CN111286724A - 一种基于lpcvd技术的本征硅水平镀膜工艺方法 - Google Patents

一种基于lpcvd技术的本征硅水平镀膜工艺方法 Download PDF

Info

Publication number
CN111286724A
CN111286724A CN202010079279.2A CN202010079279A CN111286724A CN 111286724 A CN111286724 A CN 111286724A CN 202010079279 A CN202010079279 A CN 202010079279A CN 111286724 A CN111286724 A CN 111286724A
Authority
CN
China
Prior art keywords
furnace
tube
gas inlet
quartz
air inlet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010079279.2A
Other languages
English (en)
Inventor
林佳继
范伟
张耀
刘群
张武
林依婷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Laplace Energy Technology Co Ltd
Original Assignee
Shenzhen Laplace Energy Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Laplace Energy Technology Co Ltd filed Critical Shenzhen Laplace Energy Technology Co Ltd
Priority to CN202010079279.2A priority Critical patent/CN111286724A/zh
Publication of CN111286724A publication Critical patent/CN111286724A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/458Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for supporting substrates in the reaction chamber
    • C23C16/4582Rigid and flat substrates, e.g. plates or discs
    • C23C16/4583Rigid and flat substrates, e.g. plates or discs the substrate being supported substantially horizontally
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45563Gas nozzles
    • C23C16/45565Shower nozzles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/52Controlling or regulating the coating process
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/186Particular post-treatment for the devices, e.g. annealing, impurity gettering, short-circuit elimination, recrystallisation
    • H01L31/1868Passivation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

本发明提供一种基于LPCVD技术的本征硅水平镀膜工艺方法,包括,将氧化后的本征硅片背靠背水平装入一定间距的石英舟中,密封炉体,升温,通入硅烷反应,通入氮气赶走前驱体;降温回压;将装有硅片的石英舟从炉管中拉出。本发明使用水平插片镀膜工艺,与竖直镀膜相比,能够减少管内气体湍流,确保片内镀膜均匀性,而且,水平式插片,硅片靠重力水平重叠,摆放比较稳定,高温、气流、振动对水平插片式硅片的扰动小,气流在硅片的背面产生的绕镀很轻微。

Description

一种基于LPCVD技术的本征硅水平镀膜工艺方法
技术领域
本发明涉及晶硅太阳能电池制造领域,尤其涉及晶硅太阳能电池制造过程中,基于低压气相沉积技术的硅片镀膜工艺。
背景技术
随着晶硅太阳能电池技术的发展,电池效率越来越接近理论和实际极限。在传统电池结构中,金属与半导体接触区域存在严重复合,成为制约晶体硅太阳能电池效率发展的重要因素。钝化接触技术作为一种减少接触复合损失的可行方案,能大幅提高晶硅太阳能电池的效率,正受到研究者的密切关注。理论上,钝化接触结构在半导体表面形成,具有钝化与接触双重功能。这种结构不仅抑制了与表面和接触结构本身相关的复合损失,而且还有利于通过外部电路有效地从半导体中提取载流子。
钝化接触涵盖了光伏产业中许多以不同名字命名的技术,包括HJT、POLO、TOPCon及HBC等结构。钝化接触核心之一为本征非晶硅层沉积。当前应用最广泛的非晶硅沉积技术包括常压化学气相沉积(APCVD)、等离子体增强型气相沉积(PECVD)及低压化学气相沉积(LPCVD)。这三种技术各有优点和局限性。APCVD技术具有反应器结构简单、沉积速率快、沉积温度低等优点,缺点是均匀性差、粒子污染严重。PECVD技术优点是沉积温度低、沉积速率快,缺点是化学污染及粒子污染严重。LPCVD拥有极好的均匀性、良好的组成成分和机构控制性、较高的沉积速率等,并且这种方式不需要加载等离子气体,因而大大降低了颗粒污染源,所以被广泛的应用在半导体产业的镀膜沉积工艺中。但是传统的基于LPCVD的镀膜技术中硅片均采取竖直插片方式,如图1所示,在当前晶硅太阳能电池行业硅片尺寸越来越大的背景下,竖直插片方式显现出诸多不便,首先,当前插片舟齿间距为2.38mm,硅片尺寸增大后,最上方的区域容易发生搭片,从而造成气体湍流,镀膜不均匀;其次,在背靠背插片情形下,容易产生绕镀现象,给后道去绕镀工序增加负担。
发明内容
本发明所要解决的技术问题是提供一种基于LPCVD技术的本征硅水平镀膜工艺方法,能够克服背景技术中的问题。
本发明解决上述技术问题所采用的技术方案是:
一种基于LPCVD技术的本征硅水平镀膜工艺方法,包括以下步骤:
步骤1:将氧化后的本征硅片背靠背水平装入一定间距的石英舟中,进舟在设定温度500℃下将装有硅片的石英舟推入镀膜石英管中,保持硅片处于水平状态,在进舟的同时通入2000sccm-3000sccm的保护氮气;
步骤2:进舟到位后,密封炉体,升温至520-620℃(根据镀膜速率来选择具体的温度,低于520℃,镀膜速率慢,工艺时间长,高于620℃镀膜速率太快,均匀性降低),关闭氮气进气阀,同时使用罗茨泵功率控制炉内压力处于200mtorr-500mtorr的特定压力下;
步骤3:在炉口和炉尾的进气口分别通入硅烷,硅烷流速100sccm-300sccm,通气时间根据所需膜厚自行调节;
步骤4:镀膜完成后,关闭硅烷进气阀门,通入氮气赶走未完全沉积的SiH4及反应副产物H2
步骤5:通入20slm大流量氮气,炉管降温到500℃回压;
步骤6:待管内压力接近大气压时,将装有硅片的石英舟从炉管中拉出。
进一步地,石英舟中水平放置的硅片的垂直间距为为2.36mm。
进一步地,在步骤3中,炉口采取炉口法兰处环形进气,所述环形进气的方式是指,在法兰处设置环形进气管,所述环形进气管通过预留的插孔与法兰上进气孔连接,进气管上设有多个朝向炉内的进气孔。。
进一步地,在步骤3中,所述喷淋直管包括尾部进气管,所述尾部进气管通过石英管炉尾预留孔插入,伸至靠近炉口处,所述尾部进气管为直管,所述直管上设有多个出气孔,所述出气孔向下设置,通气时气体被炉壁反弹弥漫炉管。
本发明的有益效果是:
(1)本发明使用水平插片镀膜工艺,与竖直镀膜相比,能够减少管内气体湍流,确保片内镀膜均匀性,而且,水平式插片,硅片靠重力水平重叠,摆放比较稳定,高温、气流、振动对水平插片式硅片的扰动极小,气流在硅片的背面产生的绕镀很轻微。
(2)本发明为保证片间镀膜均匀性,采取炉口及炉尾双气路进气。其中炉口采用炉口法兰处环形进气,炉尾进气口采用直通到管内前部温区的喷淋直管进气,更换方便,可以根据镀膜情况更换不同规格气管。
(3)本发明镀膜温度控制在520-620℃之间,系统压力处于200mtorr-500mtorr,确保非晶硅晶粒尺寸均一,为后道退火晶化步骤提供优质前驱体。
附图说明
图1是背景技术中的插片方式。
图2是本发明的工艺中的插片方式。
图3是通过实施例1的工艺所制成的不同区域本征硅膜厚表。
图4是环形进气的示意图。
图5是尾部进气的示意图。
图6是不同温度下本征硅镀膜速率图,示出了镀膜速率和温度的关系,可根据本图选择适合的温度来进行镀膜。
图7是640℃时不同区域本征硅膜厚表,作为对比。
具体实施方式
以下结合附图,对本发明的具体实施方式作进一步详细说明,应当指出的是,实施例只是对本发明的具体阐述,不应视为对本发明的限定。
实施例1
步骤1:采用如图2所示的方式将硅片采用水平插片的方式装入石英舟,进舟在设定温度500℃下将装有硅片的石英舟推入镀膜石英管中,保持硅片处于水平状态,在进舟的同时通入2000sccm-3000sccm的保护氮气。
步骤2:进舟到位后,密封炉体,升温至520℃,关闭氮气进气阀,同时用罗茨泵控制炉内压力处于500mtorr的特定压力下。图1为520℃-620℃下本征硅镀膜速率图,此温度区间下可根据不同速率要求选择对应温度。
步骤3:在炉口和炉尾的进气口分别通入硅烷,硅烷流速100sccm-300sccm,持续5-10min,其中,炉口采取如图4所示的炉口法兰处环形进气,环形进气管101弯曲成半圆形,焊接在炉口法兰102的内侧,环形进气管101上开设有若干个朝向内侧的进气孔103,除了炉口进气之外,炉尾也设置进气装置,炉尾进气采取如图5所示的喷淋直管进气,尾部进气管104通过石英管炉尾的预留孔插入,伸至靠近炉口处,所述尾部进气管为直管,所述尾部进气管104上设有多个出气孔105,所述出气孔105向下设置,通气时气体被炉壁反弹弥漫炉管。
为保证镀膜的片间均匀性,采取炉口及炉尾双气路进气结构。其中炉口采用炉口法兰处环形进气,炉尾进气口采用直通到管内前部温区的喷淋直管进气方式。此种进气方式可以调整不同区域的前驱体源量,配合温区温度的调整,从而保证管内镀膜均匀性。
步骤4:镀膜完成后,关闭硅烷进气阀门,通入氮气赶走未完全沉积的SiH4及反应副产物H2
步骤5:通入20slm大流量氮气,炉管降温到500℃回压;
步骤6:待管内压力接近大气压时,将装有硅片的石英舟从炉管中拉出。
采用本发明的水平插片方式,在镀膜时,硅片对气流的阻碍很小,气流可从硅片间隙传输,且对镀膜气流起到分布板作用,使得气体更为均匀的传输,相比竖直插片,水平插片式气体传输距离更远,更均匀。此外,如图1所示,竖直插片方式气流只能从硅片四周接近炉管壁空间中传输,气流易紊乱产生湍流,不利于前驱体的传输,也不利于镀膜。实际生产中,竖直插片情形下硅片受力形变、气流吹动、微小振动都可能使背靠背的两片硅片部分分离,气流前驱体容易扩散到硅片背面,从而发生绕镀,不利于后道去绕镀工序的处理。而水平式插片,硅片靠重力水平重叠,高温、气流、振动对水平插片式硅片的扰动极小,气流在硅片的背面产生的绕镀很轻微。
镀膜完成后,对石英舟上不同区域内的硅片,以及同一硅片的不同位置的膜厚度进行采样,采样结果如表1所示,
表1整管不同区域本征硅膜厚表
Figure BDA0002379698960000061
Figure BDA0002379698960000071
由表1(图3)可知,此工艺下的片内均匀性达3.3%,片间均匀性达到2%的领先水平。
表2 640℃时不同区域本征硅膜厚表
Figure BDA0002379698960000072
作为对比,表2(图7)列出了640℃下不同区域本征硅膜厚表,由表中数据可知,此温度下膜厚均匀性较差,已不能满足工艺需求。
实施例2
步骤1:采用如图2所示的方式将硅片采用水平插片的方式装入石英舟,进舟在设定温度500℃下将装有硅片的石英舟推入镀膜石英管中,保持硅片处于水平状态,在进舟的同时通入2000sccm-3000sccm的保护氮气。
步骤2:进舟到位后,密封炉体,升温至620℃,关闭氮气进气阀,同时采用罗茨泵控制炉内压力处于450mtorr的特定压力下。
步骤3:在炉口和炉尾的进气口分别通入硅烷,硅烷流速100sccm-300sccm,持续5-10min,其中,炉口采取如图4所示的炉口法兰处环形进气,环形进气管101弯曲成半圆形,焊接在炉口法兰102的内侧,环形进气管101上开设有若干个朝向内侧的进气孔103,除了炉口进气之外,炉尾也设置进气装置,炉尾进气采取如图5所示的喷淋直管进气,尾部进气管104通过石英管炉尾的预留孔插入,伸至靠近炉口处,所述尾部进气管为直管,所述尾部进气管104上设有多个出气孔105,所述出气孔105向下设置,通气时气体被炉壁反弹弥漫炉管。
为保证镀膜的片间均匀性,采取炉口及炉尾双气路进气结构。其中炉口采用炉口法兰处环形进气,炉尾进气口采用直通到管内前部温区的喷淋直管进气方式。此种进气方式可以调整不同区域的前驱体源量,配合温区温度的调整,从而保证管内镀膜均匀性。
步骤4:镀膜完成后,关闭硅烷进气阀门,通入氮气赶走未完全沉积的前驱体SiH4及反应副产物H2
步骤5:通入20slm大流量氮气,炉管降温到500℃回压。
步骤6:待管内压力接近大气压时,将装有硅片的石英舟从炉管中拉出。
采用本发明的水平插片方式,在镀膜时,硅片对气流的阻碍很小,气流可从硅片间隙传输,且对镀膜气流起到分布板作用,使得气体更为均匀的传输,相比竖直插片,水平插片式气体传输距离更远,更均匀。此外,如图1所示,竖直插片方式气流只能从硅片四周接近炉管壁空间中传输,气流易紊乱产生湍流,不利于前驱体的传输,也不利于镀膜。实际生产中,竖直插片情形下硅片受力形变、气流吹动、微小振动都可能使背靠背的两片硅片部分分离,气流前驱体容易扩散到硅片背面,从而发生绕镀,不利于后道去绕镀工序的处理。而水平式插片,硅片靠重力水平重叠,高温、气流、振动对水平插片式硅片的扰动极小,气流在硅片的背面产生的绕镀很轻微。通过上述方法制成的硅片镀膜厚度均匀,一致性高。
实施例3
步骤1:采用如图2所示的方式将硅片采用水平插片的方式装入石英舟,进舟在设定温度500℃下将装有硅片的石英舟推入镀膜石英管中,保持硅片处于水平状态,在进舟的同时通入2000sccm-3000sccm的保护氮气。
步骤2:进舟到位后,密封炉体,升温至580℃,关闭氮气进气阀,同时罗茨泵控制炉内压力处于300mtorr的特定压力下。
步骤3:在炉口和炉尾的进气口分别通入硅烷,硅烷流速100sccm-300sccm,持续5-10min,其中,炉口采取如图4所示的炉口法兰处环形进气,环形进气管101弯曲成半圆形,焊接在炉口法兰102的内侧,环形进气管101上开设有若干个朝向内侧的进气孔103,除了炉口进气之外,炉尾也设置进气装置,炉尾进气采取如图5所示的喷淋直管进气,尾部进气管104通过石英管炉尾的预留孔插入,伸至靠近炉口处,所述尾部进气管为直管,所述尾部进气管104上设有多个出气孔105,所述出气孔105向下设置,通气时气体被炉壁反弹弥漫炉管。
为保证镀膜的片间均匀性,采取炉口及炉尾双气路进气结构。其中炉口采用炉口法兰处环形进气,炉尾进气口采用直通到管内前部温区的喷淋直管进气方式。此种进气方式可以调整不同区域的前驱体源量,配合温区温度的调整,从而保证管内镀膜均匀性。
步骤4:镀膜完成后,关闭硅烷进气阀门,通入氮气赶走未完全沉积的前驱体SiH4及反应副产物H2
步骤5:通入20slm大流量氮气,炉管降温到500℃回压。
步骤6:待管内压力接近大气压时,将装有硅片的石英舟从炉管中拉出。
采用本发明的水平插片方式,在镀膜时,硅片对气流的阻碍很小,气流可从硅片间隙传输,且对镀膜气流起到分布板作用,使得气体更为均匀的传输,相比竖直插片,水平插片式气体传输距离更远,更均匀。此外,如图1所示,竖直插片方式气流只能从硅片四周接近炉管壁空间中传输,气流易紊乱产生湍流,不利于前驱体的传输,也不利于镀膜。实际生产中,竖直插片情形下硅片受力形变、气流吹动、微小振动都可能使背靠背的两片硅片部分分离,气流前驱体容易扩散到硅片背面,从而发生绕镀,不利于后道去绕镀工序的处理。而水平式插片,硅片靠重力水平重叠,高温、气流、振动对水平插片式硅片的扰动极小,气流在硅片的背面产生的绕镀很轻微。通过上述方法制成的硅片镀膜厚度均匀,一致性高。
实施例4
步骤1:采用如图2所示的方式将硅片采用水平插片的方式装入石英舟,进舟在设定温度500℃下将装有硅片的石英舟推入镀膜石英管中,保持硅片处于水平状态,在进舟的同时通入2000sccm-3000sccm的保护氮气。
步骤2:进舟到位后,密封炉体,升温至550℃,关闭氮气进气阀,同时罗茨泵控制炉内压力处于480mtorr的特定压力下。
步骤3:在炉口和炉尾的进气口分别通入硅烷,硅烷流速100sccm-300sccm,持续5-10min,其中,炉口采取如图4所示的炉口法兰处环形进气,环形进气管101弯曲成半圆形,焊接在炉口法兰102的内侧,环形进气管101上开设有若干个朝向内侧的进气孔103,除了炉口进气之外,炉尾也设置进气装置,炉尾进气采取如图5所示的喷淋直管进气,尾部进气管104通过石英管炉尾的预留孔插入,伸至靠近炉口处,所述尾部进气管为直管,所述尾部进气管104上设有多个出气孔105,所述出气孔105向下设置,通气时气体被炉壁反弹弥漫炉管。
为保证镀膜的片间均匀性,采取炉口及炉尾双气路进气结构。其中炉口采用炉口法兰处环形进气,炉尾进气口采用直通到管内前部温区的喷淋直管进气方式。此种进气方式可以调整不同区域的前驱体源量,配合温区温度的调整,从而保证管内镀膜均匀性。
步骤4:镀膜完成后,关闭硅烷进气阀门,通入氮气赶走未完全沉积的前驱体SiH4及反应副产物H2
步骤5:通入20slm大流量氮气,炉管降温到500℃回压。
步骤6:待管内压力接近大气压时,将装有硅片的石英舟从炉管中拉出。
采用本发明的水平插片方式,在镀膜时,硅片对气流的阻碍很小,气流可从硅片间隙传输,且对镀膜气流起到分布板作用,使得气体更为均匀的传输,相比竖直插片,水平插片式气体传输距离更远,更均匀。此外,如图1所示,竖直插片方式气流只能从硅片四周接近炉管壁空间中传输,气流易紊乱产生湍流,不利于前驱体的传输,也不利于镀膜。实际生产中,竖直插片情形下硅片受力形变、气流吹动、微小振动都可能使背靠背的两片硅片部分分离,气流前驱体容易扩散到硅片背面,从而发生绕镀,不利于后道去绕镀工序的处理。而水平式插片,硅片靠重力水平重叠,高温、气流、振动对水平插片式硅片的扰动极小,气流在硅片的背面产生的绕镀很轻微。通过上述方法制成的硅片镀膜厚度均匀,一致性高。

Claims (8)

1.一种基于LPCVD技术的本征硅水平镀膜工艺方法,其特征是,包括以下步骤:
步骤1:将氧化后的本征硅片背靠背水平装入一定间距的石英舟中,进舟在设定温度500℃下将装有硅片的石英舟推入镀膜石英管中,保持硅片处于水平状态,在进舟的同时通入2000sccm-3000sccm的保护氮气;
步骤2:进舟到位后,密封炉体,升温至520-620℃,关闭氮气进气阀,同时使用罗茨泵功率控制炉内压力处于200mtorr-500mtorr的特定压力下;
步骤3:在炉口和炉尾的进气口分别通入硅烷通气时间根据所需膜厚自行调节;
步骤4:镀膜完成后,关闭硅烷进气阀门,通入氮气赶走未完全沉积的SiH4及反应副产物H2
步骤5:通入大流量氮气,炉管降温到500℃回压;
步骤6:待管内压力接近大气压时,将装有硅片的石英舟从炉管中拉出。
2.根据权利要求1所述的一种基于LPCVD技术的本征硅水平镀膜工艺方法,其特征是,炉口采取炉口法兰处环形进气方式。
3.根据权利要求2所述的一种基于LPCVD技术的本征硅水平镀膜工艺方法,其特征是,所述环形进气的方式是指,在法兰处设置环形进气管,所述环形进气管通过预留的插孔与法兰上进气孔连接,进气管上设有多个朝向炉内的进气孔。
4.根据权利要求1所述的一种基于LPCVD技术的本征硅水平镀膜工艺方法,其特征是,炉尾进气采取喷淋直管进气方式。
5.根据权利要求4所述的一种基于LPCVD技术的本征硅水平镀膜工艺方法,其特征是,所述喷淋直管包括尾部进气管,所述尾部进气管通过石英管炉尾预留孔插入,伸至靠近炉口处,所述尾部进气管为直管,所述直管上设有多个出气孔,所述出气孔向下设置,通气时气体被炉壁反弹弥漫炉管。
6.根据权利要求1所述的一种基于LPCVD技术的本征硅水平镀膜工艺方法,其特征是,所述步骤1中,石英舟中硅片的放置间距为2.36mm。
7.根据权利要求1所述的一种基于LPCVD技术的本征硅水平镀膜工艺方法,其特征是,所述步骤5中,通入氮气的流量为20slm。
8.根据权利要求1所述的一种基于LPCVD技术的本征硅水平镀膜工艺方法,其特征是,所述步骤3中,硅烷流速为100sccm-300sccm。
CN202010079279.2A 2020-02-03 2020-02-03 一种基于lpcvd技术的本征硅水平镀膜工艺方法 Pending CN111286724A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010079279.2A CN111286724A (zh) 2020-02-03 2020-02-03 一种基于lpcvd技术的本征硅水平镀膜工艺方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010079279.2A CN111286724A (zh) 2020-02-03 2020-02-03 一种基于lpcvd技术的本征硅水平镀膜工艺方法

Publications (1)

Publication Number Publication Date
CN111286724A true CN111286724A (zh) 2020-06-16

Family

ID=71022351

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010079279.2A Pending CN111286724A (zh) 2020-02-03 2020-02-03 一种基于lpcvd技术的本征硅水平镀膜工艺方法

Country Status (1)

Country Link
CN (1) CN111286724A (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113680767A (zh) * 2021-07-14 2021-11-23 深圳市拉普拉斯能源技术有限公司 一种lpcvd炉管在线清洗方法
CN115323355A (zh) * 2022-08-15 2022-11-11 深圳市拉普拉斯能源技术有限公司 一种非晶硅层、其制备方法、制备装置和用途
CN116356288A (zh) * 2023-05-19 2023-06-30 无锡松煜科技有限公司 一种延长lpcvd进气管使用寿命的方法及镀膜炉设备
CN117089825A (zh) * 2023-06-01 2023-11-21 无锡松煜科技有限公司 一种流体分布均匀的镀覆腔室及镀覆方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102265400A (zh) * 2008-10-23 2011-11-30 桑迪士克3D有限责任公司 展示减少的分层的基于碳的存储器元件和形成其的方法
CN107527971A (zh) * 2017-08-14 2017-12-29 深圳市拉普拉斯能源技术有限公司 一种硅片扩散装置及硅片插片方法
CN109338333A (zh) * 2018-11-30 2019-02-15 湖南红太阳光电科技有限公司 一种管式lpcvd真空反应室

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102265400A (zh) * 2008-10-23 2011-11-30 桑迪士克3D有限责任公司 展示减少的分层的基于碳的存储器元件和形成其的方法
CN107527971A (zh) * 2017-08-14 2017-12-29 深圳市拉普拉斯能源技术有限公司 一种硅片扩散装置及硅片插片方法
CN109338333A (zh) * 2018-11-30 2019-02-15 湖南红太阳光电科技有限公司 一种管式lpcvd真空反应室

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
门小云: "LPCVD法制备多晶硅薄膜工艺的研究", 《中国优秀硕士学位沦为全文数据库 工程科技I辑》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113680767A (zh) * 2021-07-14 2021-11-23 深圳市拉普拉斯能源技术有限公司 一种lpcvd炉管在线清洗方法
CN115323355A (zh) * 2022-08-15 2022-11-11 深圳市拉普拉斯能源技术有限公司 一种非晶硅层、其制备方法、制备装置和用途
CN116356288A (zh) * 2023-05-19 2023-06-30 无锡松煜科技有限公司 一种延长lpcvd进气管使用寿命的方法及镀膜炉设备
CN117089825A (zh) * 2023-06-01 2023-11-21 无锡松煜科技有限公司 一种流体分布均匀的镀覆腔室及镀覆方法

Similar Documents

Publication Publication Date Title
CN111286724A (zh) 一种基于lpcvd技术的本征硅水平镀膜工艺方法
CN109244184B (zh) 一种双面氧化铝结构的perc双面电池及其制备方法
CN102224599A (zh) 用于太阳能电池应用的硅表面的干法清洁
CN109473508B (zh) 一种太阳能电池退火方法以及装置和太阳能电池制备方法
CN102864439B (zh) 一种制备具有抗pid效应的减反射膜的方法
CN102856174B (zh) 氮化硅的膜制备方法、具有氮化硅膜的太阳能电池片及其制备方法
EP4220741A1 (en) Solar cell, alox coating method therefor, cell back surface passivation structure, and method
CN115094521B (zh) 一种硼扩散反应系统及其工艺方法
CN107464857A (zh) 一种降低perc电池片衰减的镀膜工艺方法
CN112921302A (zh) 光伏电池双向进气钝化沉积装置
CN102386277A (zh) 多层镀膜工艺
CN111755564B (zh) 一种太阳能电池表面钝化膜生产工艺
CN113328011A (zh) 一种钝化接触晶硅太阳电池制造装置及方法
CN104835881A (zh) 一种太阳能电池减反射膜的制作方法以及太阳能电池
CN217983261U (zh) 一种基于lpcvd的高均匀性原位掺杂气路结构
CN109852946A (zh) 一种镀膜方法及太阳能电池
CN101845620B (zh) 脉冲加热多匣式化学气相沉积p-i-n镀膜装置
CN111293189A (zh) 一种基于水平放置lpcvd设备的隧穿氧化方法
CN113604791B (zh) 一种基于BCl3气体的LPCVD硼掺杂非晶硅水平镀膜方法及应用
TW202312512A (zh) 用於改善反應腔粉塵的預鍍膜方法及所形成的預鍍膜
JPS62156813A (ja) 薄膜半導体素子及びその形成法
TW432488B (en) Reaction facility for forming film and method of air intake
CN214193447U (zh) 光伏电池双向进气钝化沉积装置
CN107731959A (zh) 一种晶硅太阳能电池处理方法
CN114023635A (zh) 一种提效降本的太阳能电池硼扩散方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200616

RJ01 Rejection of invention patent application after publication