钠基透明陶瓷材料。本实施例陶瓷材料在室温和150kV/cm的电场条件下测得的单极电滞回线图如图2。本实施例透明陶瓷材料在室温下的介电特性见表1。
实施例3
本例陶瓷材料的化学式为0.825(K0.5Na0.5)NbO3-0.175Sr1-3x/2Lax(Sc0.5Nb0.5)O3,其中x=0.02。其制备方法按上述配方重复实施例1的制备方法,得到所述氧化镧掺杂的铌酸钾钠基透明陶瓷材料。本实施例陶瓷材料在室温和150kV/cm的电场条件下测得的单极电滞回线图如图2。本实施例透明陶瓷材料在室温下的介电特性见表1。
实施例4
本例陶瓷材料的化学式为0.825(K0.5Na0.5)NbO3-0.175Sr1-3x/2Lax(Sc0.5Nb0.5)O3,其中x=0.03。其制备方法按上述配方重复实施例1的制备方法,得到所述氧化镧掺杂的铌酸钾钠基透明陶瓷材料。本实施例陶瓷材料在室温和150kV/cm的电场条件下测得的单极电滞回线图如图2。本实施例中提供的0.825(K0.5Na0.5)NbO3-0.175Sr0.955La0.03(Sc0.5Nb0.5)O3透明陶瓷材料在室温下的单极电滞回线如图3。本实施例透明陶瓷材料在室温下的介电特性见表1。
表1各实施例透明陶瓷材料的介电特性
Figure BDA0002390964210000081
由表1可知,随着氧化镧含量的不断增加,本发明透明陶瓷材料的击穿场强在不断的增大,剩余极化强度不断减小,在一定的氧化镧掺杂量下可以获得高的储能密度和储能效率。实施例4,x=0.03时储能密度达2.2518J/cm3,效率为81.9%。在实际的应用中,作为储能陶瓷介质材料,不仅需要具有高的储能密度,还应当具有高的储能效率。因为如果储能效率太低会导致在能量释放的过程中将大多数存储的能量以热的形式释放出来,释放出来的热量会降低材料的使用寿命以及其他性能。
由图1XRD图谱可见,本实施例所得到的陶瓷材料为纯钙钛矿结构,不含其他第二相,且XRD结果中不存在三方或四方的晶格畸变,呈现高对称性伪立方相结构,这种相结构有利于减少光的散射提高材料的光学透过率。由图2可见,在同一电场下,随着氧化镧含量的增加,材料的极化强度明显增加,克服了纯铌酸钾钠基陶瓷材料性能的不足。由图3可见,材料在保证光学性能的前提下,获得了高击穿场强下的高储能密度。

Claims (5)

1.一种氧化镧掺杂改性的铌酸钾钠基透明陶瓷,其特征在于,所述氧化镧掺杂改性的铌酸钾钠基透明陶瓷的化学式为:0.825(K0.5Na0.5)NbO3-0.175Sr1-3x/2Lax(Sc0.5Nb0.5)O3,其中0≤x≤0.03;该陶瓷材料在可见光区域透射率最高可达65%,储能密度为1.62~2.25J/cm3、储能效率为81.9~88.9%。
2.根据权利要求1所述的氧化镧掺杂的铌酸钾钠基透明陶瓷材料的制备方法,其特征在于它由下述步骤组成:
(1)配料:
按照0.825(K0.5Na0.5)NbO3-0.175Sr1-3x/2Lax(Sc0.5Nb0.5)O3的化学计量分别称取原料K2CO3、Na2CO3、Nb2O5、SrCO3、Sc2O3、La2O3混合均匀,将原料混合物装入球磨罐中,以锆球为磨球、无水乙醇为球磨介质,充分混合球磨16~24小时,将原料混合物在60~100℃下干燥1~2小时,过60目筛得到混合粉料;
(2)预烧
将步骤(1)过60目筛后的原料混合物置于氧化铝坩埚内,用玛瑙棒压实,900~950℃预烧,自然冷却至室温,用研钵研磨,得到预烧后的粉料;
(3)二次球磨
将预烧粉装入球磨罐中,以锆球为磨球、无水乙醇为球磨介质,充分混合球磨18~24小时,分离锆球,将预烧粉在80~100℃下干燥1~2小时,用研钵研磨,过120目筛得到二次球磨后得原料粉体;
(4)造粒
向步骤(3)获得的原料粉体中加入质量分数为8%的聚乙烯醇水溶液,聚乙烯醇水溶液的加入量为粉体质量的5~7%,进行造粒;
(5)压片
将步骤(4)获得的粉粒陈腐24小时后在200~250MPa的压力下压制成片,得到陶瓷材料生坯压片,再进行排胶处理得到试样;
(6)烧结
将步骤(5)排胶处理后的试样以3℃/min的升温速率升温至1200~1300℃,保温4~5h,随炉自然冷却至室温,得到透明陶瓷样品;
(7)抛光
将步骤(6)烧结后的陶瓷利用研磨粉进行打磨至0.3~0.5mm厚,再利用金相抛光机抛光,用酒精搽拭干净。
3.根据权利要求2所述的氧化镧掺杂的铌酸钾钠基透明陶瓷材料的制备方法,其特征在于:步骤(1)中,所用原料纯度均大于99.5%。
4.根据权利要求2所述的氧化镧掺杂的铌酸钾钠基透明陶瓷材料的制备方法,其特征在于:步骤(2)中,预烧升温速率为3~5℃/min,保温时间4~5h。
5.根据权利要求2所述的氧化镧掺杂的铌酸钾钠基透明陶瓷材料的制备方法,其特征在于:步骤(5)中,排胶为1.5~3℃/min升到600℃保温2~5h。
CN202010114210.9A 2020-02-25 2020-02-25 一种氧化镧掺杂改性的铌酸钾钠基透明陶瓷及其制备方法 Active CN111302798B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010114210.9A CN111302798B (zh) 2020-02-25 2020-02-25 一种氧化镧掺杂改性的铌酸钾钠基透明陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010114210.9A CN111302798B (zh) 2020-02-25 2020-02-25 一种氧化镧掺杂改性的铌酸钾钠基透明陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN111302798A true CN111302798A (zh) 2020-06-19
CN111302798B CN111302798B (zh) 2022-02-22

Family

ID=71149166

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010114210.9A Active CN111302798B (zh) 2020-02-25 2020-02-25 一种氧化镧掺杂改性的铌酸钾钠基透明陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN111302798B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112408983A (zh) * 2020-11-26 2021-02-26 四川大学 一种铋酸镧掺杂铌酸钾钠基多功能陶瓷材料及制备方法
CN115925414A (zh) * 2021-10-06 2023-04-07 Lt金属株式会社 氧化钼基烧结体、使用该烧结体的薄膜、包含该薄膜的薄膜晶体管及显示装置
CN116217228A (zh) * 2023-02-25 2023-06-06 桂林理工大学 一种钙钛矿型材料Sr6-2xNb2+2xO11+3x的制备方法

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1409876A (zh) * 1999-12-16 2003-04-09 埃普科斯股份有限公司 压电元件
CN1644562A (zh) * 2004-07-15 2005-07-27 清华大学 铌酸钾钠系无铅压电陶瓷及其制备方法
US20080302658A1 (en) * 2007-06-08 2008-12-11 Tsutomu Sasaki Oxide body, piezoelectric device, and liquid discharge device
JP4329287B2 (ja) * 2000-12-27 2009-09-09 三菱マテリアル株式会社 Plzt又はpzt強誘電体薄膜、その形成用組成物及び形成方法
JP2010095404A (ja) * 2008-10-16 2010-04-30 National Institute Of Advanced Industrial Science & Technology 非鉛圧電セラミックス及びこれを用いた圧電・誘電・焦電素子
JP4491537B2 (ja) * 2003-08-28 2010-06-30 独立行政法人産業技術総合研究所 ペロブスカイト固溶体組成物およびこのものから得られる圧電セラミックス
CN101857436A (zh) * 2010-06-12 2010-10-13 中国地质大学(武汉) 一类铌酸钾钠基无铅压电陶瓷粉体及其制备方法
US20150376068A1 (en) * 2013-02-06 2015-12-31 Agency for Science, Tecnology and Research Electro-optic ceramic materials
CN106588011A (zh) * 2016-12-31 2017-04-26 陕西师范大学 高剩余极化强度和居里温度的铌酸钾钠基无铅透明铁电陶瓷及其制备方法
CN110981476A (zh) * 2019-12-17 2020-04-10 西安工业大学 一种铌酸钾钠基透明陶瓷材料及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1409876A (zh) * 1999-12-16 2003-04-09 埃普科斯股份有限公司 压电元件
JP4329287B2 (ja) * 2000-12-27 2009-09-09 三菱マテリアル株式会社 Plzt又はpzt強誘電体薄膜、その形成用組成物及び形成方法
JP4491537B2 (ja) * 2003-08-28 2010-06-30 独立行政法人産業技術総合研究所 ペロブスカイト固溶体組成物およびこのものから得られる圧電セラミックス
CN1644562A (zh) * 2004-07-15 2005-07-27 清华大学 铌酸钾钠系无铅压电陶瓷及其制备方法
US20080302658A1 (en) * 2007-06-08 2008-12-11 Tsutomu Sasaki Oxide body, piezoelectric device, and liquid discharge device
JP2010095404A (ja) * 2008-10-16 2010-04-30 National Institute Of Advanced Industrial Science & Technology 非鉛圧電セラミックス及びこれを用いた圧電・誘電・焦電素子
CN101857436A (zh) * 2010-06-12 2010-10-13 中国地质大学(武汉) 一类铌酸钾钠基无铅压电陶瓷粉体及其制备方法
US20150376068A1 (en) * 2013-02-06 2015-12-31 Agency for Science, Tecnology and Research Electro-optic ceramic materials
CN106588011A (zh) * 2016-12-31 2017-04-26 陕西师范大学 高剩余极化强度和居里温度的铌酸钾钠基无铅透明铁电陶瓷及其制备方法
CN110981476A (zh) * 2019-12-17 2020-04-10 西安工业大学 一种铌酸钾钠基透明陶瓷材料及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
BINGYUE QU等: "Lead-free relaxor ferroelectric ceramics with high optical transparency and energy storage ability", 《JOURNAL OF MATERIALS CHEMISTRY C》 *
DONG YANG等: "High transmittance in lead-free lanthanum modified potassium-sodium niobate ceramics", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
RAJU KUMAR等: "Enhanced electrocaloric effect in lead-free 0.9(K0.5Na0.5) NbO3 single bond0.1Sr(Sc0.5Nb0.5)O3 ferroelectric nanocrystalline ceramics", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112408983A (zh) * 2020-11-26 2021-02-26 四川大学 一种铋酸镧掺杂铌酸钾钠基多功能陶瓷材料及制备方法
CN115925414A (zh) * 2021-10-06 2023-04-07 Lt金属株式会社 氧化钼基烧结体、使用该烧结体的薄膜、包含该薄膜的薄膜晶体管及显示装置
CN115925414B (zh) * 2021-10-06 2024-04-23 Lt金属株式会社 氧化钼基烧结体、使用该烧结体的薄膜、包含该薄膜的薄膜晶体管及显示装置
CN116217228A (zh) * 2023-02-25 2023-06-06 桂林理工大学 一种钙钛矿型材料Sr6-2xNb2+2xO11+3x的制备方法

Also Published As

Publication number Publication date
CN111302798B (zh) 2022-02-22

Similar Documents

Publication Publication Date Title
CN111302798B (zh) 一种氧化镧掺杂改性的铌酸钾钠基透明陶瓷及其制备方法
CN109180178B (zh) 一种高储能密度钛酸锶钡基无铅弛豫铁电陶瓷及其制备方法
CN108929112B (zh) 一种掺锡的锆钛酸铅镧厚膜陶瓷及其制备和应用
Ren et al. A compromise between piezoelectricity and transparency in KNN-based ceramics: the dual functions of Li2O addition
CN111978082B (zh) 一种铌镁酸锶掺杂改性钛酸铋钠基储能陶瓷材料及其制备方法
CN110451955B (zh) 钛酸铋钠-钛酸钡基无铅弛豫铁电体储能陶瓷及其制备方法
CN110041074B (zh) 一种上转换发光透明铁电陶瓷材料及其制备方法和应用
CN110981476A (zh) 一种铌酸钾钠基透明陶瓷材料及其制备方法
CN109796205B (zh) 一种铋层状结构钛钽酸铋高温压电陶瓷材料及其制备方法
CN112876247B (zh) 一种宽温度稳定性的高储能密度铌酸锶钠基钨青铜陶瓷及制备方法
CN108238795B (zh) 一种具有高居里温度的新型三元铁电陶瓷系统及其制备方法和应用
CN106747440B (zh) 一种可见光透明储能陶瓷及其制备方法
CN110357624B (zh) 高介电常数玻璃料改性锆酸锶掺杂铌酸钾钠无铅透明陶瓷材料及其制备方法
CN113213929A (zh) 高储能效率及密度的铌酸钾钠基铁电陶瓷材料及制备方法
CN107473732B (zh) 一种钛酸锶基高储能密度和低介电损耗陶瓷材料及其制备方法
CN113548892B (zh) 具有宽温区高压电性能的铌酸钾钠基透明陶瓷材料及其制备方法
CN113213918B (zh) 兼具高压电性能和低损耗的钛酸锶铋—钪酸铋—钛酸铅系高温压电陶瓷材料及其制备方法
CN110498681B (zh) 室温下高电卡效应的弛豫铁电陶瓷及制备方法和应用
CN106588011A (zh) 高剩余极化强度和居里温度的铌酸钾钠基无铅透明铁电陶瓷及其制备方法
CN109180185B (zh) 一种超短时间制备高储能铌酸钾钠铁电陶瓷材料的方法
CN110698199A (zh) 一种采用分步预烧法制备的低损耗微波介质陶瓷
CN114478006A (zh) 一种KNNS-BNZ+CuO压电陶瓷材料及其制备方法、应用
CN111417608A (zh) 陶瓷构件
CN112830781B (zh) 一种无铅透明铁电陶瓷材料及其制备方法和应用
CN113563076A (zh) 一种高场致应变温度稳定性弛豫铁电陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant