CN111258186A - 筛选sraf在光刻胶上显影的光强阈值和预测其被曝光显影的风险的方法 - Google Patents

筛选sraf在光刻胶上显影的光强阈值和预测其被曝光显影的风险的方法 Download PDF

Info

Publication number
CN111258186A
CN111258186A CN202010145930.1A CN202010145930A CN111258186A CN 111258186 A CN111258186 A CN 111258186A CN 202010145930 A CN202010145930 A CN 202010145930A CN 111258186 A CN111258186 A CN 111258186A
Authority
CN
China
Prior art keywords
photoresist
light intensity
sraf
isolated
developing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010145930.1A
Other languages
English (en)
Other versions
CN111258186B (zh
Inventor
邹先梅
于世瑞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanghai Huali Integrated Circuit Manufacturing Co Ltd
Original Assignee
Shanghai Huali Integrated Circuit Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanghai Huali Integrated Circuit Manufacturing Co Ltd filed Critical Shanghai Huali Integrated Circuit Manufacturing Co Ltd
Priority to CN202010145930.1A priority Critical patent/CN111258186B/zh
Publication of CN111258186A publication Critical patent/CN111258186A/zh
Application granted granted Critical
Publication of CN111258186B publication Critical patent/CN111258186B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70558Dose control, i.e. achievement of a desired dose
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/70605Workpiece metrology
    • G03F7/70616Monitoring the printed patterns
    • G03F7/70633Overlay, i.e. relative alignment between patterns printed by separate exposures in different layers, or in the same layer in multiple exposures or stitching

Abstract

本发明涉及一种筛选SRAF在光刻胶上显影的光强阈值和预测其被曝光显影的风险的方法,涉及半导体制造技术,首先在测试版图上筛选出特征尺寸逐渐增大的孤立图形,然后利用已建好的对应光刻工艺条件下的OPC光学模型模拟仿真计算得出光通过所筛选出的测试版图后各自的最大光强值Imax,随着CD的增大光强值Imax值也逐渐增加,然后在曝光、显影之后的硅片上检查这些光强值Imax值逐渐增大的版图在光刻胶上的显影情况,在光刻胶上将要显影所对应的光强值Imax值即为筛选出来的SRAF在光刻胶上显影的光强阈值,该方法能够在收集较少的数据情况下快速高效筛选出所有SRAF在该光刻工艺条件下在光刻胶上显影的光强阈值,减少工作量,提高工作效率。

Description

筛选SRAF在光刻胶上显影的光强阈值和预测其被曝光显影的 风险的方法
技术领域
本发明涉及半导体制造技术,尤其涉及一种筛选SRAF在光刻胶上显影的光强阈值的方法和预测其被曝光显影的风险的方法。
背景技术
在半导体制造技术中,光刻曝光工艺是半导体制造技术中的常用工艺,将掩模板上的图形显影在光刻胶上,通过掩模板到达光刻胶表面的光强高于光刻胶的反应阈值,激活光刻胶中的光敏感成分,启动了光化学反应。光刻胶发生光学反应的光强阈值理论上与掩模板上的图形种类无关,光刻胶光化学反应的程度与到达光刻胶表面的光强有关。具体的,请参阅图1,图1为光强值(I)与光刻胶上曝光出图形大小的关系。
随着技术节点的不断降低,通常会添加SRAF(Sub-resolution-assist-feature,亚分辨率曝光辅助图形)来提高光刻工艺的分辨率、图形的景深(DOF,depth of focus)、半密集(semi-dense)及孤立(iso)图形的工艺窗口。然而SRAF存在着被曝光风险,因此要是能够提前仿真预测SRAF在光刻胶上被曝光出来的风险,不仅能够合理的优化SRAF的添加规则,也能够降低因SRAF曝出来导致的缺陷。如图1所示,需要筛选出通过掩模板图形即将要在光刻胶上显影出来的光强值,就等于筛选出该光刻工艺条件下所有SRAF在光刻胶上显影的光强阈值。
目前SRAF在光刻胶上显影的(SRAF extraprinting)光强阈值的筛选主要是对不同规则的SRAF收集其在不同Focus和不同dose条件下的FEM数据,然后根据已建立好的对应的光刻工艺条件下的OPC(Optical Proximity Correction)光学模型模拟仿真不同SRAF在光刻胶上被曝光出来的光强值,筛选出SRAF extraprinting的光强值中的最严格的值,具体的,请参阅图2的现有技术的筛选SRAF在光刻胶上显影的光强阈值的方法。如图2所示,其首先选择不同SRAF规则的不同测试图形;然后通过手动画cutline计算不同测试图形的光强值;然后CDSEM wafer数据量测;最后筛选出SRAF在wafer上显影(extraprinting)的临界点。在收集wafer数据时,每个SRAF Rule都需要量测整片FEM数据,由于每个测试版图中SRAF rule种类多,导致量测点非常多。该方法不仅需要收集大量的wafer数据,降低工作效率。而且有些版图中添加的SRAF rule比较小,在收集的FEM数据中均没有被曝光显影到光刻胶上,这样收集得到的数据无法得到该版图中所添加的SRAF在光刻胶上显影(extraprinting)的光强阈值,在后续仿真SRAF extraprinting中没有光强阈值作为参考标准,无法提前预测SRAF在光刻胶上的表现形式,也不能筛选出最优的SRAF rule,导致其不能最大化的提高产品的工艺窗口。
发明内容
本发明提供的一种筛选SRAF在光刻胶上显影的光强阈值的方法,包括:S1:在测试版图上筛选出特征尺寸逐渐增大的孤立图形;S2:利用已建好的对应的光刻工艺条件下的OPC光学模型模拟仿真计算得出光通过所筛选出的所有孤立图形各自的最大光强值Imax;以及S3:在对应的光刻工艺条件下对测试版图掩模板进行曝光、显影,检测特征尺寸逐渐增大的孤立图形在光刻胶上的显影情况,然后筛选出特征尺寸逐渐增大的孤立图形的版图将要在光刻胶上显影出来所对应的光强值Imax,该光强值Imax即为该光刻工艺条件下SRAF在光刻胶上显影的光强阈值。
更进一步的,在步骤S1中,孤立图形为在一定版图面积内,仅存在一个图形的图形。
更进一步的,在步骤S1中,从测试版图中设计的最小特征尺寸开始筛选。
更进一步的,在步骤S2中,最大光强值Imax随着孤立图形的特征尺寸逐渐增大而逐渐增大。
更进一步的,在步骤S3中,通过关键尺寸扫描电子显微镜检测特征尺寸逐渐增大的孤立图形在光刻胶上的显影情况。
更进一步的,在步骤S3中,在曝光、显影之后的硅片上检测特征尺寸逐渐增大的孤立图形在光刻胶上显影的特征尺寸均匀性。
更进一步的,在步骤S3中,在曝光、显影之后的硅片上检测3个至5个shot特征尺寸逐渐增大的孤立图形在光刻胶上的显影情况。
更进一步的,步骤S3更具体的为:在对应的光刻工艺条件下对测试版图掩模板进行曝光、显影,检测特征尺寸逐渐增大的孤立图形在光刻胶上的显影情况,然后筛选出特征尺寸逐渐增大的孤立图形的版图刚好在光刻胶上显影出来所对应的第一CD值,并筛选出CD值小于该第一CD值且与该第一CD值临近的第二CD值,并将第二CD值对应的光强值作为该光刻条件下SRAF在光刻胶上显影的光强阈值
本发明还提供一种预测SRAF被曝光显影的风险的方法,包括:将根据上述的方法筛选出来的SRAF在光刻胶上显影的光强阈值作为模拟仿真过程中SRAF extraprinting的检查标准,利用OPC结果检查程序,得到SRAF在该光刻工艺条件下是否能够被曝光出来,预测不同参数的SRAF被曝光显影的风险。本发明提供的筛选SRAF在光刻胶上显影的光强阈值的方法和预测其被曝光显影的风险的方法,首先在测试版图上筛选出特征尺寸逐渐增大的孤立图形,然后利用已建好的对应光刻工艺条件下的OPC光学模型模拟仿真计算得出光通过所筛选出的测试版图后各自的最大光强值Imax,随着CD的增大光强值Imax值也逐渐增加,然后在曝光、显影之后的硅片上检查这些光强值Imax值逐渐增大的版图在光刻胶上的显影情况,在光刻胶上将要显影所对应的光强值Imax值即为筛选出来的SRAF在光刻胶上显影的光强阈值,该方法能够在收集较少的数据情况下快速高效筛选出所有SRAF在该光刻工艺条件下在光刻胶上显影的光强阈值,减少工作量,提高工作效率。
附图说明
图1为光强值(I)与光刻胶上曝光出图形大小的关系。
图2为现有技术的筛选SRAF在光刻胶上显影的光强阈值的方法。
图3为本发明一实施例的筛选SRAF在光刻胶上显影的光强阈值的方法的流程图。
图4为掩模板上不同CD对应的Imax值及硅片显影检测结果示意图。
具体实施方式
下面将结合附图,对本发明中的技术方案进行清楚、完整的描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在不做出创造性劳动的前提下所获得的所有其它实施例,都属于本发明保护的范围。
在本发明一实施例中,在于提供一种筛选SRAF在光刻胶上显影的光强阈值的方法。具体的,请参阅图3,图3为本发明一实施例的筛选SRAF在光刻胶上显影的光强阈值的方法的流程图。本发明一实施例的筛选SRAF在光刻胶上显影的光强阈值的方法包括:S1:在测试版图上筛选出特征尺寸逐渐增大的孤立图形;S2:利用已建好的对应的光刻工艺条件下的OPC光学模型模拟仿真计算得出光通过所筛选出的所有孤立图形各自的最大光强值Imax;以及S3:在对应的光刻工艺条件下对测试版图掩模板进行曝光、显影,检测特征尺寸逐渐增大的孤立图形在光刻胶上的显影情况,然后筛选出特征尺寸逐渐增大的孤立图形的版图将要在光刻胶上显影出来所对应的光强值Imax,该光强值Imax即为该光刻工艺条件下SRAF在光刻胶上显影的光强阈值。
具体的,S1:在测试版图上筛选出特征尺寸(Critical Dimension)逐渐增大的孤立图形。
在本发明一实施例中,孤立图形为在一定版图面积内,仅存在一个图形的图形。所述版图面积可根据不同的工艺确定。
在本发明一实施例中,从测试版图中设计的最小特征尺寸开始筛选。
S2:利用已建好的对应的光刻工艺条件下的OPC光学模型模拟仿真计算得出光通过所筛选出的所有孤立图形各自的最大光强值Imax。
在本发明一实施例中,最大光强值Imax随着孤立图形的特征尺寸逐渐增大而逐渐增大。
S3:在对应的光刻工艺条件下对测试版图掩模板进行曝光、显影,检测特征尺寸逐渐增大的孤立图形在光刻胶上的显影情况,然后筛选出特征尺寸逐渐增大的孤立图形的版图将要在光刻胶上显影出来所对应的光强值Imax,该光强值Imax即为该光刻工艺条件下SRAF在光刻胶上显影的光强阈值。
在本发明一实施例中,通过关键尺寸扫描电子显微镜(Critical DimensionElectronic Microscope,CDSEM)检测特征尺寸逐渐增大的孤立图形在光刻胶上的显影情况。
在本发明一实施例中,在曝光、显影之后的硅片上检测特征尺寸逐渐增大的孤立图形在光刻胶上显影的特征尺寸均匀性。
在本发明一实施例中,在曝光、显影之后的硅片上检测3个至5个shot特征尺寸逐渐增大的孤立图形在光刻胶上的显影情况,因此需要的量测数据少,且能确保数据的准确性。
具体的,请参阅图4,图4为掩模板上不同CD对应的Imax值及硅片显影检测结果示意图。如图4所示,当CD=44nm时,孤立图形刚好在光刻胶上留下印迹,此时对应的光强值为0.168098,CD=42nm时,孤立图形将要在光刻胶上留下印迹,但没有留下痕迹,因此筛选出用于SRAF extraprinting的光强阈值设置在CD=42nm时的0.165189,此时图形在wafer上没有被曝光出来,而将要被曝光出来。也即步骤S3更具体的为:在对应的光刻工艺条件下对测试版图掩模板进行曝光、显影,检测特征尺寸逐渐增大的孤立图形在光刻胶上的显影情况,然后筛选出特征尺寸逐渐增大的孤立图形的版图刚好在光刻胶上显影出来所对应的第一CD值(如图4所示的CD=44nm),并筛选出CD值小于该第一CD值且与该第一CD值临近的第二CD值(如图4所示的CD=42nm),并将第二CD值对应的光强值(即0.165189)作为该光刻条件下SRAF在光刻胶上显影的光强阈值。将该光强阈值可以作为后续模拟仿真不同SRAF规则在该光刻条件下是否被曝光出来的检测标准,不仅能够提前预测SRAF extraprinting的风险,而且还能优化SRAF的添加规则。该方法能够在收集较少的数据情况下(只需要收集3-5个shot的数据)筛选出SRAF extraprinting的光强阈值,减少工作量,提高工作效率。
在本发明一实施例中,还提供一种预测SRAF被曝光显影的风险的方法,该方法包括将根据上述的筛选SRAF在光刻胶上显影的光强阈值的方法筛选出来的光强阈值作为模拟仿真过程中SRAF extraprinting的检查标准,利用OPC(optical proximitycorrection,光学临近修正)结果检查程序,得到SRAF在该光刻工艺条件下是否能够被曝光出来,预测不同参数的SRAF被曝光显影的风险。
综上所述,首先在测试版图上筛选出特征尺寸逐渐增大的孤立图形,然后利用已建好的对应光刻工艺条件下的OPC光学模型模拟仿真计算得出光通过所筛选出的测试版图后各自的最大光强值Imax,随着CD的增大光强值Imax值也逐渐增加,然后在曝光、显影之后的硅片上检查这些光强值Imax值逐渐增大的版图在光刻胶上的显影情况,在光刻胶上将要显影所对应的光强值Imax值即为筛选出来的SRAF在光刻胶上显影的光强阈值,该方法能够在收集较少的数据情况下快速高效筛选出所有SRAF在该光刻工艺条件下在光刻胶上显影的光强阈值,减少工作量,提高工作效率。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (9)

1.一种筛选SRAF在光刻胶上显影的光强阈值的方法,其特征在于,包括:
S1:在测试版图上筛选出特征尺寸逐渐增大的孤立图形;
S2:利用已建好的对应的光刻工艺条件下的OPC光学模型模拟仿真计算得出光通过所筛选出的所有孤立图形各自的最大光强值Imax;以及
S3:在对应的光刻工艺条件下对测试版图掩模板进行曝光、显影,检测特征尺寸逐渐增大的孤立图形在光刻胶上的显影情况,然后筛选出特征尺寸逐渐增大的孤立图形的版图将要在光刻胶上显影出来所对应的光强值Imax,该光强值Imax即为该光刻工艺条件下SRAF在光刻胶上显影的光强阈值。
2.根据权利要求1所述的筛选SRAF在光刻胶上显影的光强阈值的方法,其特征在于,在步骤S1中,孤立图形为在一定版图面积内,仅存在一个图形的图形。
3.根据权利要求1所述的筛选SRAF在光刻胶上显影的光强阈值的方法,其特征在于,在步骤S1中,从测试版图中设计的最小特征尺寸开始筛选。
4.根据权利要求1所述的筛选SRAF在光刻胶上显影的光强阈值的方法,其特征在于,在步骤S2中,最大光强值Imax随着孤立图形的特征尺寸逐渐增大而逐渐增大。
5.根据权利要求1所述的筛选SRAF在光刻胶上显影的光强阈值的方法,其特征在于,在步骤S3中,通过关键尺寸扫描电子显微镜检测特征尺寸逐渐增大的孤立图形在光刻胶上的显影情况。
6.根据权利要求1所述的筛选SRAF在光刻胶上显影的光强阈值的方法,其特征在于,在步骤S3中,在曝光、显影之后的硅片上检测特征尺寸逐渐增大的孤立图形在光刻胶上显影的特征尺寸均匀性。
7.根据权利要求1所述的筛选SRAF在光刻胶上显影的光强阈值的方法,其特征在于,在步骤S3中,在曝光、显影之后的硅片上检测3个至5个shot特征尺寸逐渐增大的孤立图形在光刻胶上的显影情况。
8.根据权利要求1所述的筛选SRAF在光刻胶上显影的光强阈值的方法,其特征在于,步骤S3更具体的为:在对应的光刻工艺条件下对测试版图掩模板进行曝光、显影,检测特征尺寸逐渐增大的孤立图形在光刻胶上的显影情况,然后筛选出特征尺寸逐渐增大的孤立图形的版图刚好在光刻胶上显影出来所对应的第一CD值,并筛选出CD值小于该第一CD值且与该第一CD值临近的第二CD值,并将第二CD值对应的光强值作为该光刻条件下SRAF在光刻胶上显影的光强阈值。
9.一种预测SRAF被曝光显影的风险的方法,其特征在于,包括:将根据权利要求1所述的方法筛选出来的光强阈值作为模拟仿真过程中SRAF extraprinting的检查标准,利用OPC结果检查程序,得到SRAF在该光刻工艺条件下是否能够被曝光出来,预测不同参数的SRAF被曝光显影的风险。
CN202010145930.1A 2020-03-05 2020-03-05 筛选sraf在光刻胶上显影的光强阈值和预测其被曝光显影的风险的方法 Active CN111258186B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010145930.1A CN111258186B (zh) 2020-03-05 2020-03-05 筛选sraf在光刻胶上显影的光强阈值和预测其被曝光显影的风险的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010145930.1A CN111258186B (zh) 2020-03-05 2020-03-05 筛选sraf在光刻胶上显影的光强阈值和预测其被曝光显影的风险的方法

Publications (2)

Publication Number Publication Date
CN111258186A true CN111258186A (zh) 2020-06-09
CN111258186B CN111258186B (zh) 2022-02-08

Family

ID=70947549

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010145930.1A Active CN111258186B (zh) 2020-03-05 2020-03-05 筛选sraf在光刻胶上显影的光强阈值和预测其被曝光显影的风险的方法

Country Status (1)

Country Link
CN (1) CN111258186B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113504711A (zh) * 2021-06-28 2021-10-15 上海华虹宏力半导体制造有限公司 光刻显影的检测方法
CN114415466A (zh) * 2022-03-29 2022-04-29 合肥晶合集成电路股份有限公司 一种版图图形的修正方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106950795A (zh) * 2016-01-06 2017-07-14 中芯国际集成电路制造(上海)有限公司 辅助图形的形成方法
CN110058485A (zh) * 2019-05-09 2019-07-26 上海华力微电子有限公司 Opc修正方法及opc修正系统
CN110262191A (zh) * 2019-05-09 2019-09-20 崔绍春 一种计算光刻建模方法及装置
CN110361926A (zh) * 2018-04-10 2019-10-22 中芯国际集成电路制造(上海)有限公司 光学邻近效应修正模型及其建立方法和掩膜板的形成方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106950795A (zh) * 2016-01-06 2017-07-14 中芯国际集成电路制造(上海)有限公司 辅助图形的形成方法
CN110361926A (zh) * 2018-04-10 2019-10-22 中芯国际集成电路制造(上海)有限公司 光学邻近效应修正模型及其建立方法和掩膜板的形成方法
CN110058485A (zh) * 2019-05-09 2019-07-26 上海华力微电子有限公司 Opc修正方法及opc修正系统
CN110262191A (zh) * 2019-05-09 2019-09-20 崔绍春 一种计算光刻建模方法及装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113504711A (zh) * 2021-06-28 2021-10-15 上海华虹宏力半导体制造有限公司 光刻显影的检测方法
CN113504711B (zh) * 2021-06-28 2023-05-02 上海华虹宏力半导体制造有限公司 光刻显影的检测方法
CN114415466A (zh) * 2022-03-29 2022-04-29 合肥晶合集成电路股份有限公司 一种版图图形的修正方法及系统
CN114415466B (zh) * 2022-03-29 2022-07-08 合肥晶合集成电路股份有限公司 一种版图图形的修正方法及系统

Also Published As

Publication number Publication date
CN111258186B (zh) 2022-02-08

Similar Documents

Publication Publication Date Title
US5965306A (en) Method of determining the printability of photomask defects
US7853920B2 (en) Method for detecting, sampling, analyzing, and correcting marginal patterns in integrated circuit manufacturing
JP4904034B2 (ja) レチクル・レイアウト・データを評価するための方法、システム及び搬送媒体
JP5334956B2 (ja) 個別マスクエラーモデルを使用するマスク検証を行うシステムおよび方法
US7065738B1 (en) Method of verifying an optical proximity correction (OPC) model
US20060161452A1 (en) Computer-implemented methods, processors, and systems for creating a wafer fabrication process
JP2002258463A (ja) フォトマスクパタン欠陥検査方法および微細図形パタンの検出方法
JP2007513385A (ja) レチクル・レイアウト・データをシミュレートし、レチクル・レイアウト・データを検査し、レチクル・レイアウト・データの検査プロセスを生成する方法
KR100725170B1 (ko) 포토마스크의 제작을 위한 시스템 및 방법
CN105573048B (zh) 一种光学临近修正模型的优化方法
Kahng et al. Fast dual graph-based hotspot detection
US20120117520A1 (en) Systems And Methods For Inspecting And Controlling Integrated Circuit Fabrication Using A Calibrated Lithography Simulator
CN111258186B (zh) 筛选sraf在光刻胶上显影的光强阈值和预测其被曝光显影的风险的方法
US7665060B2 (en) Approximating wafer intensity change to provide fast mask defect scoring
US8103979B2 (en) System for generating and optimizing mask assist features based on hybrid (model and rules) methodology
US7018746B2 (en) Method of verifying the placement of sub-resolution assist features in a photomask layout
US20040172611A1 (en) Method and apparatus of wafer print simulation using hybrid model with mask optical images
JP2007535173A (ja) リソグラフィシステム用の照明器の照明強度プロファイルを決定するデバイスおよび方法
US6899981B1 (en) Photomask and method for detecting violations in a mask pattern file using a manufacturing rule
CN109522618B (zh) 改善基底反射导致离子注入层光刻缺陷的方法
Kundu et al. Modeling manufacturing process variation for design and test
JP2004354919A (ja) 光近接効果補正の検証方法および検証装置
KR20000060456A (ko) 리소그래피 공정으로부터 야기되는 불량 발생 지점 예측 방법
Howard et al. Inspection of integrated circuit databases through reticle and wafer simulation: an integrated approach to design for manufacturing (DFM)
Badger et al. Generating mask inspection rules for advanced lithography

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant