CN111276605A - 高速类超晶格锌锑-锑相变存储介质及其制备方法 - Google Patents

高速类超晶格锌锑-锑相变存储介质及其制备方法 Download PDF

Info

Publication number
CN111276605A
CN111276605A CN202010175123.4A CN202010175123A CN111276605A CN 111276605 A CN111276605 A CN 111276605A CN 202010175123 A CN202010175123 A CN 202010175123A CN 111276605 A CN111276605 A CN 111276605A
Authority
CN
China
Prior art keywords
sputtering
phase change
superlattice
substrate
storage medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN202010175123.4A
Other languages
English (en)
Inventor
吴卫华
朱小芹
眭永兴
薛建忠
孙月梅
吴世臣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu University of Technology
Original Assignee
Jiangsu University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University of Technology filed Critical Jiangsu University of Technology
Priority to CN202010175123.4A priority Critical patent/CN111276605A/zh
Publication of CN111276605A publication Critical patent/CN111276605A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/3407Cathode assembly for sputtering apparatus, e.g. Target
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/54Controlling or regulating the coating process
    • C23C14/542Controlling the film thickness or evaporation rate
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices having no potential barriers, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/021Formation of switching materials, e.g. deposition of layers
    • H10N70/026Formation of switching materials, e.g. deposition of layers by physical vapor deposition, e.g. sputtering

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Nanotechnology (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Composite Materials (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开一种高速类超晶格锌锑‑锑相变存储介质及其制备方法,该存储介质的总厚度为40‑60 nm,结构通式为[Zn50Sb50(a)/Sb(b)]n,其中a和b分别表示单个周期中Zn50Sb50薄膜和Sb薄膜的厚度,且1<a<25 nm,1<b<25 nm,n为纳米复合多层结构相变薄膜的总周期数,且1<n<25。本发明扬长避短地利用两种相变材料的优势特性,通过磁控溅射的方法将两种材料进行纳米多层复合构成类超晶格结构,与传统的Ge2Sb2Te5相变材料相比较,类超晶格Zn50Sb50/Sb相变存储介质具有热稳定性好、相变速度更快等优点。

Description

高速类超晶格锌锑-锑相变存储介质及其制备方法
技术领域
本发明涉及微电子材料技术领域,具体涉及一种用于相变存储器的高速类超晶格锌锑-锑相变存储介质及其制备方法。
背景技术
1968年,美国科学家Stanford Ovshinsky发现硫系化合物在电场或激光激发下可实现高低电阻值或反射率的可逆转变(Ovshinsky Stanford:Physical Review Letters,1968,21 (20),p.1450)。众所周知,相变存储材料最先广泛应用于光学存储领域,如CD-ROM、DVD-ROM及Blue-ray Disc。相比之下,相变材料在电学存储领域的应用研究进展缓慢,这主要受制于半导体加工工艺的发展。进入21世纪以来,随着半导体工艺及集成技术的迅猛发展,相变存储器PCRAM(Phase Change Random Access Memory)在快速、大容量、低功耗、尺寸微缩等方面彰显出杰出的优越性,被认为是最有可能取代目前SRAM、DRAM和FLASH等主流产品的下一代非易失性存储器(Raoux Simone:MRS Bulletin,2014,39 (08),p.703)。
PCRAM器件性能主要取决于相变存储介质的性能。Ge2Sb2Te5是当前应用最为广泛的相变材料,随着市场应用需求的不断升级,该材料存在着诸多不足之处,如Ge2Sb2Te5相变材料成核占优型的晶化机制使得PCRAM器件的SET速度较慢,无法满足未来高速存储器的发展要求;Ge2Sb2Te5相变材料高的晶态电阻使得PCRAM器件的SET电阻较高,无法满足未来低功耗存储器的发展要求;同时,Ge2Sb2Te5相变材料低的相变温度和结晶激活能使得PCRAM器件热稳定性较差,更是无法满足未来高可靠性和高稳定性数据存储器的发展要求。
与Ge2Sb2Te5相变材料相比而言,Zn-Sb合金薄膜具有高的相变温度,在高数据保持力PCRAM应用方面具有巨大的应用潜力(Zifang He: Materials Letters, 185 (2016),P. 399-102)。然而,热稳定性和相变速度是相互制约的,具有高相变温度的Zn-Sb合金必然存在着相变速度不够快的缺点,无法满足对数据进行较快速度读取的应用需求。类超晶格相变存储薄膜是将具有不同相变性能的相变材料在纳米尺度通过交替溅射的方式进行多层复合,进而构造成类超晶格结构(SLL)的一种材料。新加坡数据存储研究所T. C. Chong等人于2006年首次提出将GeTe/Sb2Te3多层材料应用于PCRAM的制备,获得当时世界上最快的相变存储单元(Chong, T. C:Applied Physics Letters,2006,88 (12),p.122114)。
中国专利CN104795494B公开了一种用于高速相变存储器的GeTe/Sb类超晶格相变薄膜材料,但由于Te元素较低的熔化温度和较高的蒸气压使得Te容易挥发和相分离,从而严重影响器件工作的可靠性和循环寿命。中国专利CN104934533B和CN105489758B分别公开了用于相变存储器的Ge/Sb和Si/Sb类超晶格相变薄膜材料,这两种类超晶格采用的是不具有相变性能的半导体Ge和Si材料,相变性能还有待进一步提高。
因此有必要设计生产一种性能更为完善的新型相变存储介质以满足当今信息存储领域的发展需要,更好地适应微电子市场快速发展的趋势,最大程度地提升市场应用价值。
发明内容
本发明的目的在于克服现有技术存在的缺陷,扬长避短地利用晶化温度较高、非晶态电阻较高的Zn50Sb50相变材料和室温下已经晶化且具有低阻特性的单质Sb材料,通过磁控溅射的方法将两种材料进行纳米多层复合构成类超晶格结构。与传统的Ge2Sb2Te5相变材料相比较,类超晶格Zn50Sb50/Sb相变存储介质具有热稳定性好、相变速度更快、可靠性更高、编程功耗更低等优点。
为了实现上述技术目的,本发明是通过以下技术方案来实现的:本发明提供一种高速类超晶格锌锑-锑相变存储介质,总厚度为40-60 nm,结构通式为[Zn50Sb50(a)/Sb(b)]n,其中a和b分别表示单个周期中Zn50Sb50薄膜和Sb薄膜的厚度,且1<a<25 nm,1<b<25nm,n为纳米复合多层结构相变薄膜的总周期数,且1<n<25。
所述高速类超晶格锌锑-锑相变存储介质的制备方法具体包括如下步骤:
1)清洗薄膜衬底基片;
2)安装好溅射靶材Sb和Zn50Sb50,先后开启机械泵和分子泵抽真空;
3)设定溅射气体流量、腔内溅射气压、靶材的溅射功率;
4)采用室温磁控溅射方法制备类超晶格[Zn50Sb50(a)/Sb(b)]n相变存储介质:
(a)将基片旋转到Sb靶位,开启Sb的溅射电源,按照一定的溅射速度开始溅射Sb薄膜,Sb薄膜溅射完成后,关闭Sb的直流溅射电源;
(b)将基片旋转到Zn50Sb50靶位,开启Zn50Sb50的溅射电源,按照一定的溅射速度开始溅射Zn50Sb50薄膜,Zn50Sb50薄膜溅射完成后,关闭Zn50Sb50的交流溅射电源;
(c)重复上述(a)、(b)两步,直到完成类超晶格[Zn50Sb50(a)/Sb(b)]n相变存储介质设定的周期数。
进一步地,步骤1)中具体的清洗薄膜衬底基片的过程为:
(a)将基片置于乙醇溶液中,用超声清洗10分钟,去基片表面灰尘颗粒以及无机杂质;
(b)将基片置于丙酮溶液中,用超声清洗10分钟,去基片表面有机杂质;
(c)将基片置于去离子水中,用超声清洗10分钟,再次清洗表面;
(d)取出基片,用高纯N2吹干表面和背面,放置在干燥箱内待用。
进一步地,步骤1)中所用薄膜衬底基片为SiO2/Si(100) 、石英或硅基片。
进一步地,步骤2)中抽真空后真空度低于2×10-4 Pa。
进一步地,步骤3)中设置的直流电源溅射功率为15~50 W,交流电源溅射功率为15~50 W,溅射气体流量为25~50 SCCM,溅射气压为0.2~0.4 Pa。
利用上述方法制备类超晶格锌锑-锑相变存储介质时,其相变性能可以通过调整包括Zn50Sb50和Sb的厚度比、周期数在内的结构参数进行调控,且制备出的相变存储薄膜可作为信息存储介质用于PCRAM中。
本发明的有益效果为:
1、本发明通过磁控溅射的方法将Zn50Sb50和Sb材料在纳米尺度进行多层复合,构造出类超晶格锌锑-锑相变存储介质,利用多层结构的界面抑制Sb材料的快速结晶,提高材料的非晶态热稳定性;
2、本发明制备的类超晶格[Zn50Sb50(10nm)/Sb(3nm)]4相变存储介质与传统相变材料Ge2Sb2Te5相比较,相变温度从160℃提升到233℃,相变温度提高了近45.6%,表明类超晶格[Zn50Sb50(10nm)/Sb(3nm)]4纳米相变存储薄膜具有更高的非晶态热稳定性,适用于高温工况下的信息存储;
3、类超晶格锌锑信息功能薄膜的相变性能,包括相变温度、相变速度、材料电阻率等,可通过调节Zn50Sb50和Sb的厚度比和周期数来调控,调控方式简单,结果可控性强;
4、本发明公开的类超晶格锌锑-锑相变信息功能薄膜的制备方法简单,易于操作,反应条件温和,利于扩大化生产应用。
附图说明
图1为实施例1制备的类超晶格[Zn50Sb50(10nm)/Sb(3nm)]4纳米相变存储薄膜、对比例1制备的Zn50Sb50相变材料和对比例2制备的Sb相变材料的原位电阻与温度的关系曲线。
具体实施方式
以下实施例进一步说明本发明的内容,但不应理解为对本发明的限制。在不背离本发明实质的情况下,对本发明方法、步骤或条件所作的修改和替换,均属于本发明的范围。
实施例1、类超晶格锌锑-锑相变存储介质的制备
该相变存储薄膜的制备步骤如下:
1.清洗石英基片表面、背面,去除灰尘颗粒、有机与无机杂质:
(a)将基片置于乙醇溶液中,用超声清洗10分钟,去基片表面灰尘颗粒以及无机杂质;
(b)将基片置于丙酮溶液中,用超声清洗10分钟,去基片表面有机杂质;
(c)将基片置于去离子水中,用超声清洗10分钟,再次清洗表面;
(d)取出基片,用高纯N2吹干表面和背面,放置在干燥箱内待用;
2. 采用磁控溅射方法制备类超晶格[Zn50Sb50(a)/Sb(b)]n相变存储介质的前期准备:
(a) 将Sb单质靶材和合金靶材Zn50Sb50分别放在溅射仪的1号和2号靶位上,将石英基片固定在样品托盘上,关闭对外通气阀,密封腔体;
(b)开启真空计和机械泵抽真空,待腔体内真空达到5 Pa或以下时,启动分子泵,抽真空至2x10-4 Pa以下;
(c)设置Sb靶材的直流溅射功率为20 W,设置Zn50Sb50靶材的交流溅射功率为20 W;
(d)使用高纯Ar气作为溅射气体,Ar气流量设为30SCCM,溅射气压为0.2 Pa。
3.用镀膜监控程序进行镀膜,所需要的溅射厚度,可以通过溅射时间来实现,其中Sb靶材的溅射速度为1.4 s/nm,Zn50Sb50靶材的溅射速度为4.82 s/nm:
(a)将基片旋转到Sb靶位(1号靶位),开启直流溅射电源,按照设定厚度溅射相应的时间,溅射Sb薄膜,溅射完毕后,关闭Sb靶位的直流溅射电源;
(b)将基片旋转到Zn50Sb50靶位(2号靶位),开启交流溅射电源,按照设定厚度溅射相应的时间,溅射Zn50Sb50薄膜,溅射完毕后,关闭Zn50Sb50靶位的交流溅射电源;
(c)重复上述(a)、(b)两步,直到完成类超晶格[TiN(a)/Sb(b)]n信息功能薄膜设定的周期数n。
通过调整溅射时间来控制材料的厚度比并对周期数进行相应调控后制备出的一种相变存储薄膜结构为[Zn50Sb50(10nm)/Sb(3nm)]4
对比例1、单层Zn50Sb50相变薄膜的制备,总厚度为50 nm
1.清洗石英基片表面、背面,去除灰尘颗粒、有机与无机杂质:
(a)将基片置于乙醇溶液中,用超声清洗10分钟,去基片表面灰尘颗粒以及无机杂质;
(b)将基片置于丙酮溶液中,用超声清洗10分钟,去基片表面有机杂质;
(c)将基片置于去离子水中,用超声清洗10分钟,再次清洗表面;
(d)取出基片,用高纯N2吹干表面和背面,放置在干燥箱内待用。
2.采用磁控溅射方法制备Zn50Sb50薄膜的前期准备:
(a) 将Zn50Sb50合金靶材放在溅射仪的1号靶位上,将石英基片固定在样品托盘上,关闭对外通气阀,密封腔体;
(b)开启真空计和机械泵抽真空,待腔体内真空达到5 Pa或以下时,启动分子泵,抽真空至2x10-4 Pa以下;
(c)设置Zn50Sb50靶材的交流溅射功率为20 W;
(d)使用高纯Ar气作为溅射气体,Ar气流量设为30SCCM,溅射气压为0.2 Pa。
3.用镀膜监控程序进行镀膜,所需要的溅射厚度,可以通过溅射时间来实现,其中Zn50Sb50靶材的溅射速度为4.82 s/nm:
将基片旋转到Zn50Sb50靶位(1号靶位),开启交流溅射电源,按照设定厚度溅射相应的时间,溅射Zn50Sb50薄膜,溅射完毕后,关闭Zn50Sb50靶位的交流溅射电源,制得厚度为50 nm的单层Zn50Sb50相变薄膜。
对比例2、单层Sb相变薄膜的制备,总厚度为50 nm
1.清洗石英基片表面、背面,去除灰尘颗粒、有机与无机杂质:
(a)将基片置于乙醇溶液中,用超声清洗10分钟,去基片表面灰尘颗粒以及无机杂质;
(b)将基片置于丙酮溶液中,用超声清洗10分钟,去基片表面有机杂质;
(c)将基片置于去离子水中,用超声清洗10分钟,再次清洗表面;
(d)取出基片,用高纯N2吹干表面和背面,放置在干燥箱内待用。
2.采用磁控溅射方法制备Sb薄膜的前期准备:
(a) 将Sb单质靶材放在溅射仪的1号靶位上,将石英基片固定在样品托盘上,关闭对外通气阀,密封腔体;
(b)开启真空计和机械泵抽真空,待腔体内真空达到5 Pa或以下时,启动分子泵,抽真空至2x10-4 Pa以下;
(c)设置Sb靶材的直流溅射功率为20 W;
(d)使用高纯Ar气作为溅射气体,Ar气流量设为30 SCCM,溅射气压为0.2 Pa。
3.用镀膜监控程序进行镀膜,所需要的溅射厚度,可以通过溅射时间来实现,其中Sb靶材的溅射速度为1.4 s/nm:
将基片旋转到Sb靶位(1号靶位),开启直流溅射电源,按照设定厚度溅射相应的时间,溅射Sb薄膜,溅射完毕后,关闭Sb靶位的直流溅射电源,制得厚度为50 nm的单层Sb相变薄膜。
相关性能的测试
将实施例1获得的类超晶格[Zn50Sb50(10nm)/Sb(3nm)]4信息功能薄膜、对比例1制备的单层Zn50Sb50相变薄膜材料及对比例2制备的单层Sb相变薄膜材料进行测试,得到各相变薄膜材料的原位电阻与温度的关系曲线如图1所示,升温速率均为20℃/min。
从图1可以看出,类超晶格[Zn50Sb50(10nm)/Sb(3nm)]4和Zn50Sb50相变薄膜在低温情况下均处于高阻的非晶态,随着温度的升高,薄膜的电阻缓慢下降。当温度达到相变温度时,薄膜开始晶化,此时薄膜电阻急剧下降。当温度继续升高时,此时薄膜电阻保持相对稳定,表明薄膜已经完全结晶。
由图1可知,类超晶格[Zn50Sb50(10nm)/Sb(3nm)]4相变存储薄膜的相变温度为233℃,远远高于传统Ge2Sb2Te5的160℃,体现了类超晶格[Zn50Sb50(10nm)/Sb(3nm)]4具有高热稳定性的特征。
对于单质Sb薄膜而言,其电阻值随着温度的升高始终保持不变,且阻值较低,表明单质Sb材料在室温下已经完全结晶,体现出差的热稳定性和快的相变速度。
从图1还可看出,类超晶格[Zn50Sb50(10nm)/Sb(3nm)]4相变存储薄膜相变时电阻和温度曲线的陡峭程度高于Zn50Sb50相变材料,表明了类超晶格[Zn50Sb50(10nm)/Sb(3nm)]4相变存储薄膜具有快的电阻突变速度,可用于高速读写的PCRAM中。
以上显示和描述了本发明的基本原理、主要特征及优点。但是以上所述仅为本发明的具体实施例,本发明的技术特征并不局限于此,任何本领域的技术人员在不脱离本发明的技术方案下得出的其他实施方式均应涵盖在本发明的专利范围之中。

Claims (7)

1.一种高速类超晶格锌锑-锑相变存储介质,其特征在于,总厚度为40-60nm,结构通式为[Zn50Sb50(a)/Sb(b)]n,其中a和b分别表示单个周期中Zn50Sb50薄膜和Sb薄膜的厚度,且1<a<25 nm,1<b<25 nm,n为纳米复合多层结构相变薄膜的总周期数,且1<n<25。
2.如权利要求1所述的高速类超晶格锌锑-锑相变存储介质的制备方法,其特征在于,具体包括如下步骤:
1)清洗薄膜衬底基片;
2)安装好溅射靶材Sb和Zn50Sb50,先后开启机械泵和分子泵抽真空;
3)设定溅射气体流量、腔内溅射气压、靶材的溅射功率;
4)采用室温磁控溅射方法制备类超晶格[Zn50Sb50(a)/Sb(b)]n相变存储介质:
(a)将基片旋转到Sb靶位,开启Sb的溅射电源,按照一定的溅射速度开始溅射Sb薄膜,Sb薄膜溅射完成后,关闭Sb的直流溅射电源;
(b)将基片旋转到Zn50Sb50靶位,开启Zn50Sb50的溅射电源,按照一定的溅射速度开始溅射Zn50Sb50薄膜,Zn50Sb50薄膜溅射完成后,关闭Zn50Sb50的交流溅射电源;
(c)重复上述(a)、(b)两步,直到完成类超晶格[Zn50Sb50(a)/Sb(b)]n相变存储介质设定的周期数。
3.如权利要求2所述的高速类超晶格锌锑-锑相变存储介质的制备方法,其特征在于,步骤1)中具体的清洗薄膜衬底基片的过程为:
(a)将基片置于乙醇溶液中,用超声清洗10分钟,去基片表面灰尘颗粒以及无机杂质;
(b)将基片置于丙酮溶液中,用超声清洗10分钟,去基片表面有机杂质;
(c)将基片置于去离子水中,用超声清洗10分钟,再次清洗表面;
(d)取出基片,用高纯N2吹干表面和背面,放置在干燥箱内待用。
4.如权利要求2所述的高速类超晶格锌锑-锑相变存储介质的制备方法,其特征在于,步骤1)中所用薄膜衬底基片为SiO2/Si(100) 、石英或硅基片。
5.如权利要求2所述的高速类超晶格锌锑-锑相变存储介质的制备方法,其特征在于,步骤2)中抽真空后真空度低于2×10-4 Pa。
6.如权利要求2所述的高速类超晶格锌锑-锑相变存储介质的制备方法,其特征在于,步骤3)中设置的直流电源溅射功率为15~50 W,交流电源溅射功率为15~50 W,溅射气体流量为25~50 SCCM,溅射气压为0.2~0.4 Pa。
7.如权利要求2所述的高速类超晶格锌锑-锑相变存储介质的制备方法,其特征在于,制备类超晶格锌锑-锑相变存储介质时,调整包括Zn50Sb50和Sb的厚度比、周期数在内的结构参数后,材料的相变性能得到相应的调控。
CN202010175123.4A 2020-03-13 2020-03-13 高速类超晶格锌锑-锑相变存储介质及其制备方法 Withdrawn CN111276605A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010175123.4A CN111276605A (zh) 2020-03-13 2020-03-13 高速类超晶格锌锑-锑相变存储介质及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010175123.4A CN111276605A (zh) 2020-03-13 2020-03-13 高速类超晶格锌锑-锑相变存储介质及其制备方法

Publications (1)

Publication Number Publication Date
CN111276605A true CN111276605A (zh) 2020-06-12

Family

ID=71001056

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010175123.4A Withdrawn CN111276605A (zh) 2020-03-13 2020-03-13 高速类超晶格锌锑-锑相变存储介质及其制备方法

Country Status (1)

Country Link
CN (1) CN111276605A (zh)

Similar Documents

Publication Publication Date Title
CN108539013B (zh) 一种用于高速低功耗相变存储器的Ge/Sb类超晶格相变薄膜材料
CN105762277B (zh) 一种类超晶格锡硒/锑纳米相变薄膜及其制备与应用
CN101807665B (zh) 一种结晶温度可调的Ga30Sb70/Sb80Te20纳米复合多层相变薄膜材料
CN101714610B (zh) 一种Si/Sb80Te20纳米复合多层相变薄膜及其制备方法
CN108075039B (zh) 一种纳米复合ZnO-ZnSb相变存储薄膜材料及其制备方法
CN109585649B (zh) 类超晶格锗锑/锌锑纳米相变薄膜及其制备和应用
CN101976725A (zh) 一种结晶温度可调的SiO2/Sb80Te20纳米复合多层相变薄膜材料及其制备方法
CN105006519A (zh) 高速低功耗的锡锑-锡硒纳米复合多层薄膜及制备和应用
CN106816528B (zh) 一种纳米复合多层相变薄膜及其制备方法和应用
CN111276605A (zh) 高速类超晶格锌锑-锑相变存储介质及其制备方法
CN109686840A (zh) 一种柔性多层复合GeTe/ZnSb相变薄膜材料及其制备方法
CN111276607A (zh) 纳米复合多层氮化钛-锑信息功能薄膜及其制备方法
CN112614936B (zh) 一种Ti/Sb多层纳米复合相变存储薄膜材料及其制备方法和应用
CN110729400B (zh) Ti-Ga-Sb相变材料、相变存储器及Ti-Ga-Sb相变材料的制备方法
CN111640861B (zh) 一种具有多级相变效应的单层锌-锡-锑薄膜及其制备方法和应用
CN109904310B (zh) 一种环境友好型Sn-Sb-Ti纳米复合相变薄膜及其制备方法
CN111276608A (zh) 三明治结构锑硒-锑-锑硒纳米复合多层相变薄膜及其制备和应用
CN111276606A (zh) 类超晶格锡硒-锑碲信息功能存储介质及其制备方法
CN109285944B (zh) 一种具有快速转变性能的类超晶格相变薄膜材料
CN109273596B (zh) 一种具有高热稳定性、低功耗性能的多层相变薄膜材料
CN110729401B (zh) Ga-Sb-O相变材料及其应用与制备方法
CN107369760B (zh) 一种用于相变存储器的相变薄膜及其制备方法
CN109904311B (zh) 一种用于相变存储器的Sb-Se-Ti系列纳米复合相变薄膜及其制备方法
CN111276609A (zh) 类超晶格锌锑-锑硒纳米相变薄膜及其制备和应用
CN109860388B (zh) 多层相变薄膜及制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20200612

WW01 Invention patent application withdrawn after publication