CN206992133U - 一种应用于多结太阳能电池的复合dbr结构 - Google Patents

一种应用于多结太阳能电池的复合dbr结构 Download PDF

Info

Publication number
CN206992133U
CN206992133U CN201720875673.0U CN201720875673U CN206992133U CN 206992133 U CN206992133 U CN 206992133U CN 201720875673 U CN201720875673 U CN 201720875673U CN 206992133 U CN206992133 U CN 206992133U
Authority
CN
China
Prior art keywords
layers
alas
combination
algainas
algainp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201720875673.0U
Other languages
English (en)
Inventor
高熙隆
刘建庆
刘雪珍
毛明明
马涤非
张小宾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongshan Dehua Chip Technology Co Ltd
Original Assignee
Zhongshan Dehua Chip Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongshan Dehua Chip Technology Co Ltd filed Critical Zhongshan Dehua Chip Technology Co Ltd
Priority to CN201720875673.0U priority Critical patent/CN206992133U/zh
Application granted granted Critical
Publication of CN206992133U publication Critical patent/CN206992133U/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/52PV systems with concentrators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

本实用新型公开了一种应用于多结太阳能电池的复合DBR结构,包括按层状结构依次叠加的3~15层AlAs/AlxOy/AlGaInAs组合层和5~25层AlInP/AlGaInP组合层,AlAs/AlxOy/AlGaInAs组合层和AlInP/AlGaInP组合层的层数总和不超过35层,AlInP/AlGaInP组合层是由层状叠加的AlInP层和AlGaInP层构成,AlAs/AlxOy/AlGaInAs组合层是由层状叠加的AlAs/AlxOy组合层和AlGaInAs层构成,AlAs/AlxOy组合层中的AlxOy是由一部分AlAs经过高温湿法氧化而成,且生成的AlxOy折射率比余下的AlAs低,从而能拓宽DBR的反射光子范围。本实用新型可以避免传统DBR结构反射光子能量的范围不够宽,造成E+ΔE范围内一部分高能粒子不能被有效吸收的情况,将DBR本身的优势作用发挥到极致。

Description

一种应用于多结太阳能电池的复合DBR结构
技术领域
本实用新型涉及太阳能光伏发电的技术领域,尤其是指一种应用于多结太阳能电池的复合DBR结构。
背景技术
近年来,不断有通讯报道航空航天科技取得令人瞩目的新成果,说明其相关领域的技术水也在不断进步和提高。其中,空间电源是航天器通信、数据传输、空间观测以及试验研究的能量来源,随着世界宇航业的迅猛发展和空间竞争的不断加剧,对空间主电源提出了更高的要求:长寿命、高功率、耐高温、低成本,这也是空间电源研究和提升的方向。
高效三结GaAs太阳电池与目前广泛使用的硅太阳电池相比,具有更高的光电转换效率、更强的抗辐照能力、更好的耐高温性能、更小的重量,是国际公认最具竞争力的新一代太阳电池,正在航天领域逐步得到广泛应用。但实际上,GaInP/GaAs/Ge三结太阳能电池作为砷化镓多结电池的主流结构,其带隙组合1.85/1.42/0.67eV对于太阳光光谱并不是最佳的,原因在于Ge底电池的短路电流要比中电池和顶电池的大很多,由于串联结构的电流限制原因,造成很大部分底电池电流转换成热量损失掉。为了提高电池性能,途径一是调整优化带隙组成,即通过提高中顶电池的In组分将带隙调整为1.82~1.87/1.3~1.4/0.67eV;途径二是增加电池结数充分吸收利用光谱能量,比如AlGaInP/AlGaInAs/GaInAs/Ga1-3yIn3yNyAs1-y/Ga1-3xIn3xNxAs1-x/Ge六结太阳能电池结构设计。目前,途径一是日渐趋于成熟的技术路线。设计与实验表明,为了将分段光谱能量充分吸收,各子电池厚度必须足够厚,基本在2~3.5微米,这种情况下,太阳能电池在太空环境中受到大量高能粒子辐照,材料质量变差,尤其是砷化物子电池更为严重,导致各子电池性能有不同程度地衰减,最终影响电池整体的性能。
研究表明,在子电池下方加入适当的DBR(Distributed Brag Reflector分布式布拉格反射层)结构可以在很大程度上使问题得到缓解。这是因为通过调节DBR结构反射相应波段的太阳光,可使初次没有被材料吸收的光子反射回去被二次吸收,相当于变相地增加了“有效吸收厚度”,因此该子电池设计厚度得以大幅降低,电池厚度减薄可以使电池的抗辐照性能显著提升,对于材料质量差少子寿命短的材料还可有效提高少子收集数量。
然而,传统DBR结构的反射波段较窄,不能够很好地涵盖子电池的吸收波段,比如带隙组合1.85/1.33/0.67eV三结电池的中子电池,本该吸收波段670~920nm,但由于材料本身性质的限制,传统DBR(一般为AlGaInAs/AlGaInAs组合层)反射波段仅涵盖150nm左右,导致部分光子不能被反射回有源区再次吸收利用。如果用两种DBR范围的组合层材料简单叠加,每套DBR必须生长足够的对数才会达到理想反射效果,这无疑会增加整体DBR厚度,提高外延源耗及时间成本。
发明内容
本实用新型的目的在于克服现有技术的缺点与不足,提供了一种应用于多结太阳能电池的复合DBR结构,可以避免传统DBR结构反射光子能量的范围不够宽,造成E+ΔE范围内一部分高能粒子不能被有效吸收的情况,将DBR本身的优势作用发挥到极致,最终提高电池整体光电转换效率。
为实现上述目的,本实用新型所提供的技术方案为:一种应用于多结太阳能电池的复合DBR结构,包括按层状结构依次叠加的3~15层AlAs/AlxOy/AlGaInAs组合层和5~25层AlInP/AlGaInP组合层,所述AlAs/AlxOy/AlGaInAs组合层和AlInP/AlGaInP组合层的层数总和不超过35层,且该AlAs/AlxOy/AlGaInAs组合层中的x=1,2,3,4…,y=1,2,3,4…;所述AlInP/AlGaInP组合层是由层状叠加的AlInP层和AlGaInP层构成,所述AlAs/AlxOy/AlGaInAs组合层是由层状叠加的AlAs/AlxOy组合层和AlGaInAs层构成,其中,所述AlAs/AlxOy组合层中的AlxOy是由一部分AlAs经过高温湿法氧化而成,且生成的AlxOy折射率比余下的AlAs低,从而能拓宽DBR的反射光子范围。
所述AlInP层、AlGaInP层、AlAs/AlxOy组合层、AlGaInAs层的厚度设计遵循公式:式中,d为厚度,λ为预计反射波段的中心反射波长,n为对应材料的折射率,其中,AlAs/AlxOy组合层选用AlxOy的折射率。
本实用新型与现有技术相比,具有如下优点与有益效果:
1、本实用新型的复合DBR结构联合高温湿法氧化的工艺较传统结构工艺有很大优势,一方面,采用AlAs/AlGaInAs、AlInP/AlGaInP组合DBR加氧化的方法可以在保持反射率效果的基础上展宽反射范围,使透射的光子被二次吸收的几率增加,有利于提高电池效率;另一方面,高温湿法工艺所需装置简单,控制参数为氧化炉压力、氧化温度和时间,在芯片端容易实现稳定工艺。此外,本实用新型的复合DBR总层数较常规DBR几乎没有增加,即不会增加外延成本。总之,本实用新型的复合DBR结构及氧化工艺可以使DBR的反射范围展宽到基本覆盖其子电池的吸收带宽,可进一步减薄基区厚度,降低外延成本,使砷化物子电池抗辐照性能得到一定程度的提升,并使一些材料质量差少子扩散长度较小(如:GaInNAs材料)的问题得到进一步缓解。
2、本实用新型的关键在于通过控制高温湿法氧化的时间等参数,可以准确控制高铝层的氧化深度,保证电池器件整体导通(保留的部分铝砷起连通电池作用,消除AlxOy不导电的影响),在提高太阳能电池转换效率的研究中,本实用新型的复合DBR结构作用可以得到更为极致地应用。
附图说明
图1为本实用新型所述复合DBR结构示意图。
图2为本实用新型所述复合DBR经高温湿法氧化后的效果示意图之一
图3为本实用新型所述复合DBR经高温湿法氧化后的效果示意图之二。
图4为含复合DBR结构的四结太阳能电池示意图。
具体实施方式
下面结合具体实施例对本实用新型作进一步说明。
如图1所示,本实施例所提供的复合DBR结构,包括按层状结构依次叠加的3~15层AlAs/AlxOy/AlGaInAs组合层1和5~25层AlInP/AlGaInP组合层2,所述AlAs/AlxOy/AlGaInAs组合层1和AlInP/AlGaInP组合层2的层数总和不超过35层,且该AlAs/AlxOy/AlGaInAs组合层中的x=1,2,3,4…,y=1,2,3,4…;所述AlInP/AlGaInP组合层2是由层状叠加的AlInP层21和AlGaInP层22构成,所述AlAs/AlxOy/AlGaInAs组合层是由层状叠加的AlAs/AlxOy组合层11和AlGaInAs层12构成,其中,所述AlAs/AlxOy组合层11中的AlxOy(即Al的氧化物)是由一部分AlAs经过高温湿法氧化而成,即AlAs/AlxOy组合层11实质是由AlAs层13通过高温湿法氧化工艺转变而成,具体请见图2和图3所示,且生成的AlxOy折射率比余下的AlAs低,由于生成物AlxOy具有更低的折射率,这样可使得复合DBR反射光子范围拓宽,而保留的部分AlAs起连通电池作用,消除AlxOy不导电的影响。
此外,所述AlInP层21、AlGaInP层22、AlAs/AlxOy组合层11、AlGaInAs层12的厚度设计遵循公式:式中,d为厚度,λ为预计反射波段的中心反射波长,n为对应材料的折射率,其中,AlAs/AlxOy组合层11选用AlxOy的折射率。
如图4所示,为含本实施例上述复合DBR结构的四结太阳能电池,该四结太阳能电池是采用金属有机物化学气相沉积(MOCVD)技术,外延生长过程中沉积复合DBR,电池芯片制程中添加高温湿法氧化的工艺流程。其中,所述四结太阳能电池以Ge单晶片为衬底,即采用Ge衬底01,在所述Ge衬底01上按照层状叠加结构由下至上依次设置有GaInP/GaInAs渐变缓冲层02、第一套复合DBR03、GaInAs子电池04、第二套复合DBR05、AlGaInAs子电池06和AlGaInP子电池07,各子电池之间由隧道结08连接。
所述第一套复合DBR03的反射波长为780~950nm,AlAs/AlxOy/AlGaInAs组合层1的层数为8层,AlInP/AlGaInP组合层2的层数为18层。
所述GaInAs子电池04中GaInAs材料的光学带隙约为1.25~1.3eV。
所述第二套复合DBR05的反射波长为600~780nm,AlAs/AlxOy/AlGaInAs组合层1的层数为6层,AlInP/AlGaInP组合层2的层数为14层。
所述AlGaInAs子电池06中AlGaInAs材料的光学带隙约为1.5~1.6eV。
所述AlGaInP子电池07中AlGaInP材料的光学带隙约为2.1~2.15eV。
本实施例上述的高温湿法氧化工艺作为一种特殊工艺处理步骤,设在芯片制程中的适当工艺段(本实施例优选安排在切割且蒸镀电极保护层之后),经高温湿法氧化后,复合DBR中的一部分AlAs被氧化生成AlxOy和AsH3有毒气体,具体工艺步骤如下:
步骤一:将裸露出切割边的样品(该样品上已沉积有按层状结构依次叠加的3~15层AlAs/AlGaInAs组合层和5~25层AlInP/AlGaInP组合层,其中所述的AlAs/AlGaInAs组合层是由层状叠加的AlAs层13和AlGaInAs层12构成)放置在反应舟内;
步骤二:反应舟置放在密闭腔室,腔室压力恒定(本实施例优先选用1atm),温度100~300℃(本实施例优先选用260℃);
步骤三:以氮气为载气,将载有水蒸气的混合气通入腔室,并记录氧化时间,其中在氧化的过程当中,AlAs层13的部分结构被氧化,生成AlxOy和AsH3有毒气体,即所述AlAs层13最终会被氧化成所需的AlAs/AlxOy组合层11;
步骤四:将尾气(具体是AsH3有毒气体)排出,进行专业妥善处理(本实施例优选通入喷淋式尾气处理器)。
此外,经多次实验验证AlAs氧化总深度不超过电池芯片长度的2/3,而较佳氧化层效果示意图请参见图2和图3所示。
经验证,利用本方案制备的四结太阳能电池,在各子电池的带隙得以优化基础上,结合使用具有更为优异反光效果的DBR可使GaInAs和AlGaInAs子电池更多地吸收太阳光子,显著减弱其对四结太阳能电池短路电流的限流程度,提高转换效率。分析可知,在AM0条件下,传统DBR结构的四结太阳能电池的短路电流(Isc)为16.0mA/cm2,而具有本实用新型的复合DBR结构的四结太阳能电池的Isc可达17.0mA/cm2,且其转换效率可提高至33.4%,具体请参见下表1所示。
表1AM0条件下,含传统DBR结构的四结太阳能电池与含本实用新型的复
合DBR结构的四结太阳能电池的性能比较
电池类型 Isc(mA/cm2) Voc(mV) Pm(W/m2) FF(%) Eff(%)
传统DBR 16.0 3250 441.82 85 32.6
复合DBR 17.0 3210 452.31 83 33.4
以上所述实施例只为本实用新型之较佳实施例,并非以此限制本实用新型的实施范围,故凡依本实用新型之形状、原理所作的变化,均应涵盖在本实用新型的保护范围内。

Claims (2)

1.一种应用于多结太阳能电池的复合DBR结构,其特征在于:包括按层状结构依次叠加的3~15层AlAs/AlxOy/AlGaInAs组合层和5~25层AlInP/AlGaInP组合层,所述AlAs/AlxOy/AlGaInAs组合层和AlInP/AlGaInP组合层的层数总和不超过35层,且该AlAs/AlxOy/AlGaInAs组合层中的x=1,2,3,4…,y=1,2,3,4…;所述AlInP/AlGaInP组合层是由层状叠加的AlInP层和AlGaInP层构成,所述AlAs/AlxOy/AlGaInAs组合层是由层状叠加的AlAs/AlxOy组合层和AlGaInAs层构成,其中,所述AlAs/AlxOy组合层中的AlxOy是由一部分AlAs经过高温湿法氧化而成,且生成的AlxOy折射率比余下的AlAs低,从而能拓宽DBR的反射光子范围。
2.根据权利要求1所述的一种应用于多结太阳能电池的复合DBR结构,其特征在于:所述AlInP层、AlGaInP层、AlAs/AlxOy组合层、AlGaInAs层的厚度设计遵循公式:式中,d为厚度,λ为预计反射波段的中心反射波长,n为对应材料的折射率,其中,AlAs/AlxOy组合层选用AlxOy的折射率。
CN201720875673.0U 2017-07-19 2017-07-19 一种应用于多结太阳能电池的复合dbr结构 Active CN206992133U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201720875673.0U CN206992133U (zh) 2017-07-19 2017-07-19 一种应用于多结太阳能电池的复合dbr结构

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201720875673.0U CN206992133U (zh) 2017-07-19 2017-07-19 一种应用于多结太阳能电池的复合dbr结构

Publications (1)

Publication Number Publication Date
CN206992133U true CN206992133U (zh) 2018-02-09

Family

ID=61405251

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201720875673.0U Active CN206992133U (zh) 2017-07-19 2017-07-19 一种应用于多结太阳能电池的复合dbr结构

Country Status (1)

Country Link
CN (1) CN206992133U (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111276560A (zh) * 2020-02-14 2020-06-12 扬州乾照光电有限公司 砷化镓太阳电池及其制造方法
US10916678B2 (en) * 2019-04-16 2021-02-09 National Central University Method of substrate lift-off for high-efficiency group III-V solar cell for reuse

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10916678B2 (en) * 2019-04-16 2021-02-09 National Central University Method of substrate lift-off for high-efficiency group III-V solar cell for reuse
CN111276560A (zh) * 2020-02-14 2020-06-12 扬州乾照光电有限公司 砷化镓太阳电池及其制造方法

Similar Documents

Publication Publication Date Title
Philipps et al. High-efficiency III–V multijunction solar cells
King et al. Next-generation, high-efficiency III-V multijunction solar cells
TWI600173B (zh) 在中間電池中具有低能隙吸收層之多接面太陽能電池及其製造方法
TWI542026B (zh) 高效多接面太陽能電池
EP3159935A2 (en) High efficiency multijunction photovoltaic cells
US20130130431A1 (en) Lattice Matchable Alloy for Solar Cells
CN101533863B (zh) 一种高效单片式四结太阳电池
CN106067493A (zh) 一种微晶格失配量子阱太阳能电池及其制备方法
CN105355680B (zh) 一种晶格匹配的六结太阳能电池
CN206992133U (zh) 一种应用于多结太阳能电池的复合dbr结构
Mintairov et al. InGaAs quantum well-dots based GaAs subcell with enhanced photocurrent for multijunction GaInP/GaAs/Ge solar cells
CN105355670B (zh) 一种含dbr结构的五结太阳能电池
Huang et al. Four-junction AlGaAs/GaAs laser power converter
CN109148621B (zh) 一种双面生长的高效六结太阳能电池及其制备方法
CN107221574B (zh) 应用于多结太阳能电池的复合dbr结构及其制备方法
Karzazi et al. Inorganic photovoltaic cells: Operating principles, technologies and efficiencies-Review
CN109148622A (zh) 一种双面用高效太阳能电池及其制备方法
CN106653926B (zh) 一种等离激元增强GaAs基多结太阳电池及其制备方法
CN105810760A (zh) 一种晶格匹配的五结太阳能电池及其制作方法
CN204315612U (zh) 一种含量子结构的双面生长四结太阳电池
CN103000740A (zh) GaAs/GaInP双结太阳能电池及其制作方法
CN102738292A (zh) 多结叠层电池及其制备方法
Li et al. > 35% 5-junction space solar cells based on the direct bonding technique
CN205385027U (zh) 一种含dbr结构的五结太阳能电池
CN205385028U (zh) 一种晶格匹配的六结太阳能电池

Legal Events

Date Code Title Description
GR01 Patent grant
GR01 Patent grant