CN111285691A - 一种钨网增韧碳氮化铪基金属陶瓷及其制备方法 - Google Patents
一种钨网增韧碳氮化铪基金属陶瓷及其制备方法 Download PDFInfo
- Publication number
- CN111285691A CN111285691A CN202010090926.XA CN202010090926A CN111285691A CN 111285691 A CN111285691 A CN 111285691A CN 202010090926 A CN202010090926 A CN 202010090926A CN 111285691 A CN111285691 A CN 111285691A
- Authority
- CN
- China
- Prior art keywords
- tungsten
- powder
- mesh
- hafnium
- toughened
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/515—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics
- C04B35/58—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides
- C04B35/58007—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides
- C04B35/58028—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on zirconium or hafnium nitrides
- C04B35/58035—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on non-oxide ceramics based on borides, nitrides, i.e. nitrides, oxynitrides, carbonitrides or oxycarbonitrides or silicides based on refractory metal nitrides based on zirconium or hafnium nitrides based on zirconium or hafnium carbonitrides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/622—Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B35/00—Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
- C04B35/71—Ceramic products containing macroscopic reinforcing agents
- C04B35/74—Ceramic products containing macroscopic reinforcing agents containing shaped metallic materials
- C04B35/76—Fibres, filaments, whiskers, platelets, or the like
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3817—Carbides
- C04B2235/3839—Refractory metal carbides
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/38—Non-oxide ceramic constituents or additives
- C04B2235/3852—Nitrides, e.g. oxynitrides, carbonitrides, oxycarbonitrides, lithium nitride, magnesium nitride
- C04B2235/3886—Refractory metal nitrides, e.g. vanadium nitride, tungsten nitride
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/30—Constituents and secondary phases not being of a fibrous nature
- C04B2235/42—Non metallic elements added as constituents or additives, e.g. sulfur, phosphor, selenium or tellurium
- C04B2235/422—Carbon
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/02—Composition of constituents of the starting material or of secondary phases of the final product
- C04B2235/50—Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
- C04B2235/54—Particle size related information
- C04B2235/5418—Particle size related information expressed by the size of the particles or aggregates thereof
- C04B2235/5436—Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6562—Heating rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6565—Cooling rate
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/656—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
- C04B2235/6567—Treatment time
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/658—Atmosphere during thermal treatment
- C04B2235/6581—Total pressure below 1 atmosphere, e.g. vacuum
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/65—Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
- C04B2235/66—Specific sintering techniques, e.g. centrifugal sintering
- C04B2235/666—Applying a current during sintering, e.g. plasma sintering [SPS], electrical resistance heating or pulse electric current sintering [PECS]
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B2235/00—Aspects relating to ceramic starting mixtures or sintered ceramic products
- C04B2235/70—Aspects relating to sintered or melt-casted ceramic products
- C04B2235/96—Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
- C04B2235/9607—Thermal properties, e.g. thermal expansion coefficient
- C04B2235/9615—Linear firing shrinkage
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Inorganic Chemistry (AREA)
- Ceramic Products (AREA)
Abstract
本发明公开了一种钨网增韧碳氮化铪基金属陶瓷及其制备方法,所述钨网增韧碳氮化铪基金属陶瓷由碳氮化铪基体以及间隔分布于碳氮化铪基体中的钨网组成;其制备方法,包括如下步骤:将HfC粉,HfN粉,碳粉、氮化碳粉混合、球磨、干燥、过筛获得混合粉末;所述混合粉末中,按质量比计,HfC粉:HfN粉=1‑7:1,将混合粉末、钨网交替层叠铺设于模具中获得待烧结体,将待烧结体进行放电等离子体烧结,即得钨网增韧碳氮化铪基金属陶瓷。本发明所提供的钨网增韧碳氮化铪基金属陶瓷具有优异的抗热震效果以及抗烧蚀性能。
Description
技术领域
本发明属于碳化物陶瓷技术领域,具体涉及一种钨网增韧碳氮化铪基金属陶瓷及其制备方法。
背景技术
超高温陶瓷一般是指熔点大于3000℃的过渡金属碳化物、硼化物、氮化物及其复相陶瓷,如HfC、ZrC、ZrB2等。超高温陶瓷及其复合材料具有高熔点、低密度、高强度、优异的化学稳定性等优点,在航天航空、能源等领域有着广泛的应用,其中过渡金属碳氮化物超高温陶瓷因其优异的物理内涵和优异的材料性能受到研究者的关注。一方面过渡金属元素的价电子浓度和配位数较高,而C、N这类轻元素的原子半径较小,易形成键长较短、键强较强的共价键,从而具有很高的熔点和硬度,另一方面其化学键中同时具有金属键、离子键和共价键,从而易调控形成多种不同的化学计量比和晶体结构。过渡金属原子向主族原子的电荷转移,使本来空间分布比较局域的d电子受到的电子屏蔽更少,增强了d电子的局域性和相互关联。特别是HfCxNy固溶体陶瓷经过第一性原理计算,预测具有超高熔点,在超高温方面具有巨大的应用前景。但是陶瓷材料具有韧性过低的本征缺陷满足不了工程可靠性的需求,严重的影响其应用,改善陶瓷韧性成为高温陶瓷材料领域内亟待解决的重要问题。
发明内容
针对现有技术中超高温抗烧蚀陶瓷存在断裂韧性过低的缺陷,本发明的目的在于提供一种具有优异抗热震性能、优异抗烧蚀性能的钨网增韧碳氮化铪基金属陶瓷及其制备方法,所述钨网增韧碳氮化铪基金属陶瓷(HfCxNy)适用于3000℃超高温抗烧蚀防护,长时间烧蚀后金属陶瓷仍保持完整,未发生脆性断裂,并且具有稳定的抗氧化防护结构。
为了实现上述目的,本发明采用如下技术方案:
本发明一种钨网增韧碳氮化铪基金属陶瓷,所述钨网增韧碳氮化铪基金属陶瓷由碳氮化铪基体以及间隔分布于碳氮化铪基体中的钨网组成。
本发明采用多层钨网以增韧HfCxNy陶瓷,钨作为熔点最高的金属,具有高强度、高熔点、塑性好、抗冲击韧性强等特点;另外发明人发现,碳氮化铪和金属钨之间具有优异的化学相容性和热匹配性,加入多层间隔均匀分布的钨网后能有效提高碳氮化铪高温下的断裂韧性和抗弯强度,形成一种增强增韧型超高熔点碳氮化铪基复合材料。当高温热应力作用时,裂纹扩展至钨网处时,发生偏转所受的拉应力降低,扩展路径延长,材料的断裂能增加。当剪切应力达到钨网与固溶体基体界面的初始脱粘应力,即界面剪切强度时,发生脱粘,一方面克服界面摩擦力做功增加了断裂能;另外一方面,导致裂纹尖端应力松弛,延缓裂纹扩展。并且规律排列的网络状结构能起到桥联裂纹,抑制裂纹扩展的效果。
优选的方案,所述碳氮化铪基体中,按质量比计,C:N=1-7:1;优选为1-3:1。
当碳氮化铪基体中,碳与氮的质量比在上述范围时,所述钨网增韧碳氮化铪基金属陶瓷具有最优异的抗烧蚀性能。
优选的方案,所述钨网的层数为3-8层,优选为3-6层,进一步优选为4-6层,每一层钨网由一片钨网组成,钨网间隔均匀的分布于碳氮化铪基体中,所述钨网增韧碳氮化铪基金属陶瓷的厚度为3-6mm。
优选的方案,所述钨网的目数为80-300目,优选为100-200目。
在本发明中,钨网的目数为钨网网孔的目数,当控制钨网的目数在上述范围内,即可以使得钨网增韧碳氮化铪基金属陶瓷具有优异的韧性,亦可使钨网增韧碳氮化铪基金属陶瓷具有优异的烧蚀性能,而如果目数过小,则会影响到韧性,目数过大则会影响以烧蚀性能。
本发明一种钨网增韧碳氮化铪基金属陶瓷的制备方法,包括以下步骤:
将HfC粉,HfN粉,碳粉、氮化碳粉混合、球磨、干燥、过筛获得混合粉末;所述混合粉末中,按质量比计,HfC粉:HfN粉=1-7:1,将混合粉末、钨网交替层叠铺设于模具中获得待烧结体,将待烧结体进行放电等离子体烧结,即得钨网增韧碳氮化铪基金属陶瓷。
优选的方案,所述混合粉末中,按质量比计,HfC粉:HfN粉=1-3:1;优选为1.5-3:1。
优选的方案,所述HfC粉和HfN粉的纯度均大于99.9%,所述HfC粉和HfN粉的粒度均为微米级或纳米级。
优选的方案,所述碳粉在混合粉末中的质量分数≤8.0wt%,优选为3wt%-wt5%。
优选的方案,所述氮化碳粉在混合粉末中的质量分数≤5.0wt%,优选为4wt%-5wt%。
本发明中,对于球磨的设备不受限制,优选为高能行星式球磨机,球磨的方式优选为采用湿法球磨,球磨介质为乙醇溶液。
优选的方案,所述球磨转速为200-400r/min,球磨时间为12-24h,球料比为3-10:1。
优选的方案,所述干燥的时间为8-12h,干燥的温度为50-150℃,所述干燥在真空环境下进行;干燥后过325目筛,取筛下物即为混合粉末。所得混合粉末隔绝空气密封保存。
优选的方案,将混合粉末、钨网交替均匀层叠铺设于模具中,所述钨网的层数为3-8层,优选3-6层,进一步优选为4-6层,同一层钨网由一片钨网组成。
将混合粉末、钨网交替层叠铺设于模具是指:将混合粉末分为均等的若干份,然后在石墨模具内馅铺设一层混合粉末,接着铺设一层钨网,然后再铺设一层混合粉末,以此方式,反复铺设多层。
在实际操作过程中,钨网先经乙醇超声处理后表面平整且洁净。
优选的方案,所述钨网的目数为80-300目,优选为100-200目。
优选的方案,所述待烧结体的厚度为6-12mm,优选为8-10mm。在本发明中,待烧结体在SPS设备中进行加压烧结,烧结致密后金属陶瓷的厚度为3-6mm。
优选的方案,所述放电等离子烧结在真空的环境下进行,真空度<5Pa;其烧结程序为:先以50-150℃/min的升温速率升温至1500-2400℃,保温5-30min,保温完成后,再以100-120℃/min的降温速率降温,烧结压力为20-60Mpa。
进一步的优选,所述烧结程序为:先以100-120℃/min的升温速率升温至1900-2100℃,保温10-20min,保温完成后,再以100-120℃/min的降温速率降温,烧结压力为30-40Mpa。
烧结完成后,将烧结体进行脱模处理即得钨网增韧碳氮化铪基金属陶瓷。
原理与优势
本发明首创的采用多层钨网以增韧HfCxNy陶瓷,钨作为熔点最高的金属,具有高强度、高熔点、塑性好、抗冲击韧性强等特点;另外发明人发现,碳氮化铪和金属钨之间具有优异的化学相容性和热匹配性,加入多层间隔均匀分布的钨网后能有效提高碳氮化铪高温下的断裂韧性和抗弯强度,形成一种增强增韧型超高熔点碳氮化铪基复合材料。当高温热应力作用时,裂纹扩展至钨网处时,发生偏转所受的拉应力降低,扩展路径延长,材料的断裂能增加。当剪切应力达到钨网与固溶体基体界面的初始脱粘应力,即界面剪切强度时,发生脱粘,一方面克服界面摩擦力做功增加了断裂能;另外一方面,导致裂纹尖端应力松弛,延缓裂纹扩展。并且规律排列的网络状结构能起到桥联裂纹,抑制裂纹扩展的效果。
与现有技术相比,本发明的优点和积极效果体现在:
(1)制备工艺流程简单易行,制备周期短;
(2)制备样品抗热震效果佳。在3000℃氧乙炔焰环境下烧蚀300s后金属陶瓷仍保存完整,未发生脆性断裂;
(3)制备样品抗烧蚀性能好。在3000℃氧乙炔焰环境下烧蚀300s后质量烧蚀率和线烧蚀率仅为3.67×10-4mg/s、2.34×10-3mm/s。
附图说明
图1为实施例2中多层网络增韧HfCxNy基金属陶瓷宏观表面图。
图2为实施例2中多层网络增韧HfCxNy基金属陶瓷宏观截面图。
图3为实施例1中试样于3000℃氧乙炔焰烧蚀300s后宏观烧蚀形貌图。在超高温长时烧蚀后未发生脆性断裂,证明具有非常优异的抗热震性能。
图4为对比例1中HfC陶瓷于3000℃氧乙炔焰烧蚀180s后的宏观烧蚀形貌图,发生了明显的脆性断裂。
图5为实施例2中试样表面打磨抛光后的EPMA显微结构图。
图6为实施例2中试样截面微观结构图。
具体实施方式
实施例1
将HfC粉,HfN粉,碳粉、氮化碳粉混合,然后在行星式球磨机上球磨10h,,球磨介质为乙醇溶液,转速为300r/min,球料比为10:1,随后放置在60℃的干燥箱中烘干8小时,过筛后得到混合粉料。其中各原料粉末的纯度均大于99.9%,粉末平均粒度均为1um,在混合粉末中,HfC粉与HfN粉的质量比为3:2;而碳粉在混合粉末中的质量分数为5%,氮化碳在混合粉末中的质量分数为5%。
选取100目钨网,纯度大于99.9%,经过乙醇超声30分钟清洁处理后干燥取出,裁剪成磨具直径大小。随后将混合粉料和钨网均匀交替放置在石墨模具中,分5层排列,待烧结体厚度为10mm,进行放电等离子烧结,炉内真空度小于5Pa,以100℃/min的升温速率升温到2000℃,保温15分钟,压力40Mpa,随后以100℃/min的降温速率冷却到室温。经脱模处理后得到厚度为4.79mm的多层网络增韧碳氮化铪基金属陶瓷。在3000℃氧乙炔焰环境下烧蚀300s后未发生脆性断裂,样品保持完整,质量烧蚀率仅为3.67×10-4mg/s,线烧蚀率为2.34×10-3mm/s。
实施例2
将HfC粉,HfN粉,碳粉、氮化碳粉混合,然后在行星式球磨机上球磨12h,,球磨介质为乙醇溶液,转速为200r/min,球料比为8:1,随后放置在50℃的干燥箱中烘干10小时,过筛后得到混合粉料,其中各原料粉末的纯度均大于99.9%,粉末平均粒度均为1um,在混合粉末中,HfC粉与HfN粉的质量比为2:1;而碳粉在混合粉末中的质量分数为4%,氮化碳在混合粉末中的质量分数为4%。
选取80目钨网,纯度大于99.9%,经过乙醇超声20分钟清洁处理后干燥取出,裁剪成磨具直径大小。随后将混合粉料和钨网均匀交替放置在石墨模具中,一共四层钨网,待烧结体厚度为8mm,进行放电等离子烧结,炉内真空度小于5Pa,以120℃/min的升温速率升温到2100℃,保温15分钟,压力为35Mpa,随后以100℃/min的降温速率冷却到室温。经脱模处理后得到厚度3.84mm的多层钨网增韧碳氮化铪基金属陶瓷。在3000℃氧乙炔焰环境下烧蚀180s后未发生脆性断裂,样品保持完整,质量烧蚀率仅为4.53×10-4mg/s,线烧蚀率为3.97×10-3mm/s。
实施例3
将HfC粉,HfN粉,碳粉、氮化碳粉混合,然后在行星式球磨机上球磨12h,球磨介质为乙醇溶液,转速为200r/min,球料比为9:1,随后放置在70℃的干燥箱中烘干10小时,过筛后得到混合粉料。其中各原料粉末的纯度均大于99.9%,粉末平均粒度均为1um,在混合粉末中,HfC粉与HfN粉的质量比为3:1;而碳粉在混合粉末中的质量分数为3%,氮化碳在混合粉末中的质量分数为4%。
选取120目钨网,纯度大于99.9%,经过乙醇超声处理后干燥。裁剪成磨具直径大小,随后将混合粉料和钨网均匀交替放置在石墨模具中,一共六层钨网,待烧结体厚度为12mm,进行放电等离子烧结,炉内真空度小于5Pa,以120℃/min的升温速率升温到1900℃,保温20分钟,压力为40Mpa,随后以100℃/min的降温速率冷却到室温。经脱模处理后得到多层钨网增韧碳氮化铪基金属陶瓷。在3000℃氧乙炔焰环境下烧蚀300s后未发生脆性断裂,样品保持完整,质量烧蚀率仅为5.38×10-4mg/s,线烧蚀率为4.56×10-3mm/s。
对比例1
未加入钨网增韧,其他条件均与实施例2相同,在3000℃氧乙炔焰环境下烧蚀180s后发生脆性断裂。
对比例2
仅加入一层钨网,其他条件均与实施例2相同,在3000℃氧乙炔焰环境下烧蚀180s后发生脆性断裂。
对比例3
加入目数为30的钨网增韧,其他条件均与实施例2相同,在3000℃氧乙炔焰环境下烧蚀180s后发生脆性断裂。
对比例4
将HfC和HfN粉末按照质量比8:1在行星式球磨机上球磨,其他条件均与实施例2相同,在3000℃氧乙炔焰环境下烧蚀180s后质量烧蚀率和线烧蚀率大大增加,分别为7.83×10-2mg/s,线烧蚀率为6.27×10-1mm/s。
Claims (10)
1.一种钨网增韧碳氮化铪基金属陶瓷,其特征在于:所述钨网增韧碳氮化铪基金属陶瓷由碳氮化铪基体以及间隔分布于碳氮化铪基体中的钨网组成。
2.根据权利要求1所述的一种钨网增韧碳氮化铪基金属陶瓷,其特征在于:所述碳氮化铪基体中,按质量比计,C:N=1-7:1;优选为1-3:1。
3.根据权利要求1或2所述的一种钨网增韧碳氮化铪基金属陶瓷,其特征在于:所述钨网的层数为3-8层,优选为3-6层,每一层钨网由一片钨网组成,钨网间隔均匀的分布于碳氮化铪基体中,所述钨网增韧碳氮化铪基金属陶瓷的厚度为3-6mm。
4.根据权利要求1或2所述的一种钨网增韧碳氮化铪基金属陶瓷,其特征在于:所述钨网的目数为80-300目,优选为100-200目。
5.制备如权利要求1-4任意一项所述的一种钨网增韧碳氮化铪基金属陶瓷的方法,其特征在于:包括以下步骤,将HfC粉,HfN粉,碳粉、氮化碳粉混合、球磨、干燥、过筛获得混合粉末;所述混合粉末中,按质量比计,HfC粉:HfN粉=1-7:1,将混合粉末、钨网交替层叠铺设于模具中获得待烧结体,将待烧结体进行放电等离子体烧结,即得钨网增韧碳氮化铪基金属陶瓷。
6.根据权利要求5所述的一种钨网增韧碳氮化铪基金属陶瓷的制备方法,其特征在于:所述混合粉末中,按质量比计,HfC粉:HfN粉=1-3:1;所述碳粉在混合粉末中的质量分数≤8.0wt%,所述氮化碳粉在混合粉末中的质量分数≤5.0wt%。
7.根据权利要求5所述的一种钨网增韧碳氮化铪基金属陶瓷的制备方法,其特征在于:所述球磨转速为200-400r/min,球磨时间为12-24h,球料比为3-10:1;
所述干燥的时间为8-12h,干燥的温度为50-150℃,所述干燥在真空环境下进行;干燥后过325目筛,取筛下物即为混合粉末。
8.根据权利要求5所述的一种钨网增韧碳氮化铪基金属陶瓷的制备方法,其特征在于:将混合粉末、钨网交替均匀层叠铺设于模具中,所述钨网的层数为3-8层,优选为3-6层,同一层钨网由一片钨网组成;所述钨网的目数为80-300目,优选为100-200目。
9.根据权利要求5所述的一种钨网增韧碳氮化铪基金属陶瓷的制备方法,其特征在于:所述待烧结体的厚度为6-12mm,优选为8-10mm。
10.根据权利要求5所述的一种钨网增韧碳氮化铪基金属陶瓷的制备方法,其特征在于:所述放电等离子烧结在真空的环境下进行,真空度<5Pa;其烧结程序为:先以50-150℃/min的升温速率升温至1500-2400℃,保温5-30min,保温完成后,再以100-120℃/min的降温速率降温,烧结压力为20-60Mpa。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010090926.XA CN111285691B (zh) | 2020-02-13 | 2020-02-13 | 一种钨网增韧碳氮化铪基金属陶瓷及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010090926.XA CN111285691B (zh) | 2020-02-13 | 2020-02-13 | 一种钨网增韧碳氮化铪基金属陶瓷及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111285691A true CN111285691A (zh) | 2020-06-16 |
CN111285691B CN111285691B (zh) | 2021-03-30 |
Family
ID=71021379
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010090926.XA Active CN111285691B (zh) | 2020-02-13 | 2020-02-13 | 一种钨网增韧碳氮化铪基金属陶瓷及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111285691B (zh) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112874042A (zh) * | 2021-01-12 | 2021-06-01 | 中国人民解放军国防科技大学 | 一种高强高韧耐超高温金属陶瓷的制备方法 |
WO2021103560A1 (zh) * | 2019-11-29 | 2021-06-03 | 中南大学 | 一种长时耐烧蚀超高熔点含氮碳化物超高温陶瓷及其应用 |
CN115806277A (zh) * | 2021-09-15 | 2023-03-17 | 中南大学 | 一种超高熔点碳氮化铪粉体的新型制备方法 |
CN115806276A (zh) * | 2021-09-15 | 2023-03-17 | 中南大学 | 一种超高熔点碳氮化铪粉体及其制备方法 |
CN118307334A (zh) * | 2024-06-06 | 2024-07-09 | 西安交通大学 | 一种超高温陶瓷-金属复合材料及其制备方法 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5747845A (en) * | 1980-09-05 | 1982-03-18 | Toshiba Tungaloy Co Ltd | Hard sintered alloy |
CN1334759A (zh) * | 1999-01-06 | 2002-02-06 | 塞拉麦特复合材料有限公司 | 层条状金属-陶瓷复合材料 |
CN103833401A (zh) * | 2013-12-05 | 2014-06-04 | 苏州市牛勿耳关电器科技有限公司 | 复合强化陶瓷 |
CN105130482A (zh) * | 2015-08-04 | 2015-12-09 | 成都新柯力化工科技有限公司 | 一种用于3d打印的金属增韧陶瓷基复合材料 |
CN106282893A (zh) * | 2016-09-12 | 2017-01-04 | 山东科技大学 | 一种带有网状强化相的挖掘机耐磨斗齿及其制备方法 |
CN109295336A (zh) * | 2018-12-12 | 2019-02-01 | 中国科学院兰州化学物理研究所 | 一种网状结构钛硅合金相增强TiAl基复合材料的制备方法 |
RU2704345C1 (ru) * | 2018-09-25 | 2019-10-28 | ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "Брянский государственный технический университет" | Способ внедрения в поверхностный слой углеродистых конструкционных сталей карбидов и оксидов тугоплавких металлов комбинированным пластическим деформированием |
-
2020
- 2020-02-13 CN CN202010090926.XA patent/CN111285691B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5747845A (en) * | 1980-09-05 | 1982-03-18 | Toshiba Tungaloy Co Ltd | Hard sintered alloy |
CN1334759A (zh) * | 1999-01-06 | 2002-02-06 | 塞拉麦特复合材料有限公司 | 层条状金属-陶瓷复合材料 |
CN103833401A (zh) * | 2013-12-05 | 2014-06-04 | 苏州市牛勿耳关电器科技有限公司 | 复合强化陶瓷 |
CN105130482A (zh) * | 2015-08-04 | 2015-12-09 | 成都新柯力化工科技有限公司 | 一种用于3d打印的金属增韧陶瓷基复合材料 |
CN106282893A (zh) * | 2016-09-12 | 2017-01-04 | 山东科技大学 | 一种带有网状强化相的挖掘机耐磨斗齿及其制备方法 |
RU2704345C1 (ru) * | 2018-09-25 | 2019-10-28 | ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ "Брянский государственный технический университет" | Способ внедрения в поверхностный слой углеродистых конструкционных сталей карбидов и оксидов тугоплавких металлов комбинированным пластическим деформированием |
CN109295336A (zh) * | 2018-12-12 | 2019-02-01 | 中国科学院兰州化学物理研究所 | 一种网状结构钛硅合金相增强TiAl基复合材料的制备方法 |
Non-Patent Citations (3)
Title |
---|
ALEXEY ZAVJALOV ET AL.: "Synthesis of Hf-C-N ceramics by spark plasma sintering", 《EPJ WEB OF CONFERENCES》 * |
V. KRASNENKO ET AL.: "First-principles calculations of the structural, elastic and electronic properties of MNxC1-x (M=Ti, Zr, Hf; 0≤x≤1) carbonitrides at ambient and elevated hydrostatic pressure", 《SOLID STATE SCIENCES》 * |
王随莲等: "金属陶瓷刀具材料的研究现状", 《机械工程师》 * |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2021103560A1 (zh) * | 2019-11-29 | 2021-06-03 | 中南大学 | 一种长时耐烧蚀超高熔点含氮碳化物超高温陶瓷及其应用 |
US12012364B2 (en) | 2019-11-29 | 2024-06-18 | Central South University | Long-term ablation-resistant nitrogen-containing carbide ultra-high temperature ceramic with ultra-high melting point and application thereof |
CN112874042A (zh) * | 2021-01-12 | 2021-06-01 | 中国人民解放军国防科技大学 | 一种高强高韧耐超高温金属陶瓷的制备方法 |
CN115806277A (zh) * | 2021-09-15 | 2023-03-17 | 中南大学 | 一种超高熔点碳氮化铪粉体的新型制备方法 |
CN115806276A (zh) * | 2021-09-15 | 2023-03-17 | 中南大学 | 一种超高熔点碳氮化铪粉体及其制备方法 |
CN118307334A (zh) * | 2024-06-06 | 2024-07-09 | 西安交通大学 | 一种超高温陶瓷-金属复合材料及其制备方法 |
Also Published As
Publication number | Publication date |
---|---|
CN111285691B (zh) | 2021-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111285691B (zh) | 一种钨网增韧碳氮化铪基金属陶瓷及其制备方法 | |
CN111072388B (zh) | 一种长时耐烧蚀超高熔点含氮碳化物超高温陶瓷及其应用 | |
CN107056334B (zh) | 一种ZrC陶瓷材料表面ZrB2-SiC复合涂层的制备方法 | |
WO2022141835A1 (zh) | 一种氮化硅陶瓷刀具及其制备方法和应用 | |
US9061947B1 (en) | Multiphase eutectic ceramic coatings | |
CN109851375B (zh) | 一种硅硼碳氮陶瓷复合材料及其制备方法 | |
CN104609865A (zh) | 一种氮化硅基导电陶瓷的制备方法及氮化硅基导电陶瓷刀具的成型方法 | |
EP2716618A1 (en) | Joint of metal material and ceramic-carbon composite material, method for producing same, carbon material joint, jointing material for carbon material joint, and method for producing carbon material joint | |
CN111516314A (zh) | 一种aba型三明治复合材料及其制备方法 | |
Zhang et al. | Characterization and mechanical properties of Cf/ZrB2-SiC composites fabricated by a hybrid technique based on slurry impregnation, polymer infiltration and pyrolysis and low-temperature hot pressing | |
CN113529065B (zh) | 一种基于冷喷涂高速沉积增材制造技术制备金属铱涂层的方法及装置 | |
CN1908214A (zh) | 碳硅化钛基梯度材料及原位反应的制备方法 | |
CN111057988A (zh) | 一种增强陶瓷三维约束涂层的制备方法 | |
CN114000090B (zh) | 一种氧化物/氧化物复合材料表面环境障涂层的制备方法 | |
CN101265108A (zh) | 一种硼化物-碳化硅-碳化硼三元陶瓷基复合材料及其制备方法 | |
CN110358960A (zh) | 一种高强高韧Ti(C,N)基金属陶瓷的制备方法 | |
CN107244918B (zh) | 一种TiB-TiC-TiB2-B4C-Al复合陶瓷的快速制备方法 | |
Zhang et al. | Preparation of SiC fiber reinforced nickel matrix composite | |
CN113699410A (zh) | 基于二步法增材的仿蜂窝结构抗冲击钛基体复合材料 | |
CN107746280A (zh) | 一种高致密度TiB2陶瓷靶材的制备方法 | |
CN115353395B (zh) | 一种制备Ti2AlC/B4C复相陶瓷的方法 | |
CN110684979B (zh) | 一种冷喷涂制备硬质合金涂层的方法 | |
CN116217233A (zh) | 一种SiC晶须和高熵硼化物增硬增韧高熵碳化物的复相陶瓷及其制备方法和应用 | |
CN107915476A (zh) | 一种穿孔顶头及制备方法 | |
CN108624795B (zh) | 一种金属陶瓷的烧结方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |