CN107256807A - 一种制备镍铜的硫、氧化合物复合薄膜电极的方法 - Google Patents

一种制备镍铜的硫、氧化合物复合薄膜电极的方法 Download PDF

Info

Publication number
CN107256807A
CN107256807A CN201710437110.8A CN201710437110A CN107256807A CN 107256807 A CN107256807 A CN 107256807A CN 201710437110 A CN201710437110 A CN 201710437110A CN 107256807 A CN107256807 A CN 107256807A
Authority
CN
China
Prior art keywords
collector
electrode
sulfide
preparation
composite film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710437110.8A
Other languages
English (en)
Other versions
CN107256807B (zh
Inventor
方信贤
杜小娟
张帅
高生辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing Institute of Technology
Original Assignee
Nanjing Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing Institute of Technology filed Critical Nanjing Institute of Technology
Priority to CN201710437110.8A priority Critical patent/CN107256807B/zh
Publication of CN107256807A publication Critical patent/CN107256807A/zh
Application granted granted Critical
Publication of CN107256807B publication Critical patent/CN107256807B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/46Metal oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Secondary Cells (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)

Abstract

本发明涉及一种制备镍铜的硫、氧化合物复合薄膜电极的方法。采用低温硫氧化循环处理,薄膜电极制备分两步,首先制备表面镀覆镍铜磷合金镀层的集流体,包括铁箔除油、水洗、酸洗、水洗、化学镀镍铜磷、水洗、干燥工序;第二步制备复合薄膜电极,包括集流体浸泡过饱和硫化物溶液、低温硫氧化循环处理工序。制备的复合薄膜电极用于超级电容器电极时,具有内阻小、耐热耐蚀性好、比电容高、电极材料薄膜与集流体间结合力高等优点。制备的复合薄膜电极比电容达1.49 F/cm2。本发明提供的低温硫氧化循环处理方法具有投资少、工艺操作简单、重复性好和适合产业化生产等特点。

Description

一种制备镍铜的硫、氧化合物复合薄膜电极的方法
技术领域
本发明属于二维薄膜电极材料制备技术领域,特别涉及一种低温硫氧化循环处理制备镍铜的硫、氧化合物复合薄膜电极的方法。
背景技术
超级电容器因具有功率密度高,循环稳定好和可快速充放电等特点,在智能电网、新能源汽车、太阳能和风能发电、消费电子等领域存在广泛的应用前景。电极是超级电容器的核心部件,因而新型电极材料开发是超级电容器技术主要研究方向。贵金属氧化物电极制造的超级电容器虽已在军工等领域获得成功应用,但其昂贵的价格限制了其在民用领域的推广应用。尽管研究表明,廉价的过渡族金属氧化物和硫化物均具有较高的比电容和电荷存储能力,但其离实际工程应用尚有一定差距。
目前报道的过渡族金属氧化物和硫化物电极的制备以水热反应法为主,该电极制备方法存在工艺过程复杂,工序多,及制备的电极重复性较差等不足,此外,目前文献报道的测试电极中活性物质含量均很低,当增加测试电极中的活性物质含量时,电极的比电容会急剧下降,这导致尽管文献报道的电极的质量比电容已接近氧化物电极的理论质量比电容,但其面积比电容并不是很高,对于实际电容器,其电极面积是一定的,较小的面积比电容意味着难以制造出大电容的超级电容器。
发明内容
针对上述问题,本发明提供了一种低温硫氧化循环处理制备镍铜的硫、氧化合物复合薄膜电极方法,具体包括以下步骤:
(1)集流体基体预处理:将集流体基体进行除油、水洗、酸洗和水洗处理;
(2)集流体制备:采用化学镀技术在预处理的集流体基体表面均匀镀覆镍铜磷合金镀层,然后水洗,干燥;
(3)集流体表面涂覆硫化物溶液:采用浸泡法,将上述集流体浸泡在过饱和硫化物溶液中,使其表面均匀涂覆硫化物液膜;
(4)低温硫氧化循环处理:将表面均匀涂覆硫化物液膜的集流体悬挂在空气为加热介质的加热设备内,在190℃温度下进行第一次低温硫氧化处理,处理1小时,处理结束后取出冷却到室温,然后再次浸泡过饱和硫化物溶液使其均匀涂覆硫化物溶液,接着在同样温度下进行第二次低温硫氧化处理,处理1小时,结束后取出冷却,即得到镍铜的硫、氧化合物复合薄膜电极。
步骤(1)中所述的集流体基体优选纯铁箔,但不仅限于纯铁箔,还包括金属镍箔、泡沫镍、不锈钢箔、铜箔等导电性能良好的金属或导电性良好的非金属,如碳材料。
步骤(2)中所述的化学镀镍铜磷合金镀液为高温碱性镀液,化学镀温度为(82±1)℃,化学镀时间为30 ~ 120分钟,优选30分钟。镍铜磷合金镀层中镍、铜和磷的质量分数范围依次为30% ~ 50%、40% ~ 64%和6% ~ 10%,优选的质量分数依次为47.08%、46.57%和6.35%。镍铜磷合金镀层中镍和铜元素参与硫氧化处理时的化学反应,是形成复合薄膜电极中镍铜的硫、氧化合物的合金元素。
步骤(3)中所述的过饱和硫化物溶液,其中的硫参与硫氧化处理时的化学反应,是形成镍铜的硫、氧化合物复合薄膜的成膜元素;集流体在过饱和硫化物溶液中的浸泡时间为1 ~ 2分钟。上述所述过饱和硫化物溶液,优选过饱和硫化钠溶液,但不仅限于过饱和硫化钠溶液,也可为其它可溶性的过饱和硫化物溶液,如过饱和硫化钾和硫化铵溶液等。
步骤(4)中所述的集流体表面均匀涂覆过饱和硫化物液膜,在低温硫氧化处理时,集流体表面的镍铜、硫化钠中的硫和加热环境中的氧直接反应,在集流体表面原位生成镍铜的硫、氧化合物复合薄膜。低温硫氧化处理的加热设备优选烘箱,也可为其它加热设备,如低温箱式电阻炉等。低温硫氧化处理温度为170 ~ 220 ℃,优选190 ℃,每次低温硫氧化处理的时间为0.5 ~ 1小时,优选1小时,以浸泡过饱和硫化钠溶液的集流体在一定温度下保温一定时间为一个周期或一个循环处理周次,循环处理周次为2 ~ 4次,优选2次。
有益效果:与已报道的过渡族金属氧化物和硫化物电极大多采用水热法制备相比,本发明提供的一种低温硫氧化循环处理制备镍铜的硫、氧化合物复合薄膜电极方法,具有以下优点:
1. 本发明制备的集流体,其表面为镍铜磷合金镀层,由于镍铜磷合金镀层具有优异的耐蚀性,因而对集流体基体材料的耐蚀性要求较低;
2. 本发明制备的镍铜的硫、氧化合物复合薄膜电极的电极材料膜,是通过化学反应直接在集流体表面原位合成的,电极材料膜与集流体间具有良好的结合力;
3. 本发明的薄膜电极中,集流体为表面覆有镍铜磷合金的纯金属导体,具有良好的导电性,电极内阻较小;
4. 本发明的薄膜电极中,电极材料膜由镍铜的硫化物和氧化物组成,其导电性能优于镍铜氧化物薄膜电极的;
5. 本发明的低温硫氧化循环处理制备超级电容器薄膜电极方法,具有工艺简单、投资少、重复性好、成本低、适合产业化生产等特点。
附图说明
图1为本发明实施例1制备的镍铜的硫、氧化合物复合薄膜电极的表面形貌。
图2为本发明实施例1制备的镍铜的硫、氧化合物复合薄膜电极的CV曲线。
图3为本发明实施例1制备的镍铜的硫、氧化合物复合薄膜电极的峰值电流密度与扫描速率关系曲线。
图4为本发明实施例2制备的镍铜的硫、氧化合物复合薄膜电极的比电容直方图。
具体实施方式
实施例1
一种低温硫氧化循环处理制备镍铜的硫、氧化合物复合薄膜电极方法,首先选用纯铁箔做基体材料,对尺寸为20 mm×10 mm×0.2 mm的集流体基体进行除油、水洗、酸洗、水洗,然后在(82±1)℃的碱性镍铜磷镀液中化学镀30分钟,制得表面覆有镍铜磷合金镀层的集流体。EDS分析表明,镍铜磷合金镀层中镍、铜和磷的质量分数分别为47.08%、46.57%和6.35%。集流体水洗干燥后,浸泡在过饱和硫化钠溶液中1分钟,取出挂在支架上后,放入已升温到190℃的烘箱中进行低温硫氧化处理,时间为1小时;取出冷却后再在过饱和硫化钠溶液中浸泡1分钟,接着挂在190℃的烘箱内的支架上,进行低温硫氧化处理,时间也为1小时,即低温硫氧化的循环处理周期数为2,最后取出冷却,即得镍铜的硫、氧化合物复合薄膜电极。
如附图1所示,按照上述低温硫氧化循环处理制备的复合薄膜电极表面呈蜂窝煤状多孔结构。能谱分析表明,复合薄膜电极中镍、铜、硫、氧和磷的原子百分数分别为22.71、36.61、23.81、13.77和3.10%,表明上述循环硫氧化处理制备的薄膜电极是以镍铜的硫化物为主、镍铜的氧化物为辅的复合硫氧化合物薄膜电极。
如附图2所示,用PARSTAT2273电化学工作站,以Hg/HgO电极为参比电极,铂电极为辅助电极,制备的复合薄膜电极为工作电极,电极裸露面积0.9 cm2,4 mol/L KOH溶液为电解质,采用不同扫描速率测量的CV曲线。CV曲线上存在氧化还原峰,表明制备的复合薄膜电极是一种赝电容电极;电位窗口随着扫描速率的增大而增大,表明电化学反应过程中不同的硫、氧化合物存在交互作用;根据比电容计算公式计算表明,当扫描速率为10、20、50和100mV/s时,薄膜电极的比电容分别为1.49、1.22、0.88和0.63 F/cm2
如附图3所示,按实施例1原位制备的镍铜的硫、氧化合物复合薄膜电极的峰值电流密度与扫描速率的平方根间具有良好的线性关系,表明电极反应是由扩散控制的。
实施例2
采用与实施例1相同的方法制备镍铜的硫、氧化合物复合薄膜电极,其不同点在于,其集流体基体为铜箔,预处理后,所述化学镀的处理时间为120分钟;浸泡涂覆的硫化物溶液为过饱和硫化钾,浸泡时间为2分钟;其低温硫氧化循环处理温度为170℃,循环处理时间为0.5小时,循环处理4次即得。
实施例3
采用与实施例1相同的方法制备镍铜的硫、氧化合物复合薄膜电极,其不同点在于,其集流体基体为泡沫镍,预处理后,所述化学镀的处理时间为80分钟;浸泡涂覆的硫化物溶液为过饱和硫化铵,浸泡时间为1分钟;其低温硫氧化循环处理温度为220℃,循环处理时间为1小时,循环处理2次即得。
实施例4
一种低温硫氧化循环处理制备镍铜的硫、氧化合物复合薄膜电极方法,首先选用纯铁箔做基体材料,对尺寸为20 mm×10 mm×0.2 mm的集流体基体进行除油、水洗、酸洗、水洗,然后在(82±1)℃的碱性镍铜磷镀液中化学镀30分钟,制得表面覆有镍铜磷合金镀层的集流体。集流体水洗干燥后,在过饱和硫化钠溶液中浸泡1分钟,取出后分别放在100℃、150℃、190℃的烘箱和300℃的箱式电阻炉中进行低温硫氧化处理,时间为1小时,即低温硫氧化循环处理周期为1,取出冷却即得镍铜的硫、氧化合物复合薄膜电极。
如附图4所示,用PARSTAT2273电化学工作站,以Hg/HgO电极为参比电极,铂电极为辅助电极,制备的电极为工作电极,电极裸露面积1.0 cm2,4 mol/L KOH溶液为电解质,采用10mV/s扫描速率测量CV曲线。当低温硫氧化处理循环周期为1时,在不同温度下进行低温硫氧化处理制备的电极比电容明显不同,其中,在190℃低温硫氧化处理的电极比电容最高,达0.72 F/cm2。在190℃进行2次低温硫氧化处理后,其比电容达1.49 F/cm2,是1次低温硫氧化处理电极的2.07倍,表明进行低温硫氧化循环处理可显著提高电极的比电容。
本发明还可以有其它实施方式,凡采用同等替换或等效变换形成的技术方案,均落在本发明要求保护的范围之内。

Claims (10)

1.一种制备镍铜的硫、氧化合物复合薄膜电极的方法,其特征在于,包括以下步骤:
(1)集流体基体预处理:将集流体基体进行除油、水洗、酸洗和水洗处理;
(2)集流体制备:采用化学镀技术在预处理的集流体基体表面均匀镀覆镍铜磷合金镀层,然后水洗,干燥;
(3)集流体表面涂覆硫化物溶液:采用浸泡法,将上述的集流体浸泡在过饱和硫化物溶液中,使其表面均匀涂覆硫化物液膜;
(4)低温硫氧化循环处理:将表面均匀涂覆硫化物液膜的集流体悬挂在空气为加热介质的加热设备内,在170 ~ 220℃温度下进行第一次低温硫氧化处理,处理0.5 ~ 1小时后取出冷却到室温,然后再次浸泡过饱和硫化物溶液使其均匀涂覆硫化物溶液,接着在同样温度下进行第二次低温硫氧化处理,处理0.5 ~ 1小时结束后取出冷却,循环处理2~4次,即得到镍铜的硫、氧化合物复合薄膜电极,薄膜电极中的镍、铜氧化物由集流体中的镍、铜与加热介质中的氧反应形成,形成的复合薄膜电极中,以镍、铜的硫化物为主,镍、铜的氧化物为辅。
2.根据权利要求1所述的制备方法,其特征在于:步骤(1)中所述的集流体基体为导电性能良好的金属或导电性良好的非金属。
3.根据权利要求2所述的制备方法,其特征在于:所述集流体基体为金属镍箔、泡沫镍、不锈钢箔、铜箔、纯铁箔、碳材料。
4.根据权利要求3所述的制备方法,其特征在于:所述集流体基体为纯铁箔。
5.根据权利要求1所述的制备方法,其特征在于:步骤(2)中采用的镍铜磷合金镀液为高温碱性镀液,其中镍、铜和磷的质量分数依次为30% ~ 50%、40% ~ 64%和6% ~ 10%,总和为100%。
6.根据权利要求5所述的制备方法,其特征在于:所述镍、铜和磷的质量分数依次为47.08%、46.57%和6.35%。
7.根据权利要求1所述的制备方法,其特征在于:所述化学镀温度为(82±1)℃,化学镀时间为30~120分钟。
8.根据权利要求1所述的制备方法,其特征在于:所述过饱和硫化物包括过饱和硫化钠、过饱和硫化钾、过饱和硫化铵。
9.根据权利要求1所述的制备方法,其特征在于:步骤(3)中所述集流体在过饱和硫化物溶液中的浸泡时间为1 ~ 2分钟。
10.根据权利要求1所述的制备方法,其特征在于:步骤(4)中所述低温硫氧化循环处理温度为190℃,每次处理时间为1小时。
CN201710437110.8A 2017-06-12 2017-06-12 一种制备镍铜的硫、氧化合物复合薄膜电极的方法 Active CN107256807B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710437110.8A CN107256807B (zh) 2017-06-12 2017-06-12 一种制备镍铜的硫、氧化合物复合薄膜电极的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710437110.8A CN107256807B (zh) 2017-06-12 2017-06-12 一种制备镍铜的硫、氧化合物复合薄膜电极的方法

Publications (2)

Publication Number Publication Date
CN107256807A true CN107256807A (zh) 2017-10-17
CN107256807B CN107256807B (zh) 2018-10-30

Family

ID=60024114

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710437110.8A Active CN107256807B (zh) 2017-06-12 2017-06-12 一种制备镍铜的硫、氧化合物复合薄膜电极的方法

Country Status (1)

Country Link
CN (1) CN107256807B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108899222A (zh) * 2018-06-26 2018-11-27 中南大学 一种超级电容器电极材料的制备方法
CN112614700A (zh) * 2020-11-30 2021-04-06 西安西电电力电容器有限责任公司 金属硫化物/氮掺杂碳纤维复合纳米薄膜、柔性自支撑超级电容器及制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009148977A1 (en) * 2008-06-04 2009-12-10 Seeo, Inc Supercapacitors with block copolymer electrolytes
CN104795245A (zh) * 2015-05-14 2015-07-22 安徽师范大学 一种线状镍钴氧化物@镍钴硫化物异质结构复合材料,其制备方法以及用途
CN105321725A (zh) * 2015-10-29 2016-02-10 南京工程学院 一种超级电容器微纳结构电极材料及电极片制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009148977A1 (en) * 2008-06-04 2009-12-10 Seeo, Inc Supercapacitors with block copolymer electrolytes
CN104795245A (zh) * 2015-05-14 2015-07-22 安徽师范大学 一种线状镍钴氧化物@镍钴硫化物异质结构复合材料,其制备方法以及用途
CN105321725A (zh) * 2015-10-29 2016-02-10 南京工程学院 一种超级电容器微纳结构电极材料及电极片制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
SHIPRA RAJ,ET AL: "Three-dimensional NiCo2O4/NiCo2S4 hybrid nanostructure on Ni-foam as a high-performance supercapacitor electrode", 《RSC ADVANCES》 *
SIYI CHENG,ET AL: "Rational design of nickel cobalt sulfide/oxide core-shell nanocolumn arrays for high-performance flexible all-solid-state asymmetric supercapacitors", 《CERAMICS INTERNATIONAL》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108899222A (zh) * 2018-06-26 2018-11-27 中南大学 一种超级电容器电极材料的制备方法
CN108899222B (zh) * 2018-06-26 2020-06-19 中南大学 一种超级电容器电极材料的制备方法
CN112614700A (zh) * 2020-11-30 2021-04-06 西安西电电力电容器有限责任公司 金属硫化物/氮掺杂碳纤维复合纳米薄膜、柔性自支撑超级电容器及制备方法

Also Published As

Publication number Publication date
CN107256807B (zh) 2018-10-30

Similar Documents

Publication Publication Date Title
CN102013330B (zh) 石墨烯/多孔氧化镍复合超级电容器薄膜及其制备方法
CN102324321B (zh) 一种泡沫镍基负载的金属氧化镍/碳复合电极材料
CN104894595B (zh) 一种高催化活性的非晶金属氧化物析氢电极及其制备方法
CN104269278B (zh) 一种自立式纳米多孔镍/氧化镍复合电极片及其制备方法
CN105390702B (zh) 一种泡沫镍基碳纳米管掺杂Sn/SnO/SnO2层状三维多孔负极材料及其制备方法
CN105321725B (zh) 一种超级电容器微纳结构电极材料及电极片制备方法
CN107601501A (zh) 一种生物质基多孔碳的制备方法及其应用
CN107146915A (zh) 一种多孔铋‑碳复合材料的制备方法
Shen et al. Steel mesh reinforced Ni (OH) 2 nanosheets with enhanced oxygen evolution reaction performance
CN109019783A (zh) 氢氧化钴/zif-67碳基催化电极及其制备方法和应用
CN102436936B (zh) 双3d结构的二氧化锰薄膜电极及其制备方法
CN103606683B (zh) 一种线团状的锗纳米材料及其制备方法
CN108597896A (zh) 一种树叶形状的磷酸钴纳米片的制备方法及应用
CN107256807B (zh) 一种制备镍铜的硫、氧化合物复合薄膜电极的方法
CN110028053A (zh) 一种高氮掺杂量碳纳米笼材料的制备方法及其应用
CN102592842A (zh) 染料敏化太阳能电池中碳对电极的制备方法
CN102383162A (zh) 一种低碳节能环保的制备超疏水铝合金的方法
CN110739162A (zh) 一种柔性超级电容器正极材料的制备方法
CN109728242A (zh) 三维合金锂负极、其制备方法及锂二次电池
CN101620936A (zh) 二氧化铅/活性碳混合超级电容器
CN107275108B (zh) 一种制备镍钴的氧、硫化合物复合薄膜电极的方法
CN109244374A (zh) 一种三维多孔锂金属复合负极材料及制备方法与应用
Zhang et al. Modification and durability of carbon paper gas diffusion layer in proton exchange membrane fuel cell
CN104021947A (zh) 混合型超级电容器高比容率氧化钌电极的制备方法
CN111326351A (zh) 一种电容器用Cu2O/NiO材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant