CN111286714A - 一种超高纯度钨薄板的制备方法 - Google Patents
一种超高纯度钨薄板的制备方法 Download PDFInfo
- Publication number
- CN111286714A CN111286714A CN202010214286.9A CN202010214286A CN111286714A CN 111286714 A CN111286714 A CN 111286714A CN 202010214286 A CN202010214286 A CN 202010214286A CN 111286714 A CN111286714 A CN 111286714A
- Authority
- CN
- China
- Prior art keywords
- tungsten
- ultra
- high purity
- thin plate
- producing
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 title claims abstract description 82
- 229910052721 tungsten Inorganic materials 0.000 title claims abstract description 80
- 239000010937 tungsten Substances 0.000 title claims abstract description 80
- 238000002360 preparation method Methods 0.000 title abstract description 9
- 238000000034 method Methods 0.000 claims abstract description 26
- 238000005229 chemical vapour deposition Methods 0.000 claims abstract description 18
- 238000005097 cold rolling Methods 0.000 claims abstract description 17
- 238000004519 manufacturing process Methods 0.000 claims abstract description 13
- 238000005098 hot rolling Methods 0.000 claims abstract description 10
- 238000005496 tempering Methods 0.000 claims description 14
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 12
- 238000000137 annealing Methods 0.000 claims description 12
- 229910052739 hydrogen Inorganic materials 0.000 claims description 12
- 239000001257 hydrogen Substances 0.000 claims description 12
- NXHILIPIEUBEPD-UHFFFAOYSA-H tungsten hexafluoride Chemical compound F[W](F)(F)(F)(F)F NXHILIPIEUBEPD-UHFFFAOYSA-H 0.000 claims description 10
- 238000005096 rolling process Methods 0.000 claims description 9
- 238000000151 deposition Methods 0.000 claims description 8
- 239000002994 raw material Substances 0.000 claims description 8
- 230000009467 reduction Effects 0.000 claims description 8
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 5
- 238000006243 chemical reaction Methods 0.000 claims description 5
- 229910052802 copper Inorganic materials 0.000 claims description 5
- 239000010949 copper Substances 0.000 claims description 5
- 230000008021 deposition Effects 0.000 claims description 5
- 239000011159 matrix material Substances 0.000 claims description 4
- 238000005137 deposition process Methods 0.000 claims description 2
- 230000008569 process Effects 0.000 abstract description 8
- 238000005516 engineering process Methods 0.000 abstract description 5
- 238000005452 bending Methods 0.000 abstract description 4
- 230000008901 benefit Effects 0.000 abstract description 3
- 239000000463 material Substances 0.000 description 5
- 238000004663 powder metallurgy Methods 0.000 description 4
- 238000005245 sintering Methods 0.000 description 4
- 239000000843 powder Substances 0.000 description 3
- 230000007547 defect Effects 0.000 description 2
- 238000013001 point bending Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 230000004075 alteration Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000007791 liquid phase Substances 0.000 description 1
- 238000003754 machining Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000003870 refractory metal Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 238000006467 substitution reaction Methods 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/06—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
- C23C16/08—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metal halides
- C23C16/14—Deposition of only one other metal element
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22F—CHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
- C22F1/00—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
- C22F1/16—Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
- C22F1/18—High-melting or refractory metals or alloys based thereon
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/01—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes on temporary substrates, e.g. substrates subsequently removed by etching
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/56—After-treatment
Landscapes
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Organic Chemistry (AREA)
- Metallurgy (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Crystallography & Structural Chemistry (AREA)
- Thermal Sciences (AREA)
- Physics & Mathematics (AREA)
- Chemical Vapour Deposition (AREA)
- Metal Rolling (AREA)
Abstract
本发明公开了一种超高纯度钨薄板的制备方法,该方法采用超纯化学气相沉积技术制备钨板坯料,然后采用热轧与重度冷轧组合的加工工艺对化学气相沉积钨板进行改性,制备了具有优异力学性能的超高纯钨薄板。该方法所获得的产品具有优异的综合力学性能,室温下,最大弯曲应变可达0.99%,弯曲应力大于2.3 GPa,并且产品纯度高,尺寸可控,无需后处理;此外,该法还具有设备和工艺简单、制备工艺严格可控、生产过程清洁环保等优点。
Description
技术领域
本发明涉及一种超高纯度钨薄板的制备方法,特别涉及超高纯度、超高致密度的高端钨制品工业化绿色制造工艺,属于高纯难熔金属加工技术领域。
背景技术
以超高纯度、超高致密度为特点的高端超高纯钨薄板材在电子工业、航空航天等领域具有特殊重要的用途。目前,国内外纯钨薄板生产有多种技术方法,但都存在各自的缺点:1、粉末烧结加轧制法,即将纯钨粉末通过造粒,轧制,再通过氢气保护液相烧结方法制成薄板后再轧制生产,该法采用的设备复杂,造粒过程中加入成型剂,纯度低且成本高。2、采用钢模压制薄板坯,在氢气中烧结,再轧制到所需尺寸,该法压制过程中同样加入成型剂,纯度差,加工成品率低。3、通过化学气相沉积法直接沉积制备钨薄板,该法所得产品虽然纯度和致密度高,但是脆性高,加工能力差。
综上所述,钨薄板的制备方法主要包括粉末烧结加轧制法和化学气相沉积法,分别存在以下不足:粉末冶金技术虽可以生产纯度较高的钨制品,然而受工艺特点所限,粉末冶金钨制品往往存在显微孔隙导致致密度下降而影响产品使用性能,并且纯度难以达到99.999%。为提高钨制品纯度和致密度,采用粉末冶金工艺生产钨制品需要以高纯钨粉为原料并附加多道后处理工序,从而导致生产成本和资源消耗增加。化学气相沉积法虽然克服了粉末烧结法纯度低、致密度差的技术难题,但沉积的钨薄板致密度差,难以实现室温的机加工和组装。
因此,如何采用合理的制备和加工工艺制备出纯度高、致密度高和室温延展性好的钨薄板成为急需解决的难题。
发明内容
本发明的目的是克服现有技术的不足,提出一种超高纯度钨薄板的制备方法,利用该方法可以通过控制化学气相沉积钨材料的微观结构提高钨薄板的强度与延展性。具体的,通过化学气相沉积法制备超高纯钨板,采用热轧与重度冷轧组合的加工工艺控制化学气相沉积钨板的微观结构,可以获得具有综合力学性能的超高纯钨薄板。
本发明的目的是通过以下技术方案实现的:
一种超高纯度钨薄板的制备方法,具体包括以下步骤:
(1)化学气相沉积制备钨板坯:在密闭反应室中,以氢气和六氟化钨为原料,在紫铜基体表面沉积获得钨板坯;
(2)热轧:将步骤(1)获得的钨板坯在1773-1823 K温度下,轧制4道次获得热轧板,每道次压下率为20-30%;
(3)退火:将步骤(2)获得的钨板在1073-1273 K温度下进行去应力退火,退火时间为30-60 min;
(4)冷轧:将步骤(3)获得的钨板,在1073-1273 K温度下,经7-10道次冷轧获得钨薄板,每道次压下率为10-15%。
优选的,所述步骤(1)化学气相沉积原料氢气和六氟化钨的纯度均大于99.999wt.%。
优选的,所述步骤(1)沉积温度为823-923K。
优选的,所述步骤(1)沉积过程在常压下进行。
优选的,所述步骤(1)所获钨板坯的厚度为7.5-10mm,纯度大于99.999999%。
优选的,所述步骤(2)道次间隙须进行回火,回火时间为60-90 min。
优选的,所述步骤(2)通过热轧步骤所获得的钨板厚度为2.4-2.6mm。
优选的,所述步骤(4)冷轧道次间须进行回火,回火时间为20-30 min。
优选的,所述步骤(4)最终所获得的钨薄板厚度为0.5-1.0 mm。
与现有技术相比,本发明的有益效果如下:
(1)本发明采用化学气相沉积工艺制备的超高纯钨薄板,具有优异的综合力学性能,室温下,最大弯曲应变可达0.99%,弯曲应力大于2.3 GPa,并且具有极高的纯度(大于8N)和密度;
(2)本发明采用热轧和冷轧的组合工艺,通过微观结构控制,解决了材料室温下延展性差的问题;
(3)本发明通过化学气相沉积和轧制变形加工的工艺方法组合使制备产品厚度可控,无需后处理;
(4)本发明通过化学气相沉积和轧制变形加工的工艺方法组合,有效的提高高纯钨材料的综合性能,并能合理的控制成本,提高了综合效益。
(5)本发明方法还具有设备和工艺简单、制备工艺严格可控、生产过程清洁环保等优点。
附图说明
图1为实施例1中室温三点弯曲测试结果图。
图2为实施例2中室温三点弯曲测试结果图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1
(1)化学气相沉积制备钨板坯:在常压的密闭反应室中,以氢气和六氟化钨为原料,在温度为823 K的紫铜基体表面沉积获得厚度为7.5 mm的钨板坯,所述氢气和六氟化钨的纯度均大于99.999 wt.%;
(2)热轧:将步骤(1)获得的钨板坯在1773-1823K温度下,轧制4道次获得厚度为2.4-2.6 mm的热轧板,每道次压下率为20-30%,道次间隙进行回火,回火时间为60 min;
(3)退火:将步骤(2)获得的钨板在1273 K温度下进行去应力退火,退火时间为30 min;
(4)冷轧:将步骤(3)获得的钨板,在1073-1273 K温度下,经7-10道次冷轧获得钨薄板,每道次压下率为10-15%,冷轧道次间须进行回火,回火时间为20min,最终所获得的钨薄板厚度为1.0 mm。
本实施例中材料力学性能如图1所示,实线为原始CVD-W应力-应变曲线,虚线为轧制处理后样品的应力-应变曲线。结果表明:所制得的钨薄板纯度大于99.999999%,其力学性能明显提高,室温下,延展性为0.54%,强度为1584MPa。
实施例2
(1)化学气相沉积制备钨板坯:在常压密闭反应室中,以氢气和六氟化钨为原料,在温度为923 K的紫铜基体表面沉积获得厚度为8 mm的钨板坯,所述氢气和六氟化钨的纯度均大于99.999 wt.%;(2)热轧:将步骤(1)获得的钨板坯在1823K温度下,轧制4道次获得厚度为2.4 mm的热轧板,每道次压下率为20-30%;道次间隙进行回火,回火时间为60 min。
(3)退火:将步骤(2)获得的钨板在1273 K温度下进行去应力退火,退火时间为60min。
(4)冷轧:将步骤(3)获得的钨板,在1273 K温度下,经10道次冷轧获得为0.5 mm钨薄板,每道次压下率为10-15%,道次间隙进行回火,回火时间为30 min。
本实施例中材料力学性能如图2所示,实线为原始CVD-W应力-应变曲线,虚线为轧制处理后样品的应力-应变曲线。结果表明:所制得的钨薄板纯度大于99.999999%,其力学性能大幅提高,室温下,延展性为0.99%,强度为2349MPa。
实施例3
(1)化学气相沉积制备钨板坯:在常压的密闭反应室中,以氢气和六氟化钨为原料,在温度为873 K的紫铜基体表面沉积获得厚度为8.5 mm的钨板坯,所述氢气和六氟化钨的纯度均大于99.999 wt.%;
(2)热轧:将步骤(1)获得的钨板坯在1793K温度下,轧制4道次获得厚度为2.5 mm的热轧板,每道次压下率为20-30%,道次间隙进行回火,回火时间为75 min;
(3)退火:将步骤(2)获得的钨板在1173 K温度下进行去应力退火,退火时间为45 min;
(4)冷轧:将步骤(3)获得的钨板,在1173 K温度下,经8道次冷轧获得钨薄板,每道次压下率为10-15%,冷轧道次间须进行回火,回火时间为25min,最终所获得的钨薄板厚度为0.7mm。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。
Claims (9)
1.一种超高纯度钨薄板的制备方法,其特征在于:具体包括以下步骤:
(1)化学气相沉积制备钨板坯:在密闭反应室中,以氢气和六氟化钨为原料,在紫铜基体表面沉积获得钨板坯;
(2)热轧:将步骤(1)获得的钨板坯在1773-1823 K温度下,轧制4道次获得热轧板,每道次压下率为20-30%;
(3)退火:将步骤(2)获得的钨板在1073-1273 K温度下进行去应力退火,退火时间为30-60 min;
(4)冷轧:将步骤(3)获得的钨板,在1073-1273 K温度下,经7-10道次冷轧获得钨薄板,每道次压下率为10-15%。
2.根据权利要求1所述的超高纯度钨薄板的制备方法,其特征在于:所述步骤(1)化学气相沉积原料氢气和六氟化钨的纯度均大于99.999 wt.%。
3.根据权利要求1所述的超高纯度钨薄板的制备方法,其特征在于:所述步骤(1)沉积温度为823-923K。
4.根据权利要求1所述的超高纯度钨薄板的制备方法,其特征在于:所述步骤(1)沉积过程在常压下进行。
5.根据权利要求1所述的超高纯度钨薄板的制备方法,其特征在于:所述步骤(1)所获钨板坯的厚度为7.5-10mm,纯度大于99.999999%。
6.根据权利要求1~5任一项所述的超高纯度钨薄板的制备方法,其特征在于:所述步骤(2)道次间隙须进行回火,回火时间为60-90 min。
7.根据权利要求6所述的超高纯度钨薄板的制备方法,其特征在于:所述步骤(2)通过热轧步骤所获得的钨板厚度为2.4-2.6mm。
8.根据权利要求1~5或7任一项所述的超高纯度钨薄板的制备方法,其特征在于:所述步骤(4)冷轧道次间须进行回火,回火时间为20-30 min。
9.根据权利要求8所述的超高纯度钨薄板的制备方法,其特征在于:所述步骤(4)最终所获得的钨薄板厚度为0.5-1.0 mm。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010214286.9A CN111286714A (zh) | 2020-03-24 | 2020-03-24 | 一种超高纯度钨薄板的制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010214286.9A CN111286714A (zh) | 2020-03-24 | 2020-03-24 | 一种超高纯度钨薄板的制备方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
CN111286714A true CN111286714A (zh) | 2020-06-16 |
Family
ID=71024827
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010214286.9A Pending CN111286714A (zh) | 2020-03-24 | 2020-03-24 | 一种超高纯度钨薄板的制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111286714A (zh) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112410749A (zh) * | 2020-11-13 | 2021-02-26 | 北京理工大学 | 一种高塑性非均匀异质结构钨的制备方法 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0533144A (ja) * | 1991-07-09 | 1993-02-09 | Korea Advanced Inst Of Sci Technol | タングステン薄膜製造用プラズマ化学蒸着温度測定装置 |
CN102796977A (zh) * | 2012-08-25 | 2012-11-28 | 安泰科技股份有限公司 | 一种高性能变形态钨板的制备方法 |
CN107971494A (zh) * | 2017-12-18 | 2018-05-01 | 中南大学 | 一种粉末热压烧结制备Fe-6.5%Si软磁材料薄带材的方法 |
-
2020
- 2020-03-24 CN CN202010214286.9A patent/CN111286714A/zh active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0533144A (ja) * | 1991-07-09 | 1993-02-09 | Korea Advanced Inst Of Sci Technol | タングステン薄膜製造用プラズマ化学蒸着温度測定装置 |
CN102796977A (zh) * | 2012-08-25 | 2012-11-28 | 安泰科技股份有限公司 | 一种高性能变形态钨板的制备方法 |
CN107971494A (zh) * | 2017-12-18 | 2018-05-01 | 中南大学 | 一种粉末热压烧结制备Fe-6.5%Si软磁材料薄带材的方法 |
Non-Patent Citations (2)
Title |
---|
杨守山: "《有色金属塑性加工学》", 31 January 1982, 冶金工业出版社 * |
马捷等: "化学气相沉积钨锭工艺研究", 《中国表面工程》 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112410749A (zh) * | 2020-11-13 | 2021-02-26 | 北京理工大学 | 一种高塑性非均匀异质结构钨的制备方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN104439247A (zh) | 钼合金靶材的制备方法 | |
CN104694895A (zh) | 一种W-Ti合金靶材及其制造方法 | |
CN101956159A (zh) | 一种高纯钼溅射靶材的制备方法 | |
CN111957975B (zh) | 一种石墨烯增强铜基复合材料的制备方法 | |
CN111155069A (zh) | 一种易机械加工高纯钨板材制备方法 | |
CN111531166A (zh) | 一种提高铁基粉末冶金零件烧结致密度的方法 | |
CN111286714A (zh) | 一种超高纯度钨薄板的制备方法 | |
CN113058999B (zh) | 一种极薄铼箔的制造方法 | |
CN112404453A (zh) | 一种超细晶材料的增材制造方法 | |
CN103143709A (zh) | 基于Ti元素粉末和Al元素粉末制备TiAl金属间化合物零件的方法 | |
CN117758093A (zh) | 一种铼板的制备方法 | |
CN113512704A (zh) | 一种降低铝靶材晶粒度的方法 | |
CN102810715A (zh) | 谐振杆、腔体滤波器及谐振杆的制造方法 | |
CN1025553C (zh) | 磁控溅射铬靶的制造方法 | |
CN111441020A (zh) | 一种低成本制备tc4钛合金溅射靶材的方法 | |
CN114921680B (zh) | 一种带状银铜钛活性钎料及其制备方法 | |
CN101776123B (zh) | 一种铁基摩擦片的制作方法 | |
CN114293047A (zh) | 一种超高强粉末冶金钛合金的制备方法 | |
CN113000621A (zh) | 一种钨板材的制备方法 | |
KR101419443B1 (ko) | 산화물 분산 강화형 백금-금 합금의 제조방법 | |
CN111069584A (zh) | 一种铝基齿轮用粉末冶金材料及其制备方法 | |
CN1290635C (zh) | 一种钨基高比重合金板的制备方法 | |
CN104928539A (zh) | 一种钒铝硅三元合金靶材及其制备方法 | |
CN101349293B (zh) | 液压马达阀盘及其制备方法 | |
CN111979454B (zh) | 一种钨铝合金及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
WD01 | Invention patent application deemed withdrawn after publication | ||
WD01 | Invention patent application deemed withdrawn after publication |
Application publication date: 20200616 |