CN111276560A - 砷化镓太阳电池及其制造方法 - Google Patents

砷化镓太阳电池及其制造方法 Download PDF

Info

Publication number
CN111276560A
CN111276560A CN202010093535.3A CN202010093535A CN111276560A CN 111276560 A CN111276560 A CN 111276560A CN 202010093535 A CN202010093535 A CN 202010093535A CN 111276560 A CN111276560 A CN 111276560A
Authority
CN
China
Prior art keywords
alinp
cell
layer
sub
algainp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010093535.3A
Other languages
English (en)
Other versions
CN111276560B (zh
Inventor
吴真龙
张策
朱鸿根
郭文辉
李俊承
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen Changelight Co Ltd
Yangzhou Changelight Co Ltd
Original Assignee
Xiamen Changelight Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xiamen Changelight Co Ltd filed Critical Xiamen Changelight Co Ltd
Priority to CN202010093535.3A priority Critical patent/CN111276560B/zh
Publication of CN111276560A publication Critical patent/CN111276560A/zh
Application granted granted Critical
Publication of CN111276560B publication Critical patent/CN111276560B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1852Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising a growth substrate not being an AIIIBV compound
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种砷化镓太阳电池,包含底电池、至少一个子电池以及顶电池,其中:顶电池的窗口层全部或部分采用AlGaInP/AlInP超晶格。其优点是:AlGaInP/AlInP超晶格中AlGaInP可以通过提高Al组分来减小晶格常数和提高带隙,减少AlGaInP的吸光。而AlInP保持与GaInP子电池晶格匹配,利用AlGaInP/AlInP超晶格的应变生长可以提高窗口层带隙,减少吸光。

Description

砷化镓太阳电池及其制造方法
技术领域
本发明涉及太阳电池技术领域,特别是涉及一种砷化镓(GaAs)太阳电池及其制造方法。
背景技术
太阳电池可以将太阳能直接转换为电能,是一种最有效的清洁能源形式。III-V族化合物半导体太阳电池在目前材料体系中转换效率最高,同时具有耐高温性能好、抗辐射能力强等诸多优点,被公认为是新一代高性能长寿命空间主电源。
在现有的III-V族化合物半导体太阳电池中,GaInP/InGaAs/Ge晶格匹配结构的三结电池已在航天领域得到广泛应用,由于其顶电池和中电池的窗口层一般选用与中、顶电池材料晶格匹配的Al0.5In0.5P,间接带隙2.3eV,更宽的带隙与电池发射区形成较高势垒,可以导致较小的入射能量损失,对流向窗口层的少数载流子起反射作用,并提高载流子的收集效率,同时,窗口层的材料与发射区的材料相连,还能降低发射区表面态,降低光生载流子的复合速率,从而大大改善电池的输出电流,窗口层的引入在发射区表面还形成了良好的钝化界面,提高了短路电流密度,同时提高了开路电压;但是窗口层一般需要选择带隙大于发射区的材料,这会在窗口层与发射区之间形成势垒,阻碍电子输运,降低了其对太阳光的吸收。
发明内容
基于此,有必要针对上述的太阳光的吸收效率低的问题,提供一种砷化镓太阳电池及其制造方法,可以达到减少吸光的效果。
为实现上述目的,本发明提供一种砷化镓太阳电池,包含依次叠置的底部子电池、至少一个中间子电池以及顶部子电池,其中:
所述顶部子电池的窗口层和/或至少一个所述中间子电池的窗口层全部或部分采用AlGaInP/AlInP超晶格。
在上述示例中,将顶部子电池的窗口层和/或中间子电池的窗口层全部或部分采用AlGaInP/AlInP超晶格,使得吸光尽量减少,代谢可以提高,由于该种超晶格材料的每一层都非常薄,加上其中足够高的Al组分,超晶格材料中的每一层都可以受底下一层限制,使可能产生失配的影响达到最小,达到较高的晶格常数。
在其中一个实施例中,所述AlGaInP/AlInP超晶格中的AlInP层采用delta掺杂。
在其中一个实施例中,所述AlGaInP/AlInP超晶格包含若干交替叠置的AlInP层和AlGaInP层。
在其中一个实施例中,所述delta掺杂为掺杂元素包括Si、Te或Se的N型掺杂,所述AlInP层中所述delta掺杂的掺杂浓度≥1×1018cm-3
在其中一个实施例中,砷化镓太阳电池还包括第一隧穿结和DBR反射层,所述第一隧穿结位于所述底部子电池与所述中间子电池之间,所述DBR反射层位于所述第一隧穿结与所述中间子电池之间;所述中间子电池与所述顶部子电池之间还设有第二隧穿结。
本发明还提供一种砷化镓太阳电池的制造方法,其中,包含:
制备依次叠置的底部子电池、至少一个中间子电池以及顶部子电池;
所述顶部子电池的窗口层和/或至少一个所述中间子电池的窗口层全部或部分采用AlGaInP/AlInP超晶格。
在其中一个实施例中,制备所述AlGaInP/AlInP超晶格的步骤具体包括:
周期性交替生长AlInP层和AlGaInP层。
在其中一个实施例中,还包括:在生长所述AlInP层时,对所述AlInP层进行delta掺杂的步骤。
在其中一个实施例中,所述delta掺杂为掺杂元素包括Si、Te或Se的N型掺杂,所述AlInP层中所述delta掺杂的掺杂浓度≥1×1018cm-3
在其中一个实施例中,在生长所述AlInP层时,对所述AlInP层进行delta掺杂的具体步骤包括:
A:通入V族源P以及III族金属源Al和In,以生长一特定厚度的AlInP外延;
B:保持V族源P持续通入,断开III族金属源Al和In,使AlInP外延中断生长;
C:向新生长的AlInP外延通入掺杂剂3s~30s;
D:循环步骤A~C至少一次,直到所需厚度的AlInP层全部生长并掺杂完成。
附图说明
图1为本发明一个实施例中正向生长的砷化镓三结太阳电池的结构示意图;
图2为本发明一个实施例中AlGaInP/AlInP超晶格的结构示意图;
图3为本发明一个实施例中正向生长的砷化镓三结太阳电池的制造方法流程图;
图4为本发明一个实施例中delta掺杂周期结构的能带图。
具体实施方式
本发明提供了一种砷化镓太阳电池及其制造方法,以下将结合一个具体实施例来说明本发明的发明点以及所带来的有益效果。
如图1所示,本实施例中的GaInP/InGaAs/Ge三结太阳电池是采用金属有机化学气相外延沉积(MOCVD)或分子束外延(MBE)方法在Ge衬底101上正向生长而成,从下至上包含依次叠置的底部子电池10、至少一个中间子电池40(以所述中间子电池为一个作为示例)及顶部子电池60,具体的,所述底部子电池20可以包括但不仅限于Ge底部子电池,所述中间子电池50可以包括但不仅限于InGaAs中间子电池,所述顶部子电池70可以包括但不仅限于GaInP顶部子电池;以下将以GaInP/InGaAs/Ge三结太阳电池为例介绍本发明的砷化镓太阳电池的具体制造方法,具体的制造方法如下:
步骤S1,制备底部子电池10,包括:在P型Ge衬底101上进行磷扩散获得N型发射区102,从而形成底部子电池10的PN结,并通过在P型Ge衬底101上面生长和衬底101晶格匹配的(Al)GaInP层(应当说明的是,这里提到的(Al)GaInP层是指该层可以为AlGaInP层或GaInP层,后文中遇到的类似写法的组分含义将不再赘述)作为成核层202,并作为底部子电池20的窗口层,增强对载流子的反射能力,有助于收集载流子;
步骤S2,在底部子电池10上生长中间子电池40,其中:所述中间子电池40从下到上依次包括背场层401、P型掺杂InGaAs层基区402、N型掺杂InGaAs层发射区403、窗口层404。其中,背场层401选取GaInP或AlGaAs材料。
步骤S3、在中间子电池40上生长顶部子电池60,其中:所述顶部子电池60从下往上依次包括AlGaInP背场层601、P型掺杂AlGaInP或GaInP层基区602、N型掺杂AlGaInP或GaInP层发射区603、窗口层604。
步骤S4、在顶部子电池60的窗口层604上生长GaAs或InGaAs层作为与电极形成欧姆接触的N型接触层70。
优选地,步骤S1与步骤S2之间还包括如下步骤:砷化镓太阳电池还包括制备中间子电池40之前还包括于底部子电池10上制备第一隧穿结20及DBR反射层30的步骤,所述DBR反射层30位于所述第一隧穿结20与所述中间子电池40之间,所述中间子电池40位于所述DBR反射层30上,具体的:
在底部子电池10的窗口层103上生长N型GaAs或N型GaInP作为第一隧穿结20的N型层,生长P型(Al)GaAs材料作为第一隧穿结20的P型层,其中,N型和P型掺杂分别采用Si和C掺杂,但不限于此;
生长DBR反射层30(布拉格反射层),第一层材料AlxGaAs,第二层材料AlyGaAs,其中,0≦x<y≦1,两层材料交替生长n个周期,3≦n≦30,且每层材料的光学厚度为DBR中心反射波长的1/4。中间子电池40形成于DBR反射层30上。
优选地,步骤S3与步骤S4之间还包括如下步骤:制备所述顶部子电池60之前还包括于所述中间子电池40上形成第二隧穿结50的步骤,所述顶部子电池60位于所述第二隧穿结50上,具体的:
生长N型GaAs或N型GaInP作为第二隧穿结50的N型层,生长P型(Al)GaAs材料作为第二隧穿结50的P型层。其中,N型和P型掺杂分别采用Si和C掺杂,但不限于此。
现有技术中,砷化镓三结太阳电池中顶部子电池的窗口层和中间子电池的窗口层由于选择带隙大于发射区的材料而导致的窗口层与发射区之间形成势垒阻碍电子运输,因此,本发明一个可选的实施例中,对顶部子电池60的窗口层604进行了改进设计,如图2以及图3所示,在一个示例中,步骤S3中,在制备顶部子电池60的窗口层604时,将顶部子电池60的窗口层604全部或部分采用AlGaInP/AlInP超晶格,使得吸光尽量减少,代谢可以提高,由于该种超晶格材料的每一层都非常薄,加上其中足够高的Al组分,超晶格材料中的每一层都可以受底下一层限制,使可能产生失配的影响达到最小,达到较高的晶格常数。同时,AlGaInP/AlInP超晶格中的AlGaInP可以通过提高Al组分来减小晶格常数和提高带隙,减少AlGaInP的吸光。而AlInP保持与GaInP子电池晶格匹配,利用AlGaInP/AlInP超晶格的应变生长可以提高窗口层带隙,减少吸光。
如图2所示,在一个示例中,AlGaInP/AlInP超晶格是通过周期性交替生长以形成若干交替叠置的AlInP层801和AlGaInP层802。优选的,所述AlGaInP/AlInP超晶格中AlInP层801单层厚度为2nm-20nm,可以为2nm、10nm或20nm,AlGaInP/AlInP超晶格总厚度为10nm-100nm,可以为10nm、50nm或100nm,并且,AlInP层单层厚度<AlGaInP/AlInP超晶格总厚度。
如图3所示,图中曲线凹陷处即delta掺杂处,由图可知,delta掺杂可以导致能带弯曲,降低电子势垒,增加空穴势垒,因此,较佳的,在一些实施例中,上述AlGaInP/AlInP超晶格中的AlInP层采用delta掺杂,即,还包括在生长AlInP层时,对AlInP层进行delta掺杂的步骤,这样,可以进一步利用超晶格的微带效应降低多子势垒,并利用δ掺杂引入的能量尖峰限制少子,由于δ掺杂步骤断开了三族金属源,导致生长中断,可以减少位错密度,进而可以提高应变AlGaInP/AlInP超晶格的晶体质量,达到更好的释放应力效果。
在一个示例中,所述的在生长AlInP层时,对AlInP层进行delta掺杂的具体步骤包括:
A:通入V族源P以及III族金属源Al和In,以生长一特定厚度的AlInP外延;
B:保持V族源P持续通入,断开III族金属源Al和In,使AlInP外延中断生长;
C:向新生长的AlInP外延通入掺杂剂3s~30s;优选的,所述delta掺杂为掺杂元素包括Si、Te或Se的N型掺杂,所述AlInP层中所述delta掺杂的掺杂浓度≥1×1018cm-3
D:循环步骤A~C至少一次,直到所需厚度的AlInP层全部生长并掺杂完成。
本实施例中,假设步骤A中每次只生长2nm的AlInP外延,当AlInP层所需的单层总厚度为10nm时,则步骤A~C总共要进行5次循环。
在另一个实施例中,在步骤S2中,将中间子电池40的窗口层404也全部或部分采用AlGaInP/AlInP超晶格,其具体效果此前已详细描述在此不再赘述。
在又一个实施例中,同时对步骤S2和步骤S3进行改进,即将顶部子电池60的窗口层604全部或部分采用AlGaInP/AlInP超晶格,同时将中间子电池40的窗口层404也全部或部分采用AlGaInP/AlInP超晶格,其具体效果此前已详细描述在此不再赘述。
值得注意的是,本发明技术方案同样适用于所有砷化镓多结太阳电池,例如,砷化镓四结太阳电池(包含第一中间子电池、第二中间子电池)、砷化镓五结太阳电池(包含第一中间子电池、第二中间子电池、第三中间子电池)的情况等,并且可以有三种不同的结合方式,即仅对顶部子电池60的窗口层604全部或部分采用AlGaInP/AlInP超晶格,或者,仅对至少一个中间子电池40的窗口层404全部或部分采用AlGaInP/AlInP超晶格,或者,同时对顶部子电池60的窗口层604及至少一个中间子电池40的窗口层404全部或部分采用AlGaInP/AlInP超晶格。然而,为了使减少吸光的效果达到最佳,优选的应当在顶部子电池60的窗口层604进行上述改良,中间子电池40的窗口层404的改良作为备选。当具有多个中间子电池40时,可以根据需要对部分或全部中间子电池40进行上述改进。
在另一个示例中,所述的砷化镓太阳电池还可以采用倒置生长来制备,具体的,同样以GaInP/InGaAs/Ge三结太阳电池为例,可以是采用金属有机化学气相外延沉积(MOCVD)方法在GaAs衬底上生长而成,从下至上依次生长外延腐蚀截止层、欧姆接触层、第一子电池(相当于正向生长时的顶部子电池60)、第一隧穿结、第二子电池(相当于正向生长时的中间子电池40)、第二隧穿结、变质缓冲层、第三子电池(相当于正向生长时的底部子电池10),所述各子电池之间通过隧穿结连接,其中所述第一子电池为GaInP子电池,所述第二子电池为GaAs子电池,所述第三子电池为带隙为1.0eV的InGaAs子电池。同样可以对所述第一子电池(相当于正向生长时的顶部子电池)的窗口层和/或至少一个第二子电池(相当于正向生长时的中间子电池)的窗口层全部或部分采用AlGaInP/AlInP超晶格,以达到本发明的目的。
本发明还提供了一种砷化镓太阳电池,包含底部子电池10、至少一个中间子电池40以及顶部子电池60,其中:顶部子电池60的窗口层604和/或至少一个中间子电池40的窗口层404全部或部分采用AlGaInP/AlInP超晶格。
在一个示例中,可以仅为顶部子电池60的窗口层604全部或部分采用AlGaInP/AlInP超晶格。
在另一个示例中,可以仅为至少一个中间子电池40的窗口层404全部或部分采用AlGaInP/AlInP超晶格。
在又一个示例中,可以同时为顶部子电池60的窗口层604及至少一个中间子电池40的窗口层404全部或部分采用AlGaInP/AlInP超晶格。
优选的,AlGaInP/AlInP超晶格的中AlInP层采用delta掺杂。优选的:delta掺杂采用Si、Te或Se的N型掺杂,AlInP层中delta掺杂的掺杂浓度≥1×1018cm-3
优选的:底部子电池10与中间子电池40之间还设有第一隧穿结20和DBR反射层30,所述第一隧穿结20位于所述底部子电池10与所述中间子电池40之间,所述DBR反射层30位于所述第一隧穿结20与所述中间子电池40之间;所述中间子电池40与所述顶部子电池60之间还设有第二隧穿结50。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

1.一种砷化镓太阳电池,包含依次叠置的底部子电池、至少一个中间子电池以及顶部子电池,其特征在于:
所述顶部子电池的窗口层和/或至少一个所述中间子电池的窗口层全部或部分采用AlGaInP/AlInP超晶格。
2.如权利要求1所述的砷化镓太阳电池,其特征在于:所述AlGaInP/AlInP超晶格中的AlInP层采用delta掺杂。
3.如权利要求1所述的砷化镓太阳电池,其特征在于:
所述AlGaInP/AlInP超晶格包含若干交替叠置的AlInP层和AlGaInP层。
4.根据权利要求1所述的砷化镓太阳电池,其特征在于:
所述delta掺杂为掺杂元素包括Si、Te或Se的N型掺杂,所述AlInP层中所述delta掺杂的掺杂浓度≥1×1018cm-3
5.根据权利要求1所述的砷化镓太阳电池,其特征在于:
所述砷化镓太阳电池还包括第一隧穿结和DBR反射层,所述第一隧穿结位于所述底部子电池与所述中间子电池之间,所述DBR反射层位于所述第一隧穿结与所述中间子电池之间;所述中间子电池与所述顶部子电池之间还设有第二隧穿结。
6.一种砷化镓太阳电池的制造方法,其特征在于,包含:
制备依次叠置的底部子电池、至少一个中间子电池以及顶部子电池;所述顶部子电池的窗口层和/或至少一个所述中间子电池的窗口层全部或部分采用AlGaInP/AlInP超晶格。
7.如权利要求6所述的砷化镓太阳电池的制造方法,其特征在于,制备所述AlGaInP/AlInP超晶格的步骤具体包括:
周期性交替生长AlInP层和AlGaInP层。
8.如权利要求7所述的砷化镓太阳电池的制造方法,其特征在于,还包括:在生长所述AlInP层时,对所述AlInP层进行delta掺杂的步骤。
9.如权利要求8所述的砷化镓太阳电池的制造方法,其特征在于:
所述delta掺杂为掺杂元素包括Si、Te或Se的N型掺杂,所述AlInP层中所述delta掺杂的掺杂浓度≥1×1018cm-3
10.如权利要求8所述的砷化镓太阳电池的制造方法,其特征在于,在生长所述AlInP层时,对所述AlInP层进行delta掺杂的具体步骤包括:
A:通入V族源P以及III族金属源Al和In,以生长一特定厚度的AlInP外延;
B:保持V族源P持续通入,断开III族金属源Al和In,使AlInP外延中断生长;
C:向新生长的AlInP外延通入掺杂剂3s~30s;
D:循环步骤A~C至少一次,直到所需厚度的AlInP层全部生长并掺杂完成。
CN202010093535.3A 2020-02-14 2020-02-14 砷化镓太阳电池及其制造方法 Active CN111276560B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010093535.3A CN111276560B (zh) 2020-02-14 2020-02-14 砷化镓太阳电池及其制造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010093535.3A CN111276560B (zh) 2020-02-14 2020-02-14 砷化镓太阳电池及其制造方法

Publications (2)

Publication Number Publication Date
CN111276560A true CN111276560A (zh) 2020-06-12
CN111276560B CN111276560B (zh) 2022-03-18

Family

ID=71000223

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010093535.3A Active CN111276560B (zh) 2020-02-14 2020-02-14 砷化镓太阳电池及其制造方法

Country Status (1)

Country Link
CN (1) CN111276560B (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050018730A1 (en) * 2003-07-25 2005-01-27 The University Of Connecticut And Opel, Inc. Semiconductor laser array device employing modulation doped quantum well structures
US20090003399A1 (en) * 2007-06-26 2009-01-01 Taylor Geoff W Integrated Circuit Employing Low Loss Spot-Size Converter
CN101388419A (zh) * 2008-10-27 2009-03-18 厦门乾照光电有限公司 具有反射层的三结太阳电池及其制造方法
CN101661878A (zh) * 2009-09-08 2010-03-03 中山大学 一种双元素delta掺杂生长P型GaN基材料的方法
CN103594540B (zh) * 2013-11-28 2016-02-03 上海空间电源研究所 一种含有界面δ掺杂的异质结太阳电池
CN107492586A (zh) * 2017-08-01 2017-12-19 天津三安光电有限公司 发光二极管
CN206992133U (zh) * 2017-07-19 2018-02-09 中山德华芯片技术有限公司 一种应用于多结太阳能电池的复合dbr结构
CN108493284A (zh) * 2018-05-03 2018-09-04 扬州乾照光电有限公司 一种晶格失配的多结太阳能电池及其制作方法
CN108963019A (zh) * 2018-07-27 2018-12-07 扬州乾照光电有限公司 一种多结太阳能电池及其制作方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050018730A1 (en) * 2003-07-25 2005-01-27 The University Of Connecticut And Opel, Inc. Semiconductor laser array device employing modulation doped quantum well structures
US20090003399A1 (en) * 2007-06-26 2009-01-01 Taylor Geoff W Integrated Circuit Employing Low Loss Spot-Size Converter
CN101388419A (zh) * 2008-10-27 2009-03-18 厦门乾照光电有限公司 具有反射层的三结太阳电池及其制造方法
CN101661878A (zh) * 2009-09-08 2010-03-03 中山大学 一种双元素delta掺杂生长P型GaN基材料的方法
CN103594540B (zh) * 2013-11-28 2016-02-03 上海空间电源研究所 一种含有界面δ掺杂的异质结太阳电池
CN206992133U (zh) * 2017-07-19 2018-02-09 中山德华芯片技术有限公司 一种应用于多结太阳能电池的复合dbr结构
CN107492586A (zh) * 2017-08-01 2017-12-19 天津三安光电有限公司 发光二极管
CN108493284A (zh) * 2018-05-03 2018-09-04 扬州乾照光电有限公司 一种晶格失配的多结太阳能电池及其制作方法
CN108963019A (zh) * 2018-07-27 2018-12-07 扬州乾照光电有限公司 一种多结太阳能电池及其制作方法

Also Published As

Publication number Publication date
CN111276560B (zh) 2022-03-18

Similar Documents

Publication Publication Date Title
US10355159B2 (en) Multi-junction solar cell with dilute nitride sub-cell having graded doping
US7626116B2 (en) Isoelectronic surfactant suppression of threading dislocations in metamorphic epitaxial layers
TWI441343B (zh) 反向變質多接面太陽能電池中異質接面子電池
TWI600173B (zh) 在中間電池中具有低能隙吸收層之多接面太陽能電池及其製造方法
US6255580B1 (en) Bilayer passivation structure for photovoltaic cells
CN109860325B (zh) 一种砷化物多结太阳能电池及其制作方法
US20040065363A1 (en) Isoelectronic surfactant induced sublattice disordering in optoelectronic devices
CN108493284B (zh) 一种晶格失配的多结太阳能电池及其制作方法
JP2015073130A (ja) 2つの変性層を備えた4接合型反転変性多接合太陽電池
JP5481665B2 (ja) 多接合型太陽電池
CN110224036B (zh) 一种晶格失配多结太阳能电池
CN109524492B (zh) 一种提高多结太阳能电池少数载流子收集的方法
CN108963019B (zh) 一种多结太阳能电池及其制作方法
CN112117344B (zh) 一种太阳能电池以及制作方法
CN111430493B (zh) 一种多结太阳能电池及供电设备
CN111725332A (zh) 一种高性能三结砷化镓太阳电池
CN109285908B (zh) 一种晶格失配的多结太阳能电池及其制作方法
CN111146305A (zh) 一种太阳能电池
JP2012054424A (ja) 太陽電池及びその製造方法
RU2442242C1 (ru) Многопереходный преобразователь
CN111276560B (zh) 砷化镓太阳电池及其制造方法
CN111430495A (zh) 一种多结太阳能电池及供电设备
CN212257428U (zh) 一种异质pn结空间电池外延片
CN113035983B (zh) 一种多结太阳能电池及其制备方法
JP2005347402A (ja) 裏面反射型化合物半導体太陽電池およびその製造方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant