CN111254434B - 一种掺硼金刚石电极及其制备方法 - Google Patents

一种掺硼金刚石电极及其制备方法 Download PDF

Info

Publication number
CN111254434B
CN111254434B CN202010072951.5A CN202010072951A CN111254434B CN 111254434 B CN111254434 B CN 111254434B CN 202010072951 A CN202010072951 A CN 202010072951A CN 111254434 B CN111254434 B CN 111254434B
Authority
CN
China
Prior art keywords
doped diamond
titanium dioxide
boron
substrate
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010072951.5A
Other languages
English (en)
Other versions
CN111254434A (zh
Inventor
王玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Luliang University
Original Assignee
Luliang University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Luliang University filed Critical Luliang University
Priority to CN202010072951.5A priority Critical patent/CN111254434B/zh
Publication of CN111254434A publication Critical patent/CN111254434A/zh
Application granted granted Critical
Publication of CN111254434B publication Critical patent/CN111254434B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/04Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material
    • C23C28/042Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings of inorganic non-metallic material including a refractory ceramic layer, e.g. refractory metal oxides, ZrO2, rare earth oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/021Cleaning or etching treatments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/028Physical treatment to alter the texture of the substrate surface, e.g. grinding, polishing
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5806Thermal treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5846Reactive treatment
    • C23C14/5853Oxidation
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/58After-treatment
    • C23C14/5873Removal of material
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/271Diamond only using hot filaments

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明公开了一种掺硼金刚石电极及其制备方法,包括基板,所述基板的顶部与底部均固定连接有纵向二氧化钛条,并且两个纵向二氧化钛条相背离的一侧均固定连接有硼掺杂金刚石层,两个所述硼掺杂金刚石层相背离的一侧均固定连接有横向二氧化钛条,两个所述横向二氧化钛条相背离的一侧均固定连接有金掺杂金刚石层,本发明涉及电极制备技术领域。该掺硼金刚石电极及其制备方法,在电极内设置导电丝,进一步提高导电效果,提高电量转移率,降低电能的损耗,并且在基板与硼掺杂金刚石层之间及硼掺杂金刚石层与金掺杂金刚石层之间设置二氧化钛层,充分利用自然光能量,高效光催化反应,是一种电阻较低的电极材料,实用性较高。

Description

一种掺硼金刚石电极及其制备方法
技术领域
本发明涉及电极制备技术领域,具体为一种掺硼金刚石电极及其制备方法。
背景技术
电极指电子或电器装置、设备中的一种部件,用做导电介质(固体、气体、真空或电解质溶液)中输入或导出电流的两个端,输入电流的一极叫阳极或正极,放出电流的一极叫阴极或负极,电极有各种类型,如阴极、阳极、焊接电极、电炉电极等,在电池中电极一般指与电解质溶液发生氧化还原反应的位置,电极有正负之分,一般正极为阴极,获得电子,发生还原反应,负极则为阳极,失去电子发生氧化反应,电极可以是金属或非金属,只要能够与电解质溶液交换电子,即成为电极。
现有的电极导电性较差,使用过程中,由于电阻较大,导致电能损耗较高,从而降低电能的利用率,实用性较低。
发明内容
(一)解决的技术问题
针对现有技术的不足,本发明提供了一种掺硼金刚石电极及其制备方法,解决了电阻较大,电能损耗较高,实用性较低的问题。
(二)技术方案
为实现以上目的,本发明通过以下技术方案予以实现:一种掺硼金刚石电极,包括基板,所述基板的顶部与底部均固定连接有纵向二氧化钛条,并且两个纵向二氧化钛条相背离的一侧均固定连接有硼掺杂金刚石层,两个所述硼掺杂金刚石层相背离的一侧均固定连接有横向二氧化钛条,两个所述横向二氧化钛条相背离的一侧均固定连接有金掺杂金刚石层,所述基板的顶部与底部均固定连接有导电丝,所述导电丝远离基板的一端依次贯穿纵向二氧化钛条、硼掺杂金刚石层、横向二氧化钛条和金掺杂金刚石层并延伸至金掺杂金刚石层的内部。
优选的,所述纵向二氧化钛条横向均匀排列在基板和硼掺杂金刚石层相对的一侧之间,所述横向二氧化钛条纵向均匀排列在硼掺杂金刚石层和金掺杂金刚石层相对的一侧之间。
优选的,所述基板为铜板,并且基板的厚度为5-10μm,所述导电丝为金丝,并且导电丝的直径为0.5-1μm。
本发明还公开了一种掺硼金刚石电极的制备方法,其特征在于:具体包括以下步骤:
S1、选取合格基板,将该基板置于喷砂装置中,对其表面进行磨砂处理,然后进行超声处理和酸处理,然后在处理后的基板表面打孔,插入导电丝;
S2、利用磁控溅射装置,在基板的表面沉积钛层,并利用蚀刻装置将钛层蚀刻成纵向延伸的条状,在420-480℃条件下进行退火处理,使该钛层转变成具有多孔结构的纵向二氧化钛条;
S3、对纵向二氧化钛条的表面进行喷砂处理,并在相邻的纵向二氧化钛条之间填充填料,然后在纵向二氧化钛条的表面利用热丝化学气相沉积的方法,沉积一层硼掺杂金刚石层;
S4、在金掺杂金刚石层的表面溅射一层钛层,并利用蚀刻装置将钛层蚀刻成横向延伸的条状,在420-480℃条件下进行退火处理,使该钛层转变成具有多孔结构的横向二氧化钛条;
S5、对横向二氧化钛条进行喷砂处理,并在相邻的横向二氧化钛条之间填充填料,然后在横向二氧化钛条的表面利用热丝化学气相沉积的方法,沉积一层金掺杂金刚石层;
S6、将步骤S3和步骤S5中的填料取出。
优选的,所述步骤S3和步骤S5中的填料为耐高温合金材料,并且填料的表面喷涂有油膜。
优选的,所述步骤S2中纵向二氧化钛条的厚度为1-3μm,所述步骤S4中横向二氧化钛条的厚度为1-3μm。
优选的,所述步骤S3中的硼掺杂金刚石层的厚度为2-6μm,所述步骤S5中的金掺杂金刚石层的厚度为2-6μm。
有益效果
本发明提供了一种掺硼金刚石电极及其制备方法。与现有技术相比具备以下有益效果:该掺硼金刚石电极及其制备方法,通过基板的顶部与底部均固定连接有纵向二氧化钛条,并且两个纵向二氧化钛条相背离的一侧均固定连接有硼掺杂金刚石层,两个硼掺杂金刚石层相背离的一侧均固定连接有横向二氧化钛条,两个横向二氧化钛条相背离的一侧均固定连接有金掺杂金刚石层,基板的顶部与底部均固定连接有导电丝,导电丝远离基板的一端依次贯穿纵向二氧化钛条、硼掺杂金刚石层、横向二氧化钛条和金掺杂金刚石层并延伸至金掺杂金刚石层的内部,其制备方法包括以下步骤:S1、选取合格基板,将该基板置于喷砂装置中,对其表面进行磨砂处理,然后进行超声处理和酸处理,然后在处理后的基板表面打孔,插入导电丝;S2、利用磁控溅射装置,在基板的表面沉积钛层,并利用蚀刻装置将钛层蚀刻成纵向延伸的条状,在420-480℃条件下进行退火处理,使该钛层转变成具有多孔结构的纵向二氧化钛条;S3、对纵向二氧化钛条的表面进行喷砂处理,并在相邻的纵向二氧化钛条之间填充填料,然后在纵向二氧化钛条的表面利用热丝化学气相沉积的方法,沉积一层硼掺杂金刚石层;S4、在金掺杂金刚石层的表面溅射一层钛层,并利用蚀刻装置将钛层蚀刻成横向延伸的条状,在420-480℃条件下进行退火处理,使该钛层转变成具有多孔结构的横向二氧化钛条;S5、对横向二氧化钛条进行喷砂处理,并在相邻的横向二氧化钛条之间填充填料,然后在横向二氧化钛条的表面利用热丝化学气相沉积的方法,沉积一层金掺杂金刚石层;S6、将步骤S3和步骤S5中的填料取出,在电极内设置导电丝,进一步提高导电效果,提高电量转移率,降低电能的损耗,并且在基板与硼掺杂金刚石层之间及硼掺杂金刚石层与金掺杂金刚石层之间设置二氧化钛层,充分利用自然光能量,高效光催化反应,是一种电阻较低的电极材料,实用性较高。
附图说明
图1为本发明结构的剖视图;
图2为本发明基板和纵向二氧化钛条结构的立体图;
图3为本发明硼掺杂金刚石层和横向二氧化钛条结构的立体图。
图中,1基板基板、2纵向二氧化钛条、3硼掺杂金刚石层、4横向二氧化钛条、5金掺杂金刚石层、6导电丝。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1-3,本发明实施例提供三种技术方案:一种掺硼金刚石电极的制备方法,具体包括以下实施例:
实施例1
选取合格基板,将该基板1置于喷砂装置中,对其表面进行磨砂处理,然后进行超声处理和酸处理,然后在处理后的基板1表面打孔,插入导电丝6;
S2、利用磁控溅射装置,在基板1的表面沉积1μm厚的钛层,并利用蚀刻装置将钛层蚀刻成纵向延伸的条状,在420℃条件下进行退火处理,使该钛层转变成具有多孔结构的厚度为1μm的纵向二氧化钛条2;
S3、对纵向二氧化钛条2的表面进行喷砂处理,并在相邻的纵向二氧化钛条2之间填充填料,然后在纵向二氧化钛条2的表面利用热丝化学气相沉积的方法,沉积2μm厚的硼掺杂金刚石层3;
S4、在金掺杂金刚石层5的表面溅射1μm厚的钛层,并利用蚀刻装置将钛层蚀刻成横向延伸的条状,在420℃条件下进行退火处理,使该钛层转变成具有多孔结构的厚度为1μm的横向二氧化钛条4;
S5、对横向二氧化钛条4进行喷砂处理,并在相邻的横向二氧化钛条4之间填充填料,然后在横向二氧化钛条4的表面利用热丝化学气相沉积的方法,沉积2μm厚的金掺杂金刚石层5;
S6、将步骤S3和步骤S5中的填料取出。
实施例2
S1、选取合格基板,将该基板1置于喷砂装置中,对其表面进行磨砂处理,然后进行超声处理和酸处理,然后在处理后的基板1表面打孔,插入导电丝6;
S2、利用磁控溅射装置,在基板1的表面沉积2μm厚的钛层,并利用蚀刻装置将钛层蚀刻成纵向延伸的条状,在420-480℃条件下进行退火处理,使该钛层转变成具有多孔结构的厚度为2μm的纵向二氧化钛条2;
S3、对纵向二氧化钛条2的表面进行喷砂处理,并在相邻的纵向二氧化钛条2之间填充填料,然后在纵向二氧化钛条2的表面利用热丝化学气相沉积的方法,沉积4μm厚的硼掺杂金刚石层3;
S4、在金掺杂金刚石层5的表面溅射2μm厚的钛层,并利用蚀刻装置将钛层蚀刻成横向延伸的条状,在420-480℃条件下进行退火处理,使该钛层转变成具有多孔结构的厚度为2μm的横向二氧化钛条4;
S5、对横向二氧化钛条4进行喷砂处理,并在相邻的横向二氧化钛条4之间填充填料,然后在横向二氧化钛条4的表面利用热丝化学气相沉积的方法,沉积4μm厚的金掺杂金刚石层5;
S6、将步骤S3和步骤S5中的填料取出。
实施例3
S1、选取合格基板,将该基板1置于喷砂装置中,对其表面进行磨砂处理,然后进行超声处理和酸处理,然后在处理后的基板1表面打孔,插入导电丝6;
S2、利用磁控溅射装置,在基板1的表面沉积3μm厚的钛层,并利用蚀刻装置将钛层蚀刻成纵向延伸的条状,在420-480℃条件下进行退火处理,使该钛层转变成具有多孔结构的厚度为3μm的纵向二氧化钛条2;
S3、对纵向二氧化钛条2的表面进行喷砂处理,并在相邻的纵向二氧化钛条2之间填充填料,然后在纵向二氧化钛条2的表面利用热丝化学气相沉积的方法,沉积6μm厚的硼掺杂金刚石层3;
S4、在金掺杂金刚石层5的表面溅射3μm厚钛层,并利用蚀刻装置将钛层蚀刻成横向延伸的条状,在420-480℃条件下进行退火处理,使该钛层转变成具有多孔结构的厚度为3μm的横向二氧化钛条4;
S5、对横向二氧化钛条4进行喷砂处理,并在相邻的横向二氧化钛条4之间填充填料,然后在横向二氧化钛条4的表面利用热丝化学气相沉积的方法,沉积6μm厚的金掺杂金刚石层5;
S6、将步骤S3和步骤S5中的填料取出。
需要说明的是,在本文中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (6)

1.一种掺硼金刚石电极,包括基板(1),其特征在于:所述基板(1)的顶部与底部均固定连接有纵向二氧化钛条(2),并且两个纵向二氧化钛条(2)相背离的一侧均固定连接有硼掺杂金刚石层(3),两个所述硼掺杂金刚石层(3)相背离的一侧均固定连接有横向二氧化钛条(4),两个所述横向二氧化钛条(4)相背离的一侧均固定连接有金掺杂金刚石层(5),所述基板(1)的顶部与底部均固定连接有导电丝(6),所述导电丝(6)远离基板(1)的一端依次贯穿纵向二氧化钛条(2)、硼掺杂金刚石层(3)、横向二氧化钛条(4)和金掺杂金刚石层(5)并延伸至金掺杂金刚石层(5)的内部;
所述纵向二氧化钛条(2)横向均匀排列在基板(1)和硼掺杂金刚石层(3)相对的一侧之间,所述横向二氧化钛条(4)纵向均匀排列在硼掺杂金刚石层(3)和金掺杂金刚石层(5)相对的一侧之间。
2.根据权利要求1所述的一种掺硼金刚石电极,其特征在于:所述基板(1)为铜板,并且基板(1)的厚度为5-10μm,所述导电丝(6)为金丝,并且导电丝(6)的直径为0.5-1μm。
3.一种掺硼金刚石电极的制备方法,其特征在于:具体包括以下步骤:
S1、选取合格基板,将该基板(1)置于喷砂装置中,对其表面进行磨砂处理,然后进行超声处理和酸处理,然后在处理后的基板(1)表面打孔,插入导电丝(6);
S2、利用磁控溅射装置,在基板(1)的表面沉积钛层,并利用蚀刻装置将钛层蚀刻成纵向延伸的条状,在420-480℃条件下进行退火处理,使该钛层转变成具有多孔结构的纵向二氧化钛条(2);
S3、对纵向二氧化钛条(2)的表面进行喷砂处理,并在相邻的纵向二氧化钛条(2)之间填充填料,然后在纵向二氧化钛条(2)的表面利用热丝化学气相沉积的方法,沉积一层硼掺杂金刚石层(3);
S4、在金掺杂金刚石层(5)的表面溅射一层钛层,并利用蚀刻装置将钛层蚀刻成横向延伸的条状,在420-480℃条件下进行退火处理,使该钛层转变成具有多孔结构的横向二氧化钛条(4);
S5、对横向二氧化钛条(4)进行喷砂处理,并在相邻的横向二氧化钛条(4)之间填充填料,然后在横向二氧化钛条(4)的表面利用热丝化学气相沉积的方法,沉积一层金掺杂金刚石层(5);
S6、将步骤S3和步骤S5中的填料取出。
4.根据权利要求3所述的一种掺硼金刚石电极的制备方法,其特征在于:所述步骤S3和步骤S5中的填料为耐高温合金材料,并且填料的表面喷涂有油膜。
5.根据权利要求3所述的一种掺硼金刚石电极的制备方法,其特征在于:所述步骤S2中纵向二氧化钛条(2)的厚度为1-3μm,所述步骤S4中横向二氧化钛条(4)的厚度为1-3μm。
6.根据权利要求3所述的一种掺硼金刚石电极的制备方法,其特征在于:所述步骤S3中的硼掺杂金刚石层(3)的厚度为2-6μm,所述步骤S5中的金掺杂金刚石层(5)的厚度为2-6μm。
CN202010072951.5A 2020-01-11 2020-01-11 一种掺硼金刚石电极及其制备方法 Active CN111254434B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010072951.5A CN111254434B (zh) 2020-01-11 2020-01-11 一种掺硼金刚石电极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010072951.5A CN111254434B (zh) 2020-01-11 2020-01-11 一种掺硼金刚石电极及其制备方法

Publications (2)

Publication Number Publication Date
CN111254434A CN111254434A (zh) 2020-06-09
CN111254434B true CN111254434B (zh) 2022-01-04

Family

ID=70942769

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010072951.5A Active CN111254434B (zh) 2020-01-11 2020-01-11 一种掺硼金刚石电极及其制备方法

Country Status (1)

Country Link
CN (1) CN111254434B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101875007A (zh) * 2009-04-30 2010-11-03 中国科学院化学研究所 二氧化钛和掺硼金刚石复合光电协同电极的制备方法
CN105401150A (zh) * 2015-11-09 2016-03-16 郑州大学 一种TiO2纳米束/掺硼金刚石薄膜复合光电催化电极、制备方法及应用
CN108193229A (zh) * 2017-12-20 2018-06-22 深圳先进技术研究院 一种多孔掺硼金刚石电极及其制备方法和应用
CN110241386A (zh) * 2018-03-09 2019-09-17 深圳先进技术研究院 一种掺硼金刚石电极及其制备方法和应用
DE102019117327A1 (de) * 2018-06-28 2020-01-02 Universität Siegen Dotierte diamant-titandioxid-elektrode

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101786026B (zh) * 2010-03-24 2011-07-20 吉林大学 n型氧化钛纳米管/p型金刚石异质结光催化材料及制备方法
CN110504329A (zh) * 2019-07-24 2019-11-26 中山大学 一种低导通电阻高耐压金刚石功率二极管的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101875007A (zh) * 2009-04-30 2010-11-03 中国科学院化学研究所 二氧化钛和掺硼金刚石复合光电协同电极的制备方法
CN105401150A (zh) * 2015-11-09 2016-03-16 郑州大学 一种TiO2纳米束/掺硼金刚石薄膜复合光电催化电极、制备方法及应用
CN108193229A (zh) * 2017-12-20 2018-06-22 深圳先进技术研究院 一种多孔掺硼金刚石电极及其制备方法和应用
CN110241386A (zh) * 2018-03-09 2019-09-17 深圳先进技术研究院 一种掺硼金刚石电极及其制备方法和应用
DE102019117327A1 (de) * 2018-06-28 2020-01-02 Universität Siegen Dotierte diamant-titandioxid-elektrode

Also Published As

Publication number Publication date
CN111254434A (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
Liang et al. Self‐supported tin sulfide porous films for flexible aluminum‐ion batteries
CN103093962B (zh) 电解电容器及其制造方法
EP2421082A1 (en) Method for manufacturing solid electrolytic cell, and solid electrolytic cell
CN105845462B (zh) 基于三维石墨烯/四氧化三锰复合电极材料的制备方法
Zhou et al. Copper selenide (Cu 3 Se 2 and Cu 2− x Se) thin films: electrochemical deposition and electrocatalytic application in quantum dot-sensitized solar cells
RU2004135321A (ru) Электрод и способ его изготовления
JP2010263037A (ja) 金属複合基板およびその製造方法
CN103681942B (zh) 晶体硅se太阳电池片的制备方法以及晶体硅se太阳电池片
Kim et al. Electrocatalytic activity of NiO on silicon nanowires with a carbon shell and its application in dye-sensitized solar cell counter electrodes
CN106129133A (zh) 一种全背电极接触晶硅太阳能电池结构及其制备方法
Tang et al. Three-dimensional graphene networks and RGO-based counter electrode for DSSCs
CN106086933B (zh) 一种硅光阴极及其制备方法
CN102262989A (zh) 阳极氧化铝模板制作方法及利用该模板制作场发射阴极阵列材料方法
JP6108042B2 (ja) チタン材、セパレータ、および固体高分子形燃料電池、ならびにチタン材の製造方法
CN111254434B (zh) 一种掺硼金刚石电极及其制备方法
CN105702942A (zh) 一种硅基负极材料、制备方法及其应用
CN112820890A (zh) 一种防腐导电涂层制备方法、结构以及燃料电池极板
CN107799724B (zh) 电极及其制造方法、以及包含该电池的金属离子电池
JP6686822B2 (ja) 金属材、セパレータ、セル、および燃料電池
CN107256807A (zh) 一种制备镍铜的硫、氧化合物复合薄膜电极的方法
CN115050920A (zh) 一种锑基一体化电极及其制备方法和应用
CN114411016A (zh) 自支撑纳米多孔Ni4Mo/Ni合金材料的制备方法及应用
CN108832153B (zh) 一种质子交换膜燃料电池的流场板
US10777822B2 (en) Fuel cell electrode and fuel cell using the same
CN109763153B (zh) 一种太阳能电池栅极材料及其制造工艺

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant