CN111266598A - 手性金属纳米螺旋纤维阵列的制备方法 - Google Patents

手性金属纳米螺旋纤维阵列的制备方法 Download PDF

Info

Publication number
CN111266598A
CN111266598A CN201811479014.0A CN201811479014A CN111266598A CN 111266598 A CN111266598 A CN 111266598A CN 201811479014 A CN201811479014 A CN 201811479014A CN 111266598 A CN111266598 A CN 111266598A
Authority
CN
China
Prior art keywords
metal
fiber array
chiral
substrate
inducer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201811479014.0A
Other languages
English (en)
Other versions
CN111266598B (zh
Inventor
车顺爱
刘泽栖
段瑛滢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tongji University
Original Assignee
Tongji University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tongji University filed Critical Tongji University
Priority to CN201811479014.0A priority Critical patent/CN111266598B/zh
Priority to PCT/CN2018/124281 priority patent/WO2020113724A1/zh
Publication of CN111266598A publication Critical patent/CN111266598A/zh
Application granted granted Critical
Publication of CN111266598B publication Critical patent/CN111266598B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Metal Powder And Suspensions Thereof (AREA)
  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明的目的在于解决上述问题,提供一种既能够实现精细结构调控又能够不残留模板等有机物的手性金属纳米螺旋纤维阵列的制备方法,该制备方法包括如下步骤:步骤S1,将基板放入氨基硅烷化试剂中静置一段时间后取出并洗涤;步骤S2,将步骤S1洗涤后的基板放入含有金属种的溶液中浸泡从而负载金属种;步骤S3,将负载了金属种的基板放入含有金属源及诱导剂的混合溶液中,加入还原剂进行预定时间的生长反应,从而让基板上生长金属螺旋纤维阵列;步骤S4,去除金属螺旋纤维阵列中残留的诱导剂,其中,诱导剂为手性诱导剂。

Description

手性金属纳米螺旋纤维阵列的制备方法
技术领域
本发明涉及一种手性金属纳米螺旋纤维阵列的制备方法。
背景技术
金属纳米材料具有高电子密度、介电特性和催化能力,具有能与多种生物大分子结合并且不影响生物活性的优点,因而在分析检测、生物传感、疾病治疗等领域具有广泛的应用。
目前,人们已经通过物理方法或化学方法合成出各种不同形貌的金属纳米材料,包括具有手性特质的金属纳米材料。其中,物理方法是通过掠射角沉积等方式来控制金属材料的形貌,化学方法是通过引入模板来改变金属材料的形貌。
然而,物理方法存在难以进行精细结构调控的问题,化学方法则存在去除模板后材料手性结构无法保留的问题,使得现有的手性金属材料的应用受到限制。
发明内容
本发明的目的在于解决上述问题,提供一种既能够实现精细结构调控又能够不残留模板等有机物的手性金属纳米螺旋纤维阵列的制备方法,该制备方法包括如下步骤:步骤S1,将基板放入氨基硅烷化试剂中静置一段时间后取出并洗涤;步骤S2,将步骤S1洗涤后的基板放入含有金属种的溶液中浸泡从而负载金属种;步骤S3,将负载了金属种的基板放入含有金属源及诱导剂的混合溶液中,加入还原剂进行预定时间的生长反应,从而让基板上生长金属螺旋纤维阵列;步骤S4,去除金属螺旋纤维阵列中残留的诱导剂,其中,诱导剂为手性诱导剂。
本发明提供的手性金属纳米螺旋纤维阵列的制备方法,还可以具有这样的技术特征,其中,步骤S3的混合溶液还含有稳定剂,该稳定剂为4-巯基苯甲酸,含量为2mM~8mM。
本发明提供的手性金属纳米螺旋纤维阵列的制备方法,还可以具有这样的技术特征,其中,步骤S2中的金属种为金种、银种中的一种或二者的混合物,步骤S3中的金属源为金源、银源中的一种或二者的混合物。
本发明提供的手性金属纳米螺旋纤维阵列的制备方法,还可以具有这样的技术特征,其中,手性诱导剂为含有巯基的手性化合物或含有巯基的蛋白质。
本发明提供的手性金属纳米螺旋纤维阵列的制备方法,还可以具有这样的技术特征,其中,含有巯基的手性化合物为N-乙酰-L-半胱氨酸或N-乙酰-D-半胱氨酸,含有巯基的蛋白质为胰蛋白酶或糜蛋白酶。
本发明提供的手性金属纳米螺旋纤维阵列的制备方法,还可以具有这样的技术特征,其中,步骤S4中去除金属螺旋纤维阵列基板中残留的诱导剂采用电化学方法,电化学方法为循环伏安法。
本发明提供的手性金属纳米螺旋纤维阵列的制备方法,还可以具有这样的技术特征,其中,步骤S3的还原剂为抗坏血酸。
本发明提供的手性金属纳米螺旋纤维阵列的制备方法,还可以具有这样的技术特征,其中,步骤S3中,预定时间为5分钟-30分钟。
本发明提供的手性金属纳米螺旋纤维阵列的制备方法,还可以具有这样的技术特征,其中,基板为硅基板或石英基板。
本发明提供的手性金属纳米螺旋纤维阵列的制备方法,还可以具有这样的技术特征,其中,基板为经过预先清洗的基板,该预先清洗的方式为:将基板放入含有浓硫酸及过氧化氢的混合溶液中加热、超声,然后取出用去离子水洗涤。
发明作用与效果
根据本发明提供的手性金属纳米螺旋纤维阵列的制备方法,由于采用了手性诱导剂对纳米纤维的生长过程进行手性诱导,让金属材料形成具有手性的形貌结构,并且,由于该手性诱导剂通过诱导的方式让金属材料自发地组装形成手性结构,因此在去除后还能让手性结构得以保留。与现有技术中的去除模板后就丧失手性的手性金属材料相比,本发明的金属纳米螺旋纤维阵列制备方法具有过程简单、成本低、产物应用广泛等优点。
附图说明
图1为本发明的手性金属纳米螺旋纤维阵列的制备流程图;
图2是本发明实施例一的L型金纳米螺旋纤维阵列的低倍扫描电镜照片;
图3是本发明实施例一的L型金纳米螺旋纤维阵列的高倍扫描电镜照片;图4是本发明实施例一的L型金纳米螺旋纤维阵列的低倍透射电镜照片;
图5是本发明实施例一的L型金纳米螺旋纤维阵列的高倍透射电镜照片;
图6是本发明实施例一的金纳米螺旋纤维阵列的圆二色光谱;
图7是本发明实施例二的4-巯基苯甲酸用量为3.45mM的L型金纳米螺旋纤维阵列的低倍扫描电镜照片;
图8是本发明实施例二的4-巯基苯甲酸用量为3.45mM的L型金纳米螺旋纤维阵列的高倍扫描电镜照片;
图9是本发明实施例二的4-巯基苯甲酸用量为4.14mM的L型金纳米螺旋纤维阵列的低倍扫描电镜照片;
图10是本发明实施例二的4-巯基苯甲酸用量为4.14mM的L型金纳米螺旋纤维阵列的高倍扫描电镜照片;
图11是本发明实施例二的4-巯基苯甲酸用量为2.76mM的L型金纳米螺旋纤维阵列的低倍扫描电镜照片;
图12是本发明实施例二的4-巯基苯甲酸用量为2.76mM的L型金纳米螺旋纤维阵列的高倍扫描电镜照片;
图13是本发明对比例的金纳米纤维阵列的低倍扫描电镜照片;
图14是本发明对比例的金纳米纤维阵列的高倍扫描电镜照片。
具体实施方式
以下结合附图来说明本发明的具体实施方式。
<实施例一>
图1为本发明的手性金属纳米螺旋纤维阵列的制备流程图。
如图1所示,本发明的金属纳米螺旋纤维阵列的制备方法具体包括如下步骤:
步骤S1,将基板放入氨基硅烷化试剂中静置一段时间后取出并洗涤;
步骤S2,将步骤S1洗涤后的基板放入含有金属种的溶液中浸泡从而负载金属种;
步骤S3,将负载了金属种的基板放入含有金属源及诱导剂的混合溶液中,加入还原剂进行预定时间的生长反应,从而让基板上生长金属螺旋纤维阵列得到金属螺旋纤维阵列基板,其中诱导剂为手性诱导剂;
步骤S4,去除金属螺旋纤维阵列基板中残留的诱导剂。
本实施例为金纳米螺旋纤维阵列的制备。具体地,上述过程中,步骤S1所采用的基板为预先清洗的硅基板,该预先清洗的方式为:将硅基板放入含有浓硫酸及过氧化氢(浓硫酸与过氧化氢的体积比为3:1)的混合溶液中60℃加热2小时,再超声半小时,然后取出用去离子水洗涤三次。
步骤S1所采用的氨基硅烷化试剂为5mM的3-氨丙基三乙氧基硅烷溶液,静置时间为2小时。
步骤S2的金属种为金种,浸泡时间为2小时。
步骤S3的金属源为氯金酸,诱导剂为手性诱导剂N-乙酰-L-半胱氨酸,还原剂为抗坏血酸。具体地,诱导剂和还原剂混合溶液中含有3.45mM的手性诱导剂(N-乙酰-L-半胱氨酸或N-乙酰-D-半胱氨酸)、2.76mM 4-巯基苯甲酸、8.62mM的氯金酸以及20.69mM的抗坏血酸。
步骤S3的生长反应在室温下静置进行,反应的预定时间为15分钟。另外,步骤S3中,得到金属螺旋纤维阵列基板后先用无水乙醇洗涤三次,然后再进行干燥。
步骤S4的去除残留的诱导剂采用电化学方法,具体为循环伏安法。
本实施例中,采用N-乙酰-L半胱氨酸作为诱导剂制备了L型金纳米螺旋纤维阵列,同时还采用N-乙酰-D-半胱氨酸作为诱导剂制备了R型金纳米螺旋纤维阵列。
图2是本发明实施例一的L型金纳米螺旋纤维阵列的低倍扫描电镜照片,图3是本发明实施例一的L型金纳米螺旋纤维阵列的高倍扫描电镜照片,图4是本发明实施例一的L型金纳米螺旋纤维阵列的低倍透射电镜照片,图5是本发明实施例一的L型金纳米螺旋纤维阵列的高倍透射电镜照片。
从图2-图5可以看出,本实施例制备得到的金纳米螺旋纤维阵列由整齐排列的单股金纳米螺旋纤维构成,每根金纳米螺旋纤维的直径约为10nm。经推算,每根金纳米螺旋纤维的螺距约为50nm。
图6是本发明实施例一的金纳米螺旋纤维阵列的圆二色光谱。图6中,L-Au NHWs为L型金纳米螺旋纤维阵列,R-Au NHWs为R型金纳米螺旋纤维阵列。
如图6所示,L型金纳米螺旋纤维阵列和R型金纳米螺旋纤维阵列具有明显的圆二色性,说明二者具有相反的手性。
<实施例二>
本实施例为不同条件制备得到的金纳米螺旋纤维阵列的实验。
本实施例一共制备了三种金纳米螺旋纤维阵列,该三种的制备过程与实施例一相同,但条件有所不同,具体如下:
第一种:步骤S3中的4-巯基苯甲酸用量改为3.45mM;
第二种:步骤S3中的4-巯基苯甲酸用量改为4.14mM;
第三种:步骤S3中采用N-乙酰L-半胱氨酸,其用量改为2.76mM。
图7是本发明实施例二的4-巯基苯甲酸用量为3.45mM的L型金纳米螺旋纤维阵列的低倍扫描电镜照片,图8是本发明实施例二的4-巯基苯甲酸用量为3.45mM的L型金纳米螺旋纤维阵列的高倍扫描电镜照片。
如图7及图8所示,当4-巯基苯甲酸用量为3.45mM时,每根金纳米螺旋纤维的直径约为12nm,同时每根金纳米螺旋纤维的螺距约为60nm。
图9是本发明实施例二的4-巯基苯甲酸用量为4.14mM的L型金纳米螺旋纤维阵列的低倍扫描电镜照片,图10是本发明实施例二的4-巯基苯甲酸用量为4.14mM的L型金纳米螺旋纤维阵列的高倍扫描电镜照片。
如图9及图10所示,当4-巯基苯甲酸用量为4.14mM时,每根金纳米螺旋纤维的直径约为15nm,同时每根金纳米螺旋纤维的螺距约为75nm。
图11是本发明实施例二的4-巯基苯甲酸用量为2.76mM的L型金纳米螺旋纤维阵列的低倍扫描电镜照片,图12是本发明实施例二的4-巯基苯甲酸用量为2.76mM的L型金纳米螺旋纤维阵列的高倍扫描电镜照片。
如图11及图12所示,当4-巯基苯甲酸用量为2.76mM时,每根金纳米螺旋纤维的直径约为7nm,同时每根金纳米螺旋纤维的螺距约为35nm。
经检测,本实施例所制备的三种金纳米螺旋纤维阵列也具有与实施例一的金纳米螺旋纤维阵列相类似的明显的圆二色性。
<实施例三>
本实施例为不同金属源制备得到的金属纳米螺旋纤维阵列的实验,具体为金-银纳米螺旋纤维阵列的制备实验。
本实施例中,金-银纳米螺旋纤维阵列的制备方法前四个步骤与实施例的步骤S1-步骤S3相同。不同之处在于,步骤S3的生长反应还包括银的生长步骤,具体如下:
将生长反应得到的金纳米螺旋纤维阵列放入含有5mM的硝酸银、10mM抗坏血酸的溶液中,静置反应5分钟,取出,乙醇洗三次,干燥后得金-银纳米螺旋纤维阵列。
然后,将干燥后的金-银纳米螺旋纤维阵列进行有机物去除操作,即得具有手性的金-银纳米螺旋纤维阵列。
经电镜扫描检测,本实施例的金-银纳米螺旋纤维阵列也呈现出整齐排列的螺旋纤维形貌,说明采用混合金属源进行分步骤的生长反应也能够得到相应的螺旋纤维阵列材料。另外,该金-银纳米螺旋纤维阵列也具有明显的圆二色性。
<对比例>
本对比例为不采用实施例的诱导剂进行金纳米纤维阵列制备的实验。即,本对比例的制备过程中,步骤S3的混合溶液里未添加诱导剂。
图13是本发明对比例的金纳米纤维阵列的低倍扫描电镜照片,图14是本发明对比例的金纳米纤维阵列的高倍扫描电镜照片。
如图13及图14所示,当不使用手性诱导剂时,制备得到的金纳米纤维阵列中,纳米纤维的直径约为10nm,但均不具有明显的螺旋形貌。另外,这种金纳米纤维阵列也不具有圆二色性。
实施例作用与效果
从上述实施例可以看出,由于采用了手性诱导剂对纳米纤维的生长过程进行手性诱导,让金属材料形成具有手性的形貌结构,并且,该手性诱导剂在去除后还能让手性结构得以保留,因此其制备得到的金属纳米螺旋纤维阵列可以应用于手性催化、手性识别等领域。总的来说,本发明的金属纳米螺旋纤维阵列制备方法具有合成简单、成本低,产物应用广泛等优点。
由于上述制备过程中采用了含量为2mM~8mM的4-巯基苯甲酸作为稳定剂,因此能够让金属材料形成的纤维状形貌更加稳定。同时,参见实施例二,稳定剂(即4-巯基苯甲酸)的加入量与金纳米螺旋的直径、螺距呈正相关,因此调节稳定剂的加入量即可对螺旋的形貌进行调控。
由于诱导剂为N-乙酰-L-半胱氨酸或N-乙酰-D-半胱氨酸,因此能够让金属材料在形成纤维的过程中扭曲,最终得到螺旋状的纤维形貌。另外,由于采用电化学方法去除残留的有机物,因此能够有效去除诱导剂并让金属材料的螺旋状纤维形貌得以保留,在手性催化、手性识别等领域应用时不受残留有机物干扰。
上述实施例仅用于举例说明本发明的具体实施方式,而本发明的制备方法不限于上述实施例的描述范围。
例如,实施例中,诱导剂采用N-乙酰-L-半胱氨酸或N-乙酰-D-半胱氨酸,但在本发明中,诱导剂还可以采用其他的含有巯基的手性化合物或含有巯基的蛋白质,例如胰蛋白酶或糜蛋白酶。
实施例中,氨基硅烷化试剂为3-氨丙基三乙氧基硅烷,但在本发明中,该氨基硅烷化试剂还可以是3-氨丙基三甲氧基硅烷等其他种类的氨基硅烷化试剂。

Claims (10)

1.一种手性金属纳米螺旋纤维阵列的制备方法,其特征在于,包括如下步骤:
步骤S1,将基板放入氨基硅烷化试剂中静置一段时间后取出并洗涤;
步骤S2,将步骤S1洗涤后的所述基板放入含有金属种的溶液中浸泡从而负载金属种;
步骤S3,将负载了金属种的所述基板放入含有金属源及诱导剂的混合溶液中,加入还原剂进行预定时间的生长反应,从而让所述基板上生长金属螺旋纤维阵列;
步骤S4,去除所述金属螺旋纤维阵列中残留的诱导剂,
其中,所述诱导剂为手性诱导剂。
2.根据权利要求1所述的手性金属纳米螺旋纤维阵列的制备方法,其特征在于:
其中,步骤S3的所述混合溶液还含有稳定剂,该稳定剂为4-巯基苯甲酸,含量为2mM~8mM。
3.根据权利要求1所述的手性金属纳米螺旋纤维阵列的制备方法,其特征在于:
其中,步骤S2中的所述金属种为金种、银种中的一种或二者的混合物,
步骤S3中的所述金属源为金源、银源中的一种或二者的混合物。
4.根据权利要求1所述的手性金属纳米螺旋纤维阵列的制备方法,其特征在于:
其中,所述手性诱导剂为含有巯基的手性化合物或含有巯基的蛋白质。
5.根据权利要求4所述的手性金属纳米螺旋纤维阵列的制备方法,其特征在于:
其中,所述含有巯基的手性化合物为N-乙酰-L-半胱氨酸或N-乙酰-D-半胱氨酸,
所述含有巯基的蛋白质为胰蛋白酶或糜蛋白酶。
6.根据权利要求1所述的手性金属纳米螺旋纤维阵列的制备方法,其特征在于:
其中,步骤S4中去除所述金属螺旋纤维阵列基板中残留的诱导剂采用电化学方法,
所述电化学方法为循环伏安法。
7.根据权利要求6所述的手性金属纳米螺旋纤维阵列的制备方法,其特征在于:
其中,步骤S3的所述还原剂为抗坏血酸。
8.根据权利要求1所述的手性金属纳米螺旋纤维阵列的制备方法,其特征在于:
其中,步骤S3中,所述预定时间为5分钟-30分钟。
9.根据权利要求1所述的手性金属纳米螺旋纤维阵列的制备方法,其特征在于:
其中,所述基板为硅基板或石英基板。
10.根据权利要求1所述的手性金属纳米螺旋纤维阵列的制备方法,其特征在于:
其中,所述基板为经过预先清洗的基板,该预先清洗的方式为:
将所述基板放入含有浓硫酸及过氧化氢的混合溶液中加热、超声,然后取出用去离子水洗涤。
CN201811479014.0A 2018-12-05 2018-12-05 手性金属纳米螺旋纤维阵列的制备方法 Active CN111266598B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201811479014.0A CN111266598B (zh) 2018-12-05 2018-12-05 手性金属纳米螺旋纤维阵列的制备方法
PCT/CN2018/124281 WO2020113724A1 (zh) 2018-12-05 2018-12-27 手性金属纳米螺旋纤维阵列的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811479014.0A CN111266598B (zh) 2018-12-05 2018-12-05 手性金属纳米螺旋纤维阵列的制备方法

Publications (2)

Publication Number Publication Date
CN111266598A true CN111266598A (zh) 2020-06-12
CN111266598B CN111266598B (zh) 2022-06-21

Family

ID=70975246

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811479014.0A Active CN111266598B (zh) 2018-12-05 2018-12-05 手性金属纳米螺旋纤维阵列的制备方法

Country Status (2)

Country Link
CN (1) CN111266598B (zh)
WO (1) WO2020113724A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114082971A (zh) * 2020-08-05 2022-02-25 上海交通大学 手性金属纳米螺旋纤维阵列的制备方法及应用

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005146462A (ja) * 2003-11-14 2005-06-09 New Industry Research Organization ペプチドで構成されるナノファイバーとその製法
US20050130258A1 (en) * 2001-11-08 2005-06-16 Trent Jonathan D. Ordered biological nanostructures formed from chaperonin polypeptides
WO2011014929A1 (en) * 2009-08-07 2011-02-10 Commonwealth Scientific And Industrial Research Organisation Deposition of metals
KR20130013372A (ko) * 2011-07-28 2013-02-06 연세대학교 산학협력단 투명 전도성 기판에 수직으로 배열된 고집적의 이산화티타늄 나노로드의 제조방법 및 이를 이용한 염료감응 태양전지
CN104259477A (zh) * 2014-09-29 2015-01-07 江南大学 一种液相制备手性银纳米链的方法
CN104311142A (zh) * 2014-09-30 2015-01-28 东南大学 一种垂直生长TiO2纳米片及其制备方法
CN104975376A (zh) * 2015-06-12 2015-10-14 国家纳米科学中心 一种手性纳米纤维及其制备方法和应用
CN105621352A (zh) * 2015-12-31 2016-06-01 江南大学 一种具有手性的金纳米粒子单层薄膜的制备方法
CN105618783A (zh) * 2015-01-28 2016-06-01 江苏科技大学 一种具有光学活性银纳米粒子的制备方法
US20160167136A1 (en) * 2014-11-14 2016-06-16 The Regents Of The University Of Michigan Synthesis of chiral nanoparticles using circularly polarized light
US20160251769A1 (en) * 2015-02-26 2016-09-01 Northrop Grumman Systems Corporation Thermal interface materials using metal nanowire arrays and sacrificial templates

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103864134B (zh) * 2014-03-07 2016-07-06 上海交通大学 一种具有光学活性的手性纳米氧化铜的制备方法
CN107904734B (zh) * 2017-11-22 2020-06-23 哈尔滨工业大学 一种高强、高弹性导电纤维及其制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050130258A1 (en) * 2001-11-08 2005-06-16 Trent Jonathan D. Ordered biological nanostructures formed from chaperonin polypeptides
JP2005146462A (ja) * 2003-11-14 2005-06-09 New Industry Research Organization ペプチドで構成されるナノファイバーとその製法
WO2011014929A1 (en) * 2009-08-07 2011-02-10 Commonwealth Scientific And Industrial Research Organisation Deposition of metals
KR20130013372A (ko) * 2011-07-28 2013-02-06 연세대학교 산학협력단 투명 전도성 기판에 수직으로 배열된 고집적의 이산화티타늄 나노로드의 제조방법 및 이를 이용한 염료감응 태양전지
CN104259477A (zh) * 2014-09-29 2015-01-07 江南大学 一种液相制备手性银纳米链的方法
CN104311142A (zh) * 2014-09-30 2015-01-28 东南大学 一种垂直生长TiO2纳米片及其制备方法
US20160167136A1 (en) * 2014-11-14 2016-06-16 The Regents Of The University Of Michigan Synthesis of chiral nanoparticles using circularly polarized light
CN105618783A (zh) * 2015-01-28 2016-06-01 江苏科技大学 一种具有光学活性银纳米粒子的制备方法
US20160251769A1 (en) * 2015-02-26 2016-09-01 Northrop Grumman Systems Corporation Thermal interface materials using metal nanowire arrays and sacrificial templates
CN104975376A (zh) * 2015-06-12 2015-10-14 国家纳米科学中心 一种手性纳米纤维及其制备方法和应用
CN105621352A (zh) * 2015-12-31 2016-06-01 江南大学 一种具有手性的金纳米粒子单层薄膜的制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
李京民等: "手性多孔嵌段共聚物薄膜诱导手性金纳米粒子的手性组装", 《功能高分子学报》 *
王旭东: "金纳米结构的构筑及其折射率传感性质研究", 《中国优秀博硕士学位论文全文数据库(硕士)工程科技Ⅰ辑》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114082971A (zh) * 2020-08-05 2022-02-25 上海交通大学 手性金属纳米螺旋纤维阵列的制备方法及应用

Also Published As

Publication number Publication date
WO2020113724A1 (zh) 2020-06-11
CN111266598B (zh) 2022-06-21

Similar Documents

Publication Publication Date Title
CN111529756B (zh) 一种骨科植入器械表面涂层的制备方法
CN106913910A (zh) 一种丝素蛋白/石墨烯复合纳米纤维支架材料的制备方法
CN102520042B (zh) 一种用于检测多巴胺的掺硼金刚石薄膜电极的制备方法
CN104028742B (zh) 钛纳米棒-聚多巴胺-共掺杂锌和银复合材料及其制备与应用
CN111266598B (zh) 手性金属纳米螺旋纤维阵列的制备方法
CN107007877B (zh) 一种胶原蛋白膜包裹的氧化石墨烯/纳米银涂层制备方法
CN110064075A (zh) 一种基于纳米银/d-半胱氨酸的自组装抗菌涂层及制备方法
US20100101939A1 (en) Method For Preparing Zinc Oxide Nano Rod Substrate
CN104233436A (zh) 一种壳聚糖/明胶/纳米银导电抗菌生物材料及其制备方法
KR101400888B1 (ko) 플라즈마 처리된 바이오폴리머를 이용한 세포 흡착을 조절하는 표면 제조방법
CN106222718B (zh) 一种羧甲基纤维素的电沉积方法
CN113340961A (zh) 一种柔性无酶葡萄糖传感器电极及其制备方法
CN109972116A (zh) 金刚石管及其制备方法
CN101165469B (zh) 一种蛋白质包覆的硫化银纳米线的制备方法
CN104192789A (zh) 一种纳米/微米金膜及其制备方法
CN110429032B (zh) 一种基于Ni3(HITP)2导电MOF薄膜的场效应晶体管的制备方法
CN104984394B (zh) 医用金属植入体表面壳聚糖季铵盐/胶原复合涂层的制备方法
CN111477265B (zh) 一种功能化石墨烯薄膜在冷冻电镜三维重构中的应用
CN105806907A (zh) 一种制备微电极的方法
CN107496984B (zh) 一种负载纳米硅酸二钙/纳米银的壳聚糖凝胶及其制备方法和应用
CN109056030A (zh) 一种超疏水二氧化钛纳米管阵列薄膜及其制备方法
Mao et al. Templated freezing assembly precisely regulates molecular assembly for free-standing centimeter-scale microtextured nanofilms
CN111647952B (zh) 细胞膜包覆纳米拓扑结构阵列的制备方法及应用
CN114082971A (zh) 手性金属纳米螺旋纤维阵列的制备方法及应用
CN1680622A (zh) 镍钛合金复合化学镀载药镍钴钨薄膜的镀液和工艺方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 200092 Siping Road 1239, Shanghai, Yangpu District

Applicant after: TONGJI University

Address before: 200092 Siping Road 1239, Shanghai, Hongkou District

Applicant before: TONGJI University

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant