CN111254126B - 7α-羟基类固醇脱氢酶(St-2-2)突变体 - Google Patents

7α-羟基类固醇脱氢酶(St-2-2)突变体 Download PDF

Info

Publication number
CN111254126B
CN111254126B CN202010224918.XA CN202010224918A CN111254126B CN 111254126 B CN111254126 B CN 111254126B CN 202010224918 A CN202010224918 A CN 202010224918A CN 111254126 B CN111254126 B CN 111254126B
Authority
CN
China
Prior art keywords
ala
val
gly
ile
leu
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010224918.XA
Other languages
English (en)
Other versions
CN111254126A (zh
Inventor
祝连彩
王伯初
潘银平
唐士金
赵文艳
杨碧玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN202010224918.XA priority Critical patent/CN111254126B/zh
Publication of CN111254126A publication Critical patent/CN111254126A/zh
Application granted granted Critical
Publication of CN111254126B publication Critical patent/CN111254126B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/0004Oxidoreductases (1.)
    • C12N9/0006Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/70Vectors or expression systems specially adapted for E. coli
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P33/00Preparation of steroids
    • C12P33/02Dehydrogenating; Dehydroxylating
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y101/00Oxidoreductases acting on the CH-OH group of donors (1.1)
    • C12Y101/01Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
    • C12Y101/011597-Alpha-hydroxysteroid dehydrogenase (1.1.1.159)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Biochemistry (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Biophysics (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Enzymes And Modification Thereof (AREA)

Abstract

本发明涉及羟基类固醇脱氢酶,具体涉及7α‑羟基类固醇脱氢酶(St‑2‑2)突变体。所述突变体的氨基酸序列如SEQ ID NO:2,3,4,5,6,7,8,9或10所示,是氨基酸序列为SEQ ID NO:1的7α‑羟基类固醇脱氢酶的第255位氨基酸由Ile变为Tyr、Gln、Leu、Thr、Gly、Asn、Ser、Ala或Phe所得。所述突变体在相同底物TCDCA和NADP+的存在下,酶活分别是野生型的1.49、1.78、1.79、1.79、1.93、2.44、2.58、2.97、3.34倍,在生物转化TCDCA获取TUDCA的过程中具有巨大的应用潜力。

Description

7α-羟基类固醇脱氢酶(St-2-2)突变体
技术领域
本发明涉及羟基类固醇脱氢酶,具体涉及7α-羟基类固醇脱氢酶(St-2-2)的突变体I255Y、 I255Q、I255L、I255T、I255G、I255N、I255S、I255A和I255F。
背景技术
羰基的不对称还原一直是化学反应研究的热点之一。虽然目前化学方法已经取得了一定的成果,但是化学方法往往存在催化剂种类和数目有限、立体选择性不高、辅助试剂昂贵且不易回收等缺点。而酶促反应不仅具有高效性、化学选择性、区域选择性,还具有高度的立体选择性。羟基类固醇脱氢酶(Hydroxysteroid dehydrogenase,HSDH)介导的酶促反应具有相对严格的立体选择性和“不”严格的底物特异性。例如,早在二十世纪八十年代初科学家就已经开始尝试利用微生物产生的7α-、7β-HSDH联合差向异构转化鹅去氧胆酸(Chenodeoxycholic acid,CDCA)合成熊去氧胆酸(Ursodesoxycholic acid,UDCA)。而游离酶还可以催化结合态胆汁酸——牛磺鹅去氧胆酸(Taurochenodeoxycholic acid,TCDCA)转化为牛磺熊去氧胆酸(Tauroursodeoxycholic acid,TUDCA)。
HSDH的底物不仅仅局限在甾体类化合物,文献报道HSDH还可以催化烷基取代单环酮类、二环酮类等物质的羰基不对称还原。HSDH所具有的优秀催化品质决定了其在生物转化领域具有较大应用潜力。然而,活性更高的HSDH改造体是其在生物转化领域进一步应用的基本保障。近年来,科研人员逐渐认识到了7α-、7β-HSDH在生物转化领域所具有的巨大应用潜力。目前,GenBank中登记的功能已经确认的7α-HSDH共有8个,它们分别来自于Bacteroides fragilis、Clostridium scindens、Clostridium sordellii、Clostridiumabsonum、Stenotrophomonas maltophilia、Eubacterium sp.VPI 12708、Clostridiumdifficile和Escherichia coli;来自 Clostridium absonum和Collinsella aerofaciens的7β-HSDH基因也已经成功被克隆。上述双酶偶联构建的生物转化体系不但克服了辅酶循环难题,还实现了氧化、还原“一锅式”进行特定化学区域的羟基差向异构。
酶的活性较低是限制其工业应用的主要因素之一,几乎所有的天然酶都需要经过改造后才能达到工业应用的要求。申请号为2019106381160,发明名称为“7α-羟基类固醇脱氢酶及其编码基因与应用”的中国专利申请中公布了一种7α-羟基类固醇脱氢酶St-2-2,该酶对 TCDCA、GCDCA的催化活性优于本课题组前期发现的5个7α-HSDHs。目前,尚未见到改造该酶的相关报道。
发明内容
为进一步提高催化效率,本发明对7α-羟基类固醇脱氢酶(St-2-2)进行了改造,获得的突变体具有更高的催化效率,可用于多种底物的生物转化,在工业生产中有巨大的应用价值。
本发明提供一种7α-羟基类固醇脱氢酶突变体,其氨基酸序列如SEQ ID NO:2,3,4,5, 6,7,8,9或10所示,是氨基酸序列为SEQ ID NO:1的7α-羟基类固醇脱氢酶的第255位氨基酸由Ile变为Tyr、Gln、Leu、Thr、Gly、Asn、Ser、Ala或Phe所得。
本发明首先从一级结构至高级结构多角度多层系比较了野生型7α-HSDH St-2-2与同源酶蛋白的异同,确定了影响7α-HSDH St-2-2酶学性质的位点为第255位氨基酸——异亮氨酸。然后通过密码子替换将255位的异亮氨酸分别变为酪氨酸、谷氨酰胺、亮氨酸、苏氨酸、甘氨酸、天冬酰胺、丝氨酸、丙氨酸、苯丙氨酸,并利用PCR技术克隆获得了7α-HSDHSt-2-2 的突变体I255Y、I255Q、I255L、I255T、I255G、I255N、I255S、I255A和I255F的目的基因。最后通过构建突变体基因的GST融合表达载体并导入基因工程菌E.coli BL21中诱导表达,获得了突变体酶蛋白。测定相同底物浓度TCDCA和NADP+存在下酶的初始反应速度,结果表明,7α-HSDH St-2-2的突变体I255Y、I255Q、I255L、I255T、I255G、I255N、I255S、I255A 和I255F的酶活分别是野生型的1.49、1.78、1.79、1.79、1.93、2.44、2.58、2.97、3.34倍。在相同底物GCDCA和NADP+的存在下,7α-HSDH St-2-2的突变体I255Y、I255Q、I255L、 I255T、I255G、I255N、I255S、I255A和I255F的酶活分别是野生型的1.01、1.11、1.26、1.27、 1.29、1.64、1.83、1.85、2.84倍。因此,上述突变体在生物转化TCDCA获取TUDCA的过程中具有巨大的应用潜力。
编码所述7α-羟基类固醇脱氢酶突变体的基因也属于本发明的保护范围。
在本发明的优选实施例中,所述基因的核苷酸序列如SEQ ID NO:12,13,14,15,16, 17,18,19或20所示。
包含所述基因的表达盒、载体或重组菌也属于本发明的保护范围。所述载体,可以是克隆载体,包含任一所述的7α-HSDH St-2-2突变体的编码基因以及质粒复制所需的其它元件;也可以是表达载体,包含任一所述的7α-HSDH St-2-2突变体的编码基因和能够使蛋白成功表达的其它元件。在一些实施例中,所述表达载体为插入了突变体基因的pGEX-6p-2载体。所述重组菌,可以是包含克隆载体的重组菌,例如E.coli DH5α,通过培养细胞使细胞内的 7α-HSDH St-2-2突变体基因得到复制;也可以是包含表达载体的细胞,在适当的条件下培养细胞,例如,加入适量的IPTG,16℃诱导7α-HSDH St-2-2突变体蛋白的表达。
本发明还提供所述7α-羟基类固醇脱氢酶突变体的制备方法,包括如下步骤:合成所述7α- 羟基类固醇脱氢酶突变体的编码基因,构建表达载体,转化蛋白表达宿主菌,诱导蛋白表达并纯化。
在本发明的优选实施例中,所述制备方法中,所述7α-羟基类固醇脱氢酶突变体的编码基因的核苷酸序列如SEQ ID NO:12,13,14,15,16,17,18,19或20所示。
本发明还提供一种催化剂,其有效成分包含所述7α-羟基类固醇脱氢酶突变体。所述催化剂的有效成分包含7α-HSDH St-2-2突变体I255Y、I255Q、I255L、I255T、I255G、I255N、I255S、 I255A和I255F中的1种,2种,3种,4种,5种,6种,7种,8种或全部。所述催化剂可以单独使用,也可以与其它的适合的催化剂同时使用,以提高酶催化效率或者在同一反应体系中先后进行两种催化反应。
所述7α-羟基类固醇脱氢酶突变体或所述催化剂在羰基不对称还原反应中的应用也属于本发明的保护范围。
本发明还提供一种实现化学物质的羰基不对称还原的方法,其使用所述7α-羟基类固醇脱氢酶突变体或所述催化剂与反应底物进行催化反应;所述反应底物为牛磺鹅去氧胆酸或甘氨鹅去氧胆酸,或含有牛磺鹅去氧胆酸或甘氨鹅去氧胆酸的胆汁酸组分。
在本发明的优选实施例中,本发明所述的任一7α-HSDH St-2-2突变体,在室温下,在pH 8.0 50mM Tris-HCl中能够催化TCDCA C7α-羟基的羰基不对称还原反应。
附图说明
图1.7α-HSDH、7β-HSDH联合转化TCDCA制备TUDCA的示意图。
图2.7α-羟基类固醇脱氢酶(St-2-2)突变体I255Y、I255Q、I255L、I255T、I255G、I255N、 I255S、I255A、I255F的SDS-PAGE电泳图;其中,M为蛋白质分子量标准(Marker),从上到下分子量大小依次是120,100,70,50,40,30,25kDa;泳道1、2、3、4、5、6、7、8、 9分别为I255Y、I255Q、I255L、I255T、I255G、I255N、I255S、I255A、I255F突变体蛋白,分子量大小为28.2kDa。
图3.7α-羟基类固醇脱氢酶(St-2-2)野生型酶蛋白的SDS-PAGE电泳图;其中,M为蛋白质分子量标准(Marker),从上到下分子量大小依次是120,100,70,50,40,30,25kDa;St-2-2蛋白,分子量大小为28.2kDa。
图4.NADPH的标准曲线;其中,横坐标为NADPH溶液的浓度(mM),纵坐标为每个浓度的NADPH溶液在340nm处的光吸收值。
图5.野生型7α-HSDH St-2-2与突变体的相对酶活(以TCDCA为底物),其中,St-2-2代表野生型,I255Y、I255Q、I255L、I255T、I255G、I255N、I255S、I255A、I255F为突变体。
图6.野生型7α-HSDH St-2-2与突变体的相对酶活(以GCDCA为底物),其中,St-2-2代表野生型,I255G、I255Y、I255T、I255Q、I255L、I255S、I255N、I255F、I255A为突变体。
具体实施方式
下面结合具体实施例进一步描述本发明,需要声明的是,下述实施例仅作为解释和说明,不以任何方式限制本发明的范围。
主要试剂:
Prime STAR Max Premix(2×),宝生物科技有限公司(大连),货号:R045A;BamHI,宝生物科技有限公司(大连),货号:1010S;Xho I,宝生物科技有限公司(大连),货号:1094S;T4 DNA Ligase,宝生物科技有限公司(大连),货号:2011A;pGEX-6p-2质粒为已知载体,上海生工生物科技有限公司;Trans5α感受态细胞,全式金生物技术有限公司,货号:CD201-01;E.coli BL21感受态细胞,全式金生物技术有限公司,货号:CD601;磷酸盐缓冲液(PBS)干粉,北京索莱宝科技有限公司,货号:P1010;Glutathione Sepharose 4B,购买自GEHealthcare,货号:10223836;PreScission Protease酶,购买自GenScript公司,货号:Z02799-100;BCA试剂盒,购买自Beyotime公司,货号:P0006;质粒提取试剂盒,OMEGA BIO-TEK(中国代理商),货号:D3350;酶切回收试剂盒,OMEGA BIO-TEK(中国代理商),货号:D6943;NADPH辅酶:购买自Sigma-Aldrich公司,货号:10621692001;购买自NADP+辅酶:Sigma-Aldrich公司,货号:N5755;TCDCA(牛磺鹅去氧胆酸),百灵威科技公司,货号:330776;GCDCA(甘氨鹅去氧胆酸),麦克林试剂公司,货号:G835599。
若未特别说明,以下实施例所使用的试剂均为本领域常规试剂,可商购获得或按照本领域常规方法配制而得,规格为实验室纯级即可。若未特别说明,以下实施例所使用的方法均为本领域常规方法,可参考相关实验手册或厂商说明书。
野生型7α-羟基类固醇脱氢酶St-2-2(7α-HSDH St-2-2)的氨基酸序列如SEQ IDNO:1 所示,其核苷酸序列如SEQ ID NO:11所示。以下实施例中所使用的野生型7α-HSDHSt-2-2 基因是以黑熊粪便样品的总DNA为模板(黑熊粪便样品来自四川黑熊保护及孵育基地),采用PCR技术克隆所得,记载在已公开的申请号为2019106381160,发明名称为“7α-羟基类固醇脱氢酶及其编码基因与应用”的专利申请文本中,通过引用将该专利申请的全部内容并入本文。该野生型7α-HSDH St-2-2基因也可通过基因合成的方法获得。
实施例1. 7α-羟基类固醇脱氢酶(St-2-2)突变体制备
1.突变体基因合成
野生型7α-羟基类固醇脱氢酶St-2-2的氨基酸序列(262aa)如下:
MKRVENKVALVTSSTRGIGLAIAKTLAKEGARVYLAVRRLDAGQEVANEIIAEGGFAKPV YFDASKVETHMSMIEEVVEAEGRIDILVNNYGSTDVQKDLDLVHGDTEAFFNIVNQNLESV YLPCKVAVPYMIKNGGGSIINISTIGSVNPDLGRIAYVVSKAAINALTQNIAVQYAKKGIRC NAVLPGLIATDAALNNMSEEFLEHFLRHVPLDRTGHPQDIANAVLFFASDESSYITGTLQEV AGGFGMPSPIYGDAVKK(SEQ ID NO:1)
野生型7α-羟基类固醇脱氢酶St-2-2的核苷酸序列(789bp)如下:
ATGAAAAGAGTAGAAAATAAAGTAGCATTAGTCACATCTTCTACAAGAGGGATTGGAC TTGCTATTGCTAAAACACTTGCTAAAGAAGGTGCACGTGTATACCTTGCAGTAAGAAG ATTAGATGCAGGTCAGGAGGTAGCGAATGAAATTATTGCAGAAGGTGGATTTGCTAAG CCTGTTTACTTTGATGCTTCTAAAGTAGAGACACACATGAGTATGATTGAAGAAGTAGT TGAAGCTGAAGGACGTATAGATATTTTAGTCAATAATTATGGTTCAACAGACGTTCAAAAGGACTTAGATCTCGTACATGGAGATACAGAAGCTTTCTTTAATATTGTTAATCAAAA TCTTGAAAGTGTTTACTTACCATGTAAGGTGGCGGTACCTTATATGATTAAAAATGGTG GAGGAAGCATTATTAACATTTCTACAATTGGTTCAGTAAACCCTGACCTTGGACGTATT GCTTATGTTGTATCTAAAGCAGCTATCAACGCGCTTACACAAAATATTGCAGTTCAGTA TGCAAAAAAAGGGATAAGATGTAATGCTGTTCTTCCAGGTCTTATTGCTACGGATGCA GCCCTTAATAATATGTCAGAGGAGTTCTTAGAACATTTCTTAAGACATGTACCACTTGA CCGTACAGGGCATCCTCAAGATATTGCTAATGCAGTACTTTTCTTTGCAAGTGATGAAT CTTCTTATATTACAGGTACACTTCAAGAAGTAGCAGGTGGATTTGGTATGCCATCACCT ATTTATGGGGATGCTGTTAAGAAATAA(SEQ ID NO:11)
通过从一级结构至高级结构的多角度多层系比较野生型7α-HSDH St-2-2与同源酶蛋白的异同,确定了影响野生型7α-HSDH St-2-2酶学性质的位点为第255位氨基酸,所述氨基酸为异亮氨酸,其对应的核苷酸序列为第763-765位密码子。
将野生型7α-HSDH St-2-2基因序列的第763-765处密码子由ATT分别更改为TAC、CAA、 CTT、ACA、GGT、AAT、TCT、GCA、TTC,也就是将野生型7α-HSDH St-2-2氨基酸序列第255位的异亮氨酸分别替换成酪氨酸、谷氨酰胺、亮氨酸、苏氨酸、甘氨酸、天冬酰胺、丝氨酸、丙氨酸、苯丙氨酸,得到9个7α-HSDH St-2-2突变体,分别命名为I255Y、I255Q、I255L、I255T、I255G、I255N、I255S、I255A、I255F突变体,其氨基酸序列如SEQ ID NO:2~ 10所示,其核苷酸序列如SEQ ID NO:12~20所示。
2.表达载体构建
2.1基因合成与扩增
通过PCR法扩增合成基因,分别在I255Y、I255Q、I255L、I255T、I255G、I255N、I255S、 I255A、I255F突变体基因序列的5’端引入酶切位点BamH I(GGATCC),3’端引入酶切位点 Xho I(CTCGAG)。引物的核苷酸序列如下所示,委托Sangon Biotech(中国,上海)公司进行引物合成。
表1:7α-HSDH St-2-2突变体基因引物
Figure BDA0002427316640000061
注:FP表示上游引物,RP表示下游引物。*所有突变体基因的上游引物均相同,X表示Y、 Q、L、T、G、N、S、A或F。
Figure BDA0002427316640000062
PCR条件:
Figure BDA0002427316640000071
同时,按照上述PCR体系和条件,以黑熊粪便总DNA为模板扩增野生型7α-HSDH St-2-2 基因,引物为:
St-2-2-FP:5’-CGCGGATCCATGAAAAGAGTAGAAAATAAAGTAG-3’;
St-2-2-RP:5’-CCGCTCGAGTTAAACAGCATCCCCATAAATAG-3’。
2.2酶切和连接
2.2.1酶切
利用BamH I和Xho I限制性内切酶分别对扩增的基因和pGEX-6p-2质粒进行双酶切。
酶切体系:
Figure BDA0002427316640000072
酶切条件:37℃酶切3h(干浴)。
2.2.2双酶切产物回收
采用Omega凝胶回收试剂盒(OMEGA BIO-TEK,货号D6943),根据试剂盒说明书进行酶切产物回收:
1)向每个离心管加入等体积的结合剂Binding Buffer,使之与酶切产物充分混匀后,吸入
Figure BDA0002427316640000073
DNA微型柱的2mL收集管中,离心(10000×g,1min)。
2)向收集管加入300μL Binding Buffer,离心(14000×g,1min)。
3)加入700μL乙醇稀释的SPW Wash Buffer洗涤吸附柱,离心(14000×g,1min),重复一次。
4)弃去液体,并将空的吸附柱离心(14000×g,2min)。
5)将收集管弃去,将
Figure BDA0002427316640000081
DNA微型柱放在干净的纸上,开盖静置10min,充分挥发酒精。期间将一管无菌的ddH2O预热至65℃备用。
6)将
Figure BDA0002427316640000082
DNA微型柱放于已灭菌的1.5mL离心管中,加50μL加热到65℃的ddH2O,于室温下放置1-2min,洗脱DNA,离心(14000×g,2min)。
7)测浓度。吸取2μL DNA于超微量分光光度计中,测定DNA的浓度。(浓度单位:ng/μL, 260/280:核酸含量)。
2.2.3线性化载体pGEX-6p-2与PCR酶切产物连接
使用T4 DNA连接酶,按照如下体系和条件进行连接。
Figure BDA0002427316640000083
连接反应条件:16℃连接过夜,得到如下连接产物:pGEX-6p-2/St-2-2、pGEX-6p-2/St-2-2 I255Y、pGEX-6p-2/St-2-2I255Q、pGEX-6p-2/St-2-2I255L、pGEX-6p-2/St-2-2I255T、 pGEX-6p-2/St-2-2I255G、pGEX-6p-2/St-2-2I255N、pGEX-6p-2/St-2-2I255S、pGEX-6p-2/St-2-2 I255A、pGEX-6p-2/St-2-2I255F。
2.3连接产物转化E.coli DH5α感受态细胞
1)Luria-Bertani琼脂培养基制备:配制适量的100mL固体培养基,灭菌30min,待冷至40-50℃,向其中加入终浓度100μg/mL的氨苄青霉素。取适量培养基均匀地铺在无菌的培养板上,于超净台凝固。期间将-80℃冷冻保存的Trans5α感受态细胞(全式金,CD201-01)取出并迅速放在冰上,静置10min融化。
2)快速将Trans5α感受态细胞按照需求分装于无菌的1.5mL离心管中,加入10μL连接产物,在冰上静置30min。
3)于45℃,热激45s。
4)快速将离心管转移到冰上放置2min(切勿晃动离心管)。
5)向其中加入无抗生素无菌的Luria-Bertani培养基500μL,摇床培养,温度37℃,摇速 180rpm,时间45min,复苏细胞。
6)吸取100μL左右菌液,涂布于Amp+抗性LB平板培养基上(Amp+终浓度为100μg/mL), 37℃过夜培养。
2.4阳性克隆筛选
1)挑取单菌落,接种于适量的无菌的含氨苄青霉素的Luria-Bertani液体培养基中(Amp +终浓度为100μg/mL),摇床培养,温度37℃,摇速220rpm。培养至OD600大约为0.8-1。
2)保种:菌液和25%无菌甘油按照2:1的体积比混匀后,液氮速冻,保存于-80℃。
3)余下的菌液用于质粒提取。采用OMEGA Plasmid Mini Kit I(OMEGA BIO-TEK,D6943)按试剂盒说明书提取质粒,步骤如下:
1)菌液生长至OD600大约为0.8-1,8000rpm离心5min获取菌体。
2)弃上清液,并立即用200μL移液枪吸干残留液体,立即加入250μL Solution I(已加入RNA酶,并保存于4℃),涡旋直至菌体沉淀完全悬浮。
3)将混匀的菌液加入1.5mL无菌离心管中,向离心管中加入同等体积的SolutionⅡ,缓慢的转动离心管彻底混匀样品,以获得澄清裂解液。立即向其中加入350μL SolutionⅢ,缓慢的转动离心管混合样品(出现白色絮状沉淀),离心(4℃,13000×g,10min)。(注意这步必须在5min内完成,并且不能剧烈混合,否则染色体DNA断裂使得到的质粒纯度降低)。
4)用200μL移液枪小心吸取上清(确保没有吸入沉淀),转移至装
Figure BDA0002427316640000094
DNA微型柱的2mL收集管中。
5)离心(13000×g,1min),弃滤液。
6)向收集柱中加入500μL Buffer HB,离心(13000×g,1min),弃滤液。
7)向收集柱中加入700μL DNA Wash Buffer(已加入无水乙醇),离心(13000×g,1min),弃滤液,除杂。重复一次,弃液体。
8)离心(15000×g,2min)以甩干
Figure BDA0002427316640000091
DNA微型柱,打开收集柱盖子,静置10min,使无水乙醇挥发干净。期间取一管无菌的ddH2O预热到65℃。
9)将
Figure BDA0002427316640000092
DNA微型柱置于无菌的1.5mL离心管中,加入50μL已经预热到65℃ddH2O,室温静置2min,离心(15000×g,2min)。
10)测浓度。吸取2μL DNA于超微量分光光度计,测定DNA的浓度。(浓度单位:ng/μL, 260/280:核酸含量)。
2.5质粒的双酶切鉴定
酶切体系:
Figure BDA0002427316640000093
Figure BDA0002427316640000101
酶切条件:37℃酶切1.5h。琼脂糖凝胶电泳检测酶切产物。
2.6测序确认
选取双酶切鉴定正确的重组质粒送Sangon Biotech(中国,上海)公司测序,将测序结果正确的重组质粒作为St-2-2野生型和St-2-2I255Y、St-2-2I255Q、St-2-2I255L、St-2-2I255T、 St-2-2I255G、St-2-2I255N、St-2-2I255S、St-2-2I255A、St-2-2I255F突变体的表达载体。
3.酶蛋白的GST融合异源表达
3.1质粒转化E.coli BL21细胞
按照上述2.3(连接产物转化E.coli DH5α感受态细胞)所述的转化方法将2.6获得的重组质粒转入E.coli BL21细胞中,获得用于蛋白表达的重组菌。
3.2蛋白表达与纯化
1)接种100μL重组菌的菌液于400mL无菌LB培养基中,氨苄青霉素终浓度为100 μg/mL,37℃,180rpm摇床培养。
2)待OD600≈0.8时,加入终浓度为0.2mM的IPTG,16℃诱导过夜(12h)。将菌液分装至高速离心瓶中,8000rpm离心5min,收集菌体。
3)按1L培养体系加30mL 50mM PBS的比例重悬菌体,4℃超声破菌至澄清。破碎的菌液均分至预冷到4℃的无菌的50mL离心管中12000rpm离心20min,离心沉降菌体沉淀,待离心结束,用精密移液枪将上清转移到50mL无菌的离心管中。
4)取4mL Glutathione Sepharose 4B填料于亲和层析柱(GE Healthcare,货号:10223836) 中,用无菌的4℃预冷的50mM PBS冲洗3个柱体积,去除无水乙醇。将上清与Glutathione Sepharose 4B结合,4℃结合3h。轻轻垂直颠倒混悬。
5)结合完毕后,沉淀填料。滤掉上清,用无菌的4℃预冷的50mM PBS(含有体积分数为0.25%的吐温20)冲洗3到5个柱体积,再用无菌的4℃预冷的50mM PBS冲洗3个柱体积,去除杂蛋白,最后一次洗脱的时候每个亲和层析柱留下1mL 50mM PBS。
6)加入PreScission Protease酶(GenScript,Z02799-100)40-60μL。
7)4℃酶切过夜。酶切完毕后,将上清从层析柱中放出即为洗脱的7α-HSDH酶液。
8)将所得的酶液进行SDS-PAGE,鉴定其分子量大小及纯度,分子量约为28.2kDa,使用BCA试剂盒(Beyotime,P0006)按照试剂盒说明书测定纯化蛋白的浓度。将酶液和体积分数为80%的无菌甘油按照3:1的体积比混匀,并将含有甘油的酶液分装于无菌的1.5mL离心管中,保存于-80℃。
9)使用后的Glutathione Sepharose 4B填料用6mol/L的盐酸胍浸泡20min,再用PBS大量冲洗填料后用20%乙醇浸泡填料,保存于4℃冰箱。
如图2所示,SDS-PAGE检测结果显示I255Y、I255Q、I255L、I255T、I255G、I255N、I255S、I255A、I255F突变体可溶性表达成功(图2中1~9泳道),并且经一步亲和层析后蛋白的条带单一。纯化的I255Y、I255Q、I255L、I255T、I255G、I255N、I255S、I255A、I255F 突变体酶蛋白的浓度分别是1.63mg/mL,1.55mg/mL,1.40mg/mL,1.86mg/mL,1.31mg/mL, 1.32mg/mL,1.51mg/mL,1.88mg/mL,0.86mg/mL。野生型酶蛋白的浓度为1.53mg/mL。 SDS-PAGE检测结果显示野生型酶蛋白的可溶性表达成功(图3)。
实施例2. 7α-羟基类固醇脱氢酶(St-2-2)突变体的酶活测定
1.NADPH标准曲线的制作
利用反应缓冲液(50mM Tris-HCl,pH 8.0)分别配制0mM,0.1mM,0.2mM,0.3mM,0.4mM的NADPH溶液。用上述空白溶剂(50mM Tris-HCl,pH 8.0)调零后将各个浓度的 NADPH溶液分别加入2mL比色皿中,于室温下,在340nm测定光吸收值OD340。以NADPH 溶液的浓度为横坐标,对应的340nm光吸收值为纵坐标,绘制标准曲线。结果如图4所示,获得的标准曲线方程式为y=2.79559x-0.0003,R2=0.9999。
所述反应缓冲液(50mM Tris-HCl,pH 8.0)的配制方法为:取6.057g Tris固体粉末溶于 1L去离子水中,用盐酸调pH到8.0,室温放置备用。
2.酶活测定
1)用ddH2O配置50mM NADP+,50mM TCDCA,50mM GCDCA。
2)在2mL比色皿中首先加入1955μL 50mM Tris-HCl(pH 8.0)缓冲溶液,再依次加入20μL 50mM NADP+辅酶溶液,再向其中加入2μL实施例1制备的酶蛋白溶液,充分混匀后在波长为340nm条件下调零,然后立即向混合液中加入20μL 50mM TCDCA(牛磺鹅去氧胆酸)或者20μL 50mM GCDCA(甘氨鹅去氧胆酸)底物溶液,充分吹打混匀,于室温,在340nm处记录30s内的光吸收变化,并根据NADPH的标准曲线计算产物的生成量。每个酶蛋白样品进行3次重复试验,结果取平均值。
3)酶活计算:将340nm处记录的30s内的光吸收变化值带入NADPH标准曲线y=2.79559x-0.0003,R2=0.9999计算得到30s时已转化底物浓度mmol/L。
Figure BDA0002427316640000121
Vt:反应总体积,mL
酶活单位定义为:相应条件下,每分钟转化1μmol TCDCA或GCDCA所需7α-HSDH的酶量定义为一个酶活单位U。酶的比活定义为:每毫克酶蛋白含有的活性单位数,单位为: U/mg。
结果如图5所示,在相同底物TCDCA和NADP+的存在下,St-2-2突变体I255Y、I255Q、I255L、I255T、I255G、I255N、I255S、I255A、I255F的酶活分别是St-2-2野生型的1.49、1.78、1.79、1.79、1.93、2.44、2.58、2.97、3.34倍。如图6所示,在相同底物GCDCA和NADP+的存在下,St-2-2突变体I255Y、I255Q、I255L、I255T、I255G、I255N、I255S、I255A、I255F 的酶活分别是St-2-2野生型的1.01、1.11、1.26、1.27、1.29、1.64、1.83、1.85、2.84倍。
序列表
<110> 重庆大学
<120> 7α-羟基类固醇脱氢酶(St-2-2)突变体
<130> P2030105-CQD-CQ-XDW
<160> 32
<170> SIPOSequenceListing 1.0
<210> 1
<211> 262
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 1
Met Lys Arg Val Glu Asn Lys Val Ala Leu Val Thr Ser Ser Thr Arg
1 5 10 15
Gly Ile Gly Leu Ala Ile Ala Lys Thr Leu Ala Lys Glu Gly Ala Arg
20 25 30
Val Tyr Leu Ala Val Arg Arg Leu Asp Ala Gly Gln Glu Val Ala Asn
35 40 45
Glu Ile Ile Ala Glu Gly Gly Phe Ala Lys Pro Val Tyr Phe Asp Ala
50 55 60
Ser Lys Val Glu Thr His Met Ser Met Ile Glu Glu Val Val Glu Ala
65 70 75 80
Glu Gly Arg Ile Asp Ile Leu Val Asn Asn Tyr Gly Ser Thr Asp Val
85 90 95
Gln Lys Asp Leu Asp Leu Val His Gly Asp Thr Glu Ala Phe Phe Asn
100 105 110
Ile Val Asn Gln Asn Leu Glu Ser Val Tyr Leu Pro Cys Lys Val Ala
115 120 125
Val Pro Tyr Met Ile Lys Asn Gly Gly Gly Ser Ile Ile Asn Ile Ser
130 135 140
Thr Ile Gly Ser Val Asn Pro Asp Leu Gly Arg Ile Ala Tyr Val Val
145 150 155 160
Ser Lys Ala Ala Ile Asn Ala Leu Thr Gln Asn Ile Ala Val Gln Tyr
165 170 175
Ala Lys Lys Gly Ile Arg Cys Asn Ala Val Leu Pro Gly Leu Ile Ala
180 185 190
Thr Asp Ala Ala Leu Asn Asn Met Ser Glu Glu Phe Leu Glu His Phe
195 200 205
Leu Arg His Val Pro Leu Asp Arg Thr Gly His Pro Gln Asp Ile Ala
210 215 220
Asn Ala Val Leu Phe Phe Ala Ser Asp Glu Ser Ser Tyr Ile Thr Gly
225 230 235 240
Thr Leu Gln Glu Val Ala Gly Gly Phe Gly Met Pro Ser Pro Ile Tyr
245 250 255
Gly Asp Ala Val Lys Lys
260
<210> 2
<211> 262
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 2
Met Lys Arg Val Glu Asn Lys Val Ala Leu Val Thr Ser Ser Thr Arg
1 5 10 15
Gly Ile Gly Leu Ala Ile Ala Lys Thr Leu Ala Lys Glu Gly Ala Arg
20 25 30
Val Tyr Leu Ala Val Arg Arg Leu Asp Ala Gly Gln Glu Val Ala Asn
35 40 45
Glu Ile Ile Ala Glu Gly Gly Phe Ala Lys Pro Val Tyr Phe Asp Ala
50 55 60
Ser Lys Val Glu Thr His Met Ser Met Ile Glu Glu Val Val Glu Ala
65 70 75 80
Glu Gly Arg Ile Asp Ile Leu Val Asn Asn Tyr Gly Ser Thr Asp Val
85 90 95
Gln Lys Asp Leu Asp Leu Val His Gly Asp Thr Glu Ala Phe Phe Asn
100 105 110
Ile Val Asn Gln Asn Leu Glu Ser Val Tyr Leu Pro Cys Lys Val Ala
115 120 125
Val Pro Tyr Met Ile Lys Asn Gly Gly Gly Ser Ile Ile Asn Ile Ser
130 135 140
Thr Ile Gly Ser Val Asn Pro Asp Leu Gly Arg Ile Ala Tyr Val Val
145 150 155 160
Ser Lys Ala Ala Ile Asn Ala Leu Thr Gln Asn Ile Ala Val Gln Tyr
165 170 175
Ala Lys Lys Gly Ile Arg Cys Asn Ala Val Leu Pro Gly Leu Ile Ala
180 185 190
Thr Asp Ala Ala Leu Asn Asn Met Ser Glu Glu Phe Leu Glu His Phe
195 200 205
Leu Arg His Val Pro Leu Asp Arg Thr Gly His Pro Gln Asp Ile Ala
210 215 220
Asn Ala Val Leu Phe Phe Ala Ser Asp Glu Ser Ser Tyr Ile Thr Gly
225 230 235 240
Thr Leu Gln Glu Val Ala Gly Gly Phe Gly Met Pro Ser Pro Tyr Tyr
245 250 255
Gly Asp Ala Val Lys Lys
260
<210> 3
<211> 262
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 3
Met Lys Arg Val Glu Asn Lys Val Ala Leu Val Thr Ser Ser Thr Arg
1 5 10 15
Gly Ile Gly Leu Ala Ile Ala Lys Thr Leu Ala Lys Glu Gly Ala Arg
20 25 30
Val Tyr Leu Ala Val Arg Arg Leu Asp Ala Gly Gln Glu Val Ala Asn
35 40 45
Glu Ile Ile Ala Glu Gly Gly Phe Ala Lys Pro Val Tyr Phe Asp Ala
50 55 60
Ser Lys Val Glu Thr His Met Ser Met Ile Glu Glu Val Val Glu Ala
65 70 75 80
Glu Gly Arg Ile Asp Ile Leu Val Asn Asn Tyr Gly Ser Thr Asp Val
85 90 95
Gln Lys Asp Leu Asp Leu Val His Gly Asp Thr Glu Ala Phe Phe Asn
100 105 110
Ile Val Asn Gln Asn Leu Glu Ser Val Tyr Leu Pro Cys Lys Val Ala
115 120 125
Val Pro Tyr Met Ile Lys Asn Gly Gly Gly Ser Ile Ile Asn Ile Ser
130 135 140
Thr Ile Gly Ser Val Asn Pro Asp Leu Gly Arg Ile Ala Tyr Val Val
145 150 155 160
Ser Lys Ala Ala Ile Asn Ala Leu Thr Gln Asn Ile Ala Val Gln Tyr
165 170 175
Ala Lys Lys Gly Ile Arg Cys Asn Ala Val Leu Pro Gly Leu Ile Ala
180 185 190
Thr Asp Ala Ala Leu Asn Asn Met Ser Glu Glu Phe Leu Glu His Phe
195 200 205
Leu Arg His Val Pro Leu Asp Arg Thr Gly His Pro Gln Asp Ile Ala
210 215 220
Asn Ala Val Leu Phe Phe Ala Ser Asp Glu Ser Ser Tyr Ile Thr Gly
225 230 235 240
Thr Leu Gln Glu Val Ala Gly Gly Phe Gly Met Pro Ser Pro Gln Tyr
245 250 255
Gly Asp Ala Val Lys Lys
260
<210> 4
<211> 262
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 4
Met Lys Arg Val Glu Asn Lys Val Ala Leu Val Thr Ser Ser Thr Arg
1 5 10 15
Gly Ile Gly Leu Ala Ile Ala Lys Thr Leu Ala Lys Glu Gly Ala Arg
20 25 30
Val Tyr Leu Ala Val Arg Arg Leu Asp Ala Gly Gln Glu Val Ala Asn
35 40 45
Glu Ile Ile Ala Glu Gly Gly Phe Ala Lys Pro Val Tyr Phe Asp Ala
50 55 60
Ser Lys Val Glu Thr His Met Ser Met Ile Glu Glu Val Val Glu Ala
65 70 75 80
Glu Gly Arg Ile Asp Ile Leu Val Asn Asn Tyr Gly Ser Thr Asp Val
85 90 95
Gln Lys Asp Leu Asp Leu Val His Gly Asp Thr Glu Ala Phe Phe Asn
100 105 110
Ile Val Asn Gln Asn Leu Glu Ser Val Tyr Leu Pro Cys Lys Val Ala
115 120 125
Val Pro Tyr Met Ile Lys Asn Gly Gly Gly Ser Ile Ile Asn Ile Ser
130 135 140
Thr Ile Gly Ser Val Asn Pro Asp Leu Gly Arg Ile Ala Tyr Val Val
145 150 155 160
Ser Lys Ala Ala Ile Asn Ala Leu Thr Gln Asn Ile Ala Val Gln Tyr
165 170 175
Ala Lys Lys Gly Ile Arg Cys Asn Ala Val Leu Pro Gly Leu Ile Ala
180 185 190
Thr Asp Ala Ala Leu Asn Asn Met Ser Glu Glu Phe Leu Glu His Phe
195 200 205
Leu Arg His Val Pro Leu Asp Arg Thr Gly His Pro Gln Asp Ile Ala
210 215 220
Asn Ala Val Leu Phe Phe Ala Ser Asp Glu Ser Ser Tyr Ile Thr Gly
225 230 235 240
Thr Leu Gln Glu Val Ala Gly Gly Phe Gly Met Pro Ser Pro Leu Tyr
245 250 255
Gly Asp Ala Val Lys Lys
260
<210> 5
<211> 262
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 5
Met Lys Arg Val Glu Asn Lys Val Ala Leu Val Thr Ser Ser Thr Arg
1 5 10 15
Gly Ile Gly Leu Ala Ile Ala Lys Thr Leu Ala Lys Glu Gly Ala Arg
20 25 30
Val Tyr Leu Ala Val Arg Arg Leu Asp Ala Gly Gln Glu Val Ala Asn
35 40 45
Glu Ile Ile Ala Glu Gly Gly Phe Ala Lys Pro Val Tyr Phe Asp Ala
50 55 60
Ser Lys Val Glu Thr His Met Ser Met Ile Glu Glu Val Val Glu Ala
65 70 75 80
Glu Gly Arg Ile Asp Ile Leu Val Asn Asn Tyr Gly Ser Thr Asp Val
85 90 95
Gln Lys Asp Leu Asp Leu Val His Gly Asp Thr Glu Ala Phe Phe Asn
100 105 110
Ile Val Asn Gln Asn Leu Glu Ser Val Tyr Leu Pro Cys Lys Val Ala
115 120 125
Val Pro Tyr Met Ile Lys Asn Gly Gly Gly Ser Ile Ile Asn Ile Ser
130 135 140
Thr Ile Gly Ser Val Asn Pro Asp Leu Gly Arg Ile Ala Tyr Val Val
145 150 155 160
Ser Lys Ala Ala Ile Asn Ala Leu Thr Gln Asn Ile Ala Val Gln Tyr
165 170 175
Ala Lys Lys Gly Ile Arg Cys Asn Ala Val Leu Pro Gly Leu Ile Ala
180 185 190
Thr Asp Ala Ala Leu Asn Asn Met Ser Glu Glu Phe Leu Glu His Phe
195 200 205
Leu Arg His Val Pro Leu Asp Arg Thr Gly His Pro Gln Asp Ile Ala
210 215 220
Asn Ala Val Leu Phe Phe Ala Ser Asp Glu Ser Ser Tyr Ile Thr Gly
225 230 235 240
Thr Leu Gln Glu Val Ala Gly Gly Phe Gly Met Pro Ser Pro Thr Tyr
245 250 255
Gly Asp Ala Val Lys Lys
260
<210> 6
<211> 262
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 6
Met Lys Arg Val Glu Asn Lys Val Ala Leu Val Thr Ser Ser Thr Arg
1 5 10 15
Gly Ile Gly Leu Ala Ile Ala Lys Thr Leu Ala Lys Glu Gly Ala Arg
20 25 30
Val Tyr Leu Ala Val Arg Arg Leu Asp Ala Gly Gln Glu Val Ala Asn
35 40 45
Glu Ile Ile Ala Glu Gly Gly Phe Ala Lys Pro Val Tyr Phe Asp Ala
50 55 60
Ser Lys Val Glu Thr His Met Ser Met Ile Glu Glu Val Val Glu Ala
65 70 75 80
Glu Gly Arg Ile Asp Ile Leu Val Asn Asn Tyr Gly Ser Thr Asp Val
85 90 95
Gln Lys Asp Leu Asp Leu Val His Gly Asp Thr Glu Ala Phe Phe Asn
100 105 110
Ile Val Asn Gln Asn Leu Glu Ser Val Tyr Leu Pro Cys Lys Val Ala
115 120 125
Val Pro Tyr Met Ile Lys Asn Gly Gly Gly Ser Ile Ile Asn Ile Ser
130 135 140
Thr Ile Gly Ser Val Asn Pro Asp Leu Gly Arg Ile Ala Tyr Val Val
145 150 155 160
Ser Lys Ala Ala Ile Asn Ala Leu Thr Gln Asn Ile Ala Val Gln Tyr
165 170 175
Ala Lys Lys Gly Ile Arg Cys Asn Ala Val Leu Pro Gly Leu Ile Ala
180 185 190
Thr Asp Ala Ala Leu Asn Asn Met Ser Glu Glu Phe Leu Glu His Phe
195 200 205
Leu Arg His Val Pro Leu Asp Arg Thr Gly His Pro Gln Asp Ile Ala
210 215 220
Asn Ala Val Leu Phe Phe Ala Ser Asp Glu Ser Ser Tyr Ile Thr Gly
225 230 235 240
Thr Leu Gln Glu Val Ala Gly Gly Phe Gly Met Pro Ser Pro Gly Tyr
245 250 255
Gly Asp Ala Val Lys Lys
260
<210> 7
<211> 262
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 7
Met Lys Arg Val Glu Asn Lys Val Ala Leu Val Thr Ser Ser Thr Arg
1 5 10 15
Gly Ile Gly Leu Ala Ile Ala Lys Thr Leu Ala Lys Glu Gly Ala Arg
20 25 30
Val Tyr Leu Ala Val Arg Arg Leu Asp Ala Gly Gln Glu Val Ala Asn
35 40 45
Glu Ile Ile Ala Glu Gly Gly Phe Ala Lys Pro Val Tyr Phe Asp Ala
50 55 60
Ser Lys Val Glu Thr His Met Ser Met Ile Glu Glu Val Val Glu Ala
65 70 75 80
Glu Gly Arg Ile Asp Ile Leu Val Asn Asn Tyr Gly Ser Thr Asp Val
85 90 95
Gln Lys Asp Leu Asp Leu Val His Gly Asp Thr Glu Ala Phe Phe Asn
100 105 110
Ile Val Asn Gln Asn Leu Glu Ser Val Tyr Leu Pro Cys Lys Val Ala
115 120 125
Val Pro Tyr Met Ile Lys Asn Gly Gly Gly Ser Ile Ile Asn Ile Ser
130 135 140
Thr Ile Gly Ser Val Asn Pro Asp Leu Gly Arg Ile Ala Tyr Val Val
145 150 155 160
Ser Lys Ala Ala Ile Asn Ala Leu Thr Gln Asn Ile Ala Val Gln Tyr
165 170 175
Ala Lys Lys Gly Ile Arg Cys Asn Ala Val Leu Pro Gly Leu Ile Ala
180 185 190
Thr Asp Ala Ala Leu Asn Asn Met Ser Glu Glu Phe Leu Glu His Phe
195 200 205
Leu Arg His Val Pro Leu Asp Arg Thr Gly His Pro Gln Asp Ile Ala
210 215 220
Asn Ala Val Leu Phe Phe Ala Ser Asp Glu Ser Ser Tyr Ile Thr Gly
225 230 235 240
Thr Leu Gln Glu Val Ala Gly Gly Phe Gly Met Pro Ser Pro Asn Tyr
245 250 255
Gly Asp Ala Val Lys Lys
260
<210> 8
<211> 262
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 8
Met Lys Arg Val Glu Asn Lys Val Ala Leu Val Thr Ser Ser Thr Arg
1 5 10 15
Gly Ile Gly Leu Ala Ile Ala Lys Thr Leu Ala Lys Glu Gly Ala Arg
20 25 30
Val Tyr Leu Ala Val Arg Arg Leu Asp Ala Gly Gln Glu Val Ala Asn
35 40 45
Glu Ile Ile Ala Glu Gly Gly Phe Ala Lys Pro Val Tyr Phe Asp Ala
50 55 60
Ser Lys Val Glu Thr His Met Ser Met Ile Glu Glu Val Val Glu Ala
65 70 75 80
Glu Gly Arg Ile Asp Ile Leu Val Asn Asn Tyr Gly Ser Thr Asp Val
85 90 95
Gln Lys Asp Leu Asp Leu Val His Gly Asp Thr Glu Ala Phe Phe Asn
100 105 110
Ile Val Asn Gln Asn Leu Glu Ser Val Tyr Leu Pro Cys Lys Val Ala
115 120 125
Val Pro Tyr Met Ile Lys Asn Gly Gly Gly Ser Ile Ile Asn Ile Ser
130 135 140
Thr Ile Gly Ser Val Asn Pro Asp Leu Gly Arg Ile Ala Tyr Val Val
145 150 155 160
Ser Lys Ala Ala Ile Asn Ala Leu Thr Gln Asn Ile Ala Val Gln Tyr
165 170 175
Ala Lys Lys Gly Ile Arg Cys Asn Ala Val Leu Pro Gly Leu Ile Ala
180 185 190
Thr Asp Ala Ala Leu Asn Asn Met Ser Glu Glu Phe Leu Glu His Phe
195 200 205
Leu Arg His Val Pro Leu Asp Arg Thr Gly His Pro Gln Asp Ile Ala
210 215 220
Asn Ala Val Leu Phe Phe Ala Ser Asp Glu Ser Ser Tyr Ile Thr Gly
225 230 235 240
Thr Leu Gln Glu Val Ala Gly Gly Phe Gly Met Pro Ser Pro Ser Tyr
245 250 255
Gly Asp Ala Val Lys Lys
260
<210> 9
<211> 262
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 9
Met Lys Arg Val Glu Asn Lys Val Ala Leu Val Thr Ser Ser Thr Arg
1 5 10 15
Gly Ile Gly Leu Ala Ile Ala Lys Thr Leu Ala Lys Glu Gly Ala Arg
20 25 30
Val Tyr Leu Ala Val Arg Arg Leu Asp Ala Gly Gln Glu Val Ala Asn
35 40 45
Glu Ile Ile Ala Glu Gly Gly Phe Ala Lys Pro Val Tyr Phe Asp Ala
50 55 60
Ser Lys Val Glu Thr His Met Ser Met Ile Glu Glu Val Val Glu Ala
65 70 75 80
Glu Gly Arg Ile Asp Ile Leu Val Asn Asn Tyr Gly Ser Thr Asp Val
85 90 95
Gln Lys Asp Leu Asp Leu Val His Gly Asp Thr Glu Ala Phe Phe Asn
100 105 110
Ile Val Asn Gln Asn Leu Glu Ser Val Tyr Leu Pro Cys Lys Val Ala
115 120 125
Val Pro Tyr Met Ile Lys Asn Gly Gly Gly Ser Ile Ile Asn Ile Ser
130 135 140
Thr Ile Gly Ser Val Asn Pro Asp Leu Gly Arg Ile Ala Tyr Val Val
145 150 155 160
Ser Lys Ala Ala Ile Asn Ala Leu Thr Gln Asn Ile Ala Val Gln Tyr
165 170 175
Ala Lys Lys Gly Ile Arg Cys Asn Ala Val Leu Pro Gly Leu Ile Ala
180 185 190
Thr Asp Ala Ala Leu Asn Asn Met Ser Glu Glu Phe Leu Glu His Phe
195 200 205
Leu Arg His Val Pro Leu Asp Arg Thr Gly His Pro Gln Asp Ile Ala
210 215 220
Asn Ala Val Leu Phe Phe Ala Ser Asp Glu Ser Ser Tyr Ile Thr Gly
225 230 235 240
Thr Leu Gln Glu Val Ala Gly Gly Phe Gly Met Pro Ser Pro Ala Tyr
245 250 255
Gly Asp Ala Val Lys Lys
260
<210> 10
<211> 262
<212> PRT
<213> 人工序列(Artificial Sequence)
<400> 10
Met Lys Arg Val Glu Asn Lys Val Ala Leu Val Thr Ser Ser Thr Arg
1 5 10 15
Gly Ile Gly Leu Ala Ile Ala Lys Thr Leu Ala Lys Glu Gly Ala Arg
20 25 30
Val Tyr Leu Ala Val Arg Arg Leu Asp Ala Gly Gln Glu Val Ala Asn
35 40 45
Glu Ile Ile Ala Glu Gly Gly Phe Ala Lys Pro Val Tyr Phe Asp Ala
50 55 60
Ser Lys Val Glu Thr His Met Ser Met Ile Glu Glu Val Val Glu Ala
65 70 75 80
Glu Gly Arg Ile Asp Ile Leu Val Asn Asn Tyr Gly Ser Thr Asp Val
85 90 95
Gln Lys Asp Leu Asp Leu Val His Gly Asp Thr Glu Ala Phe Phe Asn
100 105 110
Ile Val Asn Gln Asn Leu Glu Ser Val Tyr Leu Pro Cys Lys Val Ala
115 120 125
Val Pro Tyr Met Ile Lys Asn Gly Gly Gly Ser Ile Ile Asn Ile Ser
130 135 140
Thr Ile Gly Ser Val Asn Pro Asp Leu Gly Arg Ile Ala Tyr Val Val
145 150 155 160
Ser Lys Ala Ala Ile Asn Ala Leu Thr Gln Asn Ile Ala Val Gln Tyr
165 170 175
Ala Lys Lys Gly Ile Arg Cys Asn Ala Val Leu Pro Gly Leu Ile Ala
180 185 190
Thr Asp Ala Ala Leu Asn Asn Met Ser Glu Glu Phe Leu Glu His Phe
195 200 205
Leu Arg His Val Pro Leu Asp Arg Thr Gly His Pro Gln Asp Ile Ala
210 215 220
Asn Ala Val Leu Phe Phe Ala Ser Asp Glu Ser Ser Tyr Ile Thr Gly
225 230 235 240
Thr Leu Gln Glu Val Ala Gly Gly Phe Gly Met Pro Ser Pro Phe Tyr
245 250 255
Gly Asp Ala Val Lys Lys
260
<210> 11
<211> 789
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
atgaaaagag tagaaaataa agtagcatta gtcacatctt ctacaagagg gattggactt 60
gctattgcta aaacacttgc taaagaaggt gcacgtgtat accttgcagt aagaagatta 120
gatgcaggtc aggaggtagc gaatgaaatt attgcagaag gtggatttgc taagcctgtt 180
tactttgatg cttctaaagt agagacacac atgagtatga ttgaagaagt agttgaagct 240
gaaggacgta tagatatttt agtcaataat tatggttcaa cagacgttca aaaggactta 300
gatctcgtac atggagatac agaagctttc tttaatattg ttaatcaaaa tcttgaaagt 360
gtttacttac catgtaaggt ggcggtacct tatatgatta aaaatggtgg aggaagcatt 420
attaacattt ctacaattgg ttcagtaaac cctgaccttg gacgtattgc ttatgttgta 480
tctaaagcag ctatcaacgc gcttacacaa aatattgcag ttcagtatgc aaaaaaaggg 540
ataagatgta atgctgttct tccaggtctt attgctacgg atgcagccct taataatatg 600
tcagaggagt tcttagaaca tttcttaaga catgtaccac ttgaccgtac agggcatcct 660
caagatattg ctaatgcagt acttttcttt gcaagtgatg aatcttctta tattacaggt 720
acacttcaag aagtagcagg tggatttggt atgccatcac ctatttatgg ggatgctgtt 780
aagaaataa 789
<210> 12
<211> 789
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
atgaaaagag tagaaaataa agtagcatta gtcacatctt ctacaagagg gattggactt 60
gctattgcta aaacacttgc taaagaaggt gcacgtgtat accttgcagt aagaagatta 120
gatgcaggtc aggaggtagc gaatgaaatt attgcagaag gtggatttgc taagcctgtt 180
tactttgatg cttctaaagt agagacacac atgagtatga ttgaagaagt agttgaagct 240
gaaggacgta tagatatttt agtcaataat tatggttcaa cagacgttca aaaggactta 300
gatctcgtac atggagatac agaagctttc tttaatattg ttaatcaaaa tcttgaaagt 360
gtttacttac catgtaaggt ggcggtacct tatatgatta aaaatggtgg aggaagcatt 420
attaacattt ctacaattgg ttcagtaaac cctgaccttg gacgtattgc ttatgttgta 480
tctaaagcag ctatcaacgc gcttacacaa aatattgcag ttcagtatgc aaaaaaaggg 540
ataagatgta atgctgttct tccaggtctt attgctacgg atgcagccct taataatatg 600
tcagaggagt tcttagaaca tttcttaaga catgtaccac ttgaccgtac agggcatcct 660
caagatattg ctaatgcagt acttttcttt gcaagtgatg aatcttctta tattacaggt 720
acacttcaag aagtagcagg tggatttggt atgccatcac cttactatgg ggatgctgtt 780
aagaaataa 789
<210> 13
<211> 789
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 13
atgaaaagag tagaaaataa agtagcatta gtcacatctt ctacaagagg gattggactt 60
gctattgcta aaacacttgc taaagaaggt gcacgtgtat accttgcagt aagaagatta 120
gatgcaggtc aggaggtagc gaatgaaatt attgcagaag gtggatttgc taagcctgtt 180
tactttgatg cttctaaagt agagacacac atgagtatga ttgaagaagt agttgaagct 240
gaaggacgta tagatatttt agtcaataat tatggttcaa cagacgttca aaaggactta 300
gatctcgtac atggagatac agaagctttc tttaatattg ttaatcaaaa tcttgaaagt 360
gtttacttac catgtaaggt ggcggtacct tatatgatta aaaatggtgg aggaagcatt 420
attaacattt ctacaattgg ttcagtaaac cctgaccttg gacgtattgc ttatgttgta 480
tctaaagcag ctatcaacgc gcttacacaa aatattgcag ttcagtatgc aaaaaaaggg 540
ataagatgta atgctgttct tccaggtctt attgctacgg atgcagccct taataatatg 600
tcagaggagt tcttagaaca tttcttaaga catgtaccac ttgaccgtac agggcatcct 660
caagatattg ctaatgcagt acttttcttt gcaagtgatg aatcttctta tattacaggt 720
acacttcaag aagtagcagg tggatttggt atgccatcac ctcaatatgg ggatgctgtt 780
aagaaataa 789
<210> 14
<211> 789
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 14
atgaaaagag tagaaaataa agtagcatta gtcacatctt ctacaagagg gattggactt 60
gctattgcta aaacacttgc taaagaaggt gcacgtgtat accttgcagt aagaagatta 120
gatgcaggtc aggaggtagc gaatgaaatt attgcagaag gtggatttgc taagcctgtt 180
tactttgatg cttctaaagt agagacacac atgagtatga ttgaagaagt agttgaagct 240
gaaggacgta tagatatttt agtcaataat tatggttcaa cagacgttca aaaggactta 300
gatctcgtac atggagatac agaagctttc tttaatattg ttaatcaaaa tcttgaaagt 360
gtttacttac catgtaaggt ggcggtacct tatatgatta aaaatggtgg aggaagcatt 420
attaacattt ctacaattgg ttcagtaaac cctgaccttg gacgtattgc ttatgttgta 480
tctaaagcag ctatcaacgc gcttacacaa aatattgcag ttcagtatgc aaaaaaaggg 540
ataagatgta atgctgttct tccaggtctt attgctacgg atgcagccct taataatatg 600
tcagaggagt tcttagaaca tttcttaaga catgtaccac ttgaccgtac agggcatcct 660
caagatattg ctaatgcagt acttttcttt gcaagtgatg aatcttctta tattacaggt 720
acacttcaag aagtagcagg tggatttggt atgccatcac ctctttatgg ggatgctgtt 780
aagaaataa 789
<210> 15
<211> 789
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 15
atgaaaagag tagaaaataa agtagcatta gtcacatctt ctacaagagg gattggactt 60
gctattgcta aaacacttgc taaagaaggt gcacgtgtat accttgcagt aagaagatta 120
gatgcaggtc aggaggtagc gaatgaaatt attgcagaag gtggatttgc taagcctgtt 180
tactttgatg cttctaaagt agagacacac atgagtatga ttgaagaagt agttgaagct 240
gaaggacgta tagatatttt agtcaataat tatggttcaa cagacgttca aaaggactta 300
gatctcgtac atggagatac agaagctttc tttaatattg ttaatcaaaa tcttgaaagt 360
gtttacttac catgtaaggt ggcggtacct tatatgatta aaaatggtgg aggaagcatt 420
attaacattt ctacaattgg ttcagtaaac cctgaccttg gacgtattgc ttatgttgta 480
tctaaagcag ctatcaacgc gcttacacaa aatattgcag ttcagtatgc aaaaaaaggg 540
ataagatgta atgctgttct tccaggtctt attgctacgg atgcagccct taataatatg 600
tcagaggagt tcttagaaca tttcttaaga catgtaccac ttgaccgtac agggcatcct 660
caagatattg ctaatgcagt acttttcttt gcaagtgatg aatcttctta tattacaggt 720
acacttcaag aagtagcagg tggatttggt atgccatcac ctacatatgg ggatgctgtt 780
aagaaataa 789
<210> 16
<211> 789
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 16
atgaaaagag tagaaaataa agtagcatta gtcacatctt ctacaagagg gattggactt 60
gctattgcta aaacacttgc taaagaaggt gcacgtgtat accttgcagt aagaagatta 120
gatgcaggtc aggaggtagc gaatgaaatt attgcagaag gtggatttgc taagcctgtt 180
tactttgatg cttctaaagt agagacacac atgagtatga ttgaagaagt agttgaagct 240
gaaggacgta tagatatttt agtcaataat tatggttcaa cagacgttca aaaggactta 300
gatctcgtac atggagatac agaagctttc tttaatattg ttaatcaaaa tcttgaaagt 360
gtttacttac catgtaaggt ggcggtacct tatatgatta aaaatggtgg aggaagcatt 420
attaacattt ctacaattgg ttcagtaaac cctgaccttg gacgtattgc ttatgttgta 480
tctaaagcag ctatcaacgc gcttacacaa aatattgcag ttcagtatgc aaaaaaaggg 540
ataagatgta atgctgttct tccaggtctt attgctacgg atgcagccct taataatatg 600
tcagaggagt tcttagaaca tttcttaaga catgtaccac ttgaccgtac agggcatcct 660
caagatattg ctaatgcagt acttttcttt gcaagtgatg aatcttctta tattacaggt 720
acacttcaag aagtagcagg tggatttggt atgccatcac ctggttatgg ggatgctgtt 780
aagaaataa 789
<210> 17
<211> 789
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 17
atgaaaagag tagaaaataa agtagcatta gtcacatctt ctacaagagg gattggactt 60
gctattgcta aaacacttgc taaagaaggt gcacgtgtat accttgcagt aagaagatta 120
gatgcaggtc aggaggtagc gaatgaaatt attgcagaag gtggatttgc taagcctgtt 180
tactttgatg cttctaaagt agagacacac atgagtatga ttgaagaagt agttgaagct 240
gaaggacgta tagatatttt agtcaataat tatggttcaa cagacgttca aaaggactta 300
gatctcgtac atggagatac agaagctttc tttaatattg ttaatcaaaa tcttgaaagt 360
gtttacttac catgtaaggt ggcggtacct tatatgatta aaaatggtgg aggaagcatt 420
attaacattt ctacaattgg ttcagtaaac cctgaccttg gacgtattgc ttatgttgta 480
tctaaagcag ctatcaacgc gcttacacaa aatattgcag ttcagtatgc aaaaaaaggg 540
ataagatgta atgctgttct tccaggtctt attgctacgg atgcagccct taataatatg 600
tcagaggagt tcttagaaca tttcttaaga catgtaccac ttgaccgtac agggcatcct 660
caagatattg ctaatgcagt acttttcttt gcaagtgatg aatcttctta tattacaggt 720
acacttcaag aagtagcagg tggatttggt atgccatcac ctaattatgg ggatgctgtt 780
aagaaataa 789
<210> 18
<211> 789
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 18
atgaaaagag tagaaaataa agtagcatta gtcacatctt ctacaagagg gattggactt 60
gctattgcta aaacacttgc taaagaaggt gcacgtgtat accttgcagt aagaagatta 120
gatgcaggtc aggaggtagc gaatgaaatt attgcagaag gtggatttgc taagcctgtt 180
tactttgatg cttctaaagt agagacacac atgagtatga ttgaagaagt agttgaagct 240
gaaggacgta tagatatttt agtcaataat tatggttcaa cagacgttca aaaggactta 300
gatctcgtac atggagatac agaagctttc tttaatattg ttaatcaaaa tcttgaaagt 360
gtttacttac catgtaaggt ggcggtacct tatatgatta aaaatggtgg aggaagcatt 420
attaacattt ctacaattgg ttcagtaaac cctgaccttg gacgtattgc ttatgttgta 480
tctaaagcag ctatcaacgc gcttacacaa aatattgcag ttcagtatgc aaaaaaaggg 540
ataagatgta atgctgttct tccaggtctt attgctacgg atgcagccct taataatatg 600
tcagaggagt tcttagaaca tttcttaaga catgtaccac ttgaccgtac agggcatcct 660
caagatattg ctaatgcagt acttttcttt gcaagtgatg aatcttctta tattacaggt 720
acacttcaag aagtagcagg tggatttggt atgccatcac cttcttatgg ggatgctgtt 780
aagaaataa 789
<210> 19
<211> 789
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 19
atgaaaagag tagaaaataa agtagcatta gtcacatctt ctacaagagg gattggactt 60
gctattgcta aaacacttgc taaagaaggt gcacgtgtat accttgcagt aagaagatta 120
gatgcaggtc aggaggtagc gaatgaaatt attgcagaag gtggatttgc taagcctgtt 180
tactttgatg cttctaaagt agagacacac atgagtatga ttgaagaagt agttgaagct 240
gaaggacgta tagatatttt agtcaataat tatggttcaa cagacgttca aaaggactta 300
gatctcgtac atggagatac agaagctttc tttaatattg ttaatcaaaa tcttgaaagt 360
gtttacttac catgtaaggt ggcggtacct tatatgatta aaaatggtgg aggaagcatt 420
attaacattt ctacaattgg ttcagtaaac cctgaccttg gacgtattgc ttatgttgta 480
tctaaagcag ctatcaacgc gcttacacaa aatattgcag ttcagtatgc aaaaaaaggg 540
ataagatgta atgctgttct tccaggtctt attgctacgg atgcagccct taataatatg 600
tcagaggagt tcttagaaca tttcttaaga catgtaccac ttgaccgtac agggcatcct 660
caagatattg ctaatgcagt acttttcttt gcaagtgatg aatcttctta tattacaggt 720
acacttcaag aagtagcagg tggatttggt atgccatcac ctgcatatgg ggatgctgtt 780
aagaaataa 789
<210> 20
<211> 789
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 20
atgaaaagag tagaaaataa agtagcatta gtcacatctt ctacaagagg gattggactt 60
gctattgcta aaacacttgc taaagaaggt gcacgtgtat accttgcagt aagaagatta 120
gatgcaggtc aggaggtagc gaatgaaatt attgcagaag gtggatttgc taagcctgtt 180
tactttgatg cttctaaagt agagacacac atgagtatga ttgaagaagt agttgaagct 240
gaaggacgta tagatatttt agtcaataat tatggttcaa cagacgttca aaaggactta 300
gatctcgtac atggagatac agaagctttc tttaatattg ttaatcaaaa tcttgaaagt 360
gtttacttac catgtaaggt ggcggtacct tatatgatta aaaatggtgg aggaagcatt 420
attaacattt ctacaattgg ttcagtaaac cctgaccttg gacgtattgc ttatgttgta 480
tctaaagcag ctatcaacgc gcttacacaa aatattgcag ttcagtatgc aaaaaaaggg 540
ataagatgta atgctgttct tccaggtctt attgctacgg atgcagccct taataatatg 600
tcagaggagt tcttagaaca tttcttaaga catgtaccac ttgaccgtac agggcatcct 660
caagatattg ctaatgcagt acttttcttt gcaagtgatg aatcttctta tattacaggt 720
acacttcaag aagtagcagg tggatttggt atgccatcac ctttctatgg ggatgctgtt 780
aagaaataa 789
<210> 21
<211> 31
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 21
cgcggatcca tgaaaagagt agaaaataaa g 31
<210> 22
<211> 42
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 22
cgctcgagtt atttcttaac agcatcccca tagtaaggtg at 42
<210> 23
<211> 42
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 23
cgctcgagtt atttcttaac agcatcccca tattgaggtg at 42
<210> 24
<211> 42
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 24
cgctcgagtt atttcttaac agcatcccca tacagaggtg at 42
<210> 25
<211> 42
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 25
cgctcgagtt atttcttaac agcatcccca tatgtaggtg at 42
<210> 26
<211> 41
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 26
cgctcgagtt atttcttaac agcatcccca tatccaggtg a 41
<210> 27
<211> 42
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 27
cgctcgagtt atttcttaac agcatcccca taattaggtg at 42
<210> 28
<211> 42
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 28
cgctcgagtt atttcttaac agcatcccca taagaaggtg at 42
<210> 29
<211> 42
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 29
cgctcgagtt atttcttaac agcatcccca tatgcaggtg at 42
<210> 30
<211> 43
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 30
cgctcgagtt atttcttaac agcatcccca tagaaaggtg atg 43
<210> 31
<211> 34
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 31
cgcggatcca tgaaaagagt agaaaataaa gtag 34
<210> 32
<211> 32
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 32
ccgctcgagt taaacagcat ccccataaat ag 32

Claims (10)

1.一种7α-羟基类固醇脱氢酶突变体,其特征在于:其氨基酸序列如SEQ ID NO:8,9或10所示,是氨基酸序列为SEQ ID NO:1的7α-羟基类固醇脱氢酶的第255位氨基酸由Ile变为Ser、Ala或Phe所得。
2.编码权利要求1所述的7α-羟基类固醇脱氢酶突变体的基因。
3.根据权利要求2所述的基因,其特征在于:其核苷酸序列如SEQ ID NO:18,19或20所示。
4.包含权利要求2所述基因的表达盒、载体或重组菌。
5.权利要求1所述的7α-羟基类固醇脱氢酶突变体的制备方法,其特征在于:包括如下步骤:合成所述7α-羟基类固醇脱氢酶突变体的编码基因,构建表达载体,转化蛋白表达宿主菌,诱导蛋白表达并纯化。
6.根据权利要求5所述的方法,其特征在于:所述7α-羟基类固醇脱氢酶突变体的编码基因的核苷酸序列如SEQ ID NO:18,19或20所示。
7.一种催化剂,其特征在于:其有效成分包含权利要求1所述的7α-羟基类固醇脱氢酶突变体。
8.权利要求1所述的7α-羟基类固醇脱氢酶突变体或权利要求7所述的催化剂在羰基不对称还原反应中的应用。
9.一种实现化学物质的羰基不对称还原的方法,其特征在于:使用权利要求1所述的7α-羟基类固醇脱氢酶突变体或权利要求7所述的催化剂与反应底物进行催化反应;所述反应底物为牛磺鹅去氧胆酸或甘氨鹅去氧胆酸,或含有牛磺鹅去氧胆酸或甘氨鹅去氧胆酸的胆汁酸组分。
10.根据权利要求9所述的方法,其特征在于:所述催化反应在室温下,在pH 8.0 50mMTris-HCl中进行。
CN202010224918.XA 2020-03-26 2020-03-26 7α-羟基类固醇脱氢酶(St-2-2)突变体 Active CN111254126B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010224918.XA CN111254126B (zh) 2020-03-26 2020-03-26 7α-羟基类固醇脱氢酶(St-2-2)突变体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010224918.XA CN111254126B (zh) 2020-03-26 2020-03-26 7α-羟基类固醇脱氢酶(St-2-2)突变体

Publications (2)

Publication Number Publication Date
CN111254126A CN111254126A (zh) 2020-06-09
CN111254126B true CN111254126B (zh) 2021-11-26

Family

ID=70949957

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010224918.XA Active CN111254126B (zh) 2020-03-26 2020-03-26 7α-羟基类固醇脱氢酶(St-2-2)突变体

Country Status (1)

Country Link
CN (1) CN111254126B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112080479B (zh) * 2020-09-10 2022-07-22 江南大学 一种17β-羟基类固醇脱氢酶突变体及其应用
CN112175918B (zh) * 2020-10-19 2023-01-24 重庆大学 7α-羟基类固醇脱氢酶突变体St-2-2 △C10及其应用
CN113025589B (zh) * 2021-04-21 2023-04-07 重庆第二师范学院 3α-羟基类固醇脱氢酶、编码基因及其在催化剂中的应用
CN113462665B (zh) * 2021-06-30 2023-03-10 中山百灵生物技术股份有限公司 一种7α-HSDH酶突变体及其编码基因和应用
CN113430183B (zh) * 2021-08-16 2022-08-23 重庆大学 7α-羟基类固醇脱氢酶St-2-2的突变体T15G、T15S和T15A
CN113604446B (zh) * 2021-08-16 2023-04-07 重庆大学 7α-羟基类固醇脱氢酶St-2-2的突变体R16Q

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108034643A (zh) * 2017-12-18 2018-05-15 重庆大学 7α-羟基类固醇脱氢酶及其编码基因与应用
CN110358744A (zh) * 2019-07-15 2019-10-22 重庆大学 7α-羟基类固醇脱氢酶及其编码基因与应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108034643A (zh) * 2017-12-18 2018-05-15 重庆大学 7α-羟基类固醇脱氢酶及其编码基因与应用
CN110358744A (zh) * 2019-07-15 2019-10-22 重庆大学 7α-羟基类固醇脱氢酶及其编码基因与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Structural and functional characterization of a novel acidophilic 7α-hydroxysteroid dehydrogenase;Shijin Tang et al.;《PROTEIN SCIENCE》;20190322;第28卷;第910-919页 *

Also Published As

Publication number Publication date
CN111254126A (zh) 2020-06-09

Similar Documents

Publication Publication Date Title
CN111254126B (zh) 7α-羟基类固醇脱氢酶(St-2-2)突变体
CN109136203B (zh) 一种p450bm3突变体及其在以苯或苯酚为底物合成对苯二酚中的应用
CN112175918B (zh) 7α-羟基类固醇脱氢酶突变体St-2-2 △C10及其应用
CN108034643B (zh) 7α-羟基类固醇脱氢酶及其编码基因与应用
CN107841489B (zh) 撒丁岛梭菌7α-羟基类固醇脱氢酶突变体K179M
CN106929521B (zh) 一种醛酮还原酶基因重组共表达载体、工程菌及其应用
CN108865962B (zh) 一种可高效可溶性表达4-α-糖基转移酶的大肠杆菌工程菌
CN114250205B (zh) 一种具有高热稳定性的7α-羟基类固醇脱氢酶突变体及其应用
CN112322596B (zh) 7α-羟基类固醇脱氢酶突变体J-1-1 △C6及其应用
CN113652407B (zh) 羰基还原酶突变体及其不对称合成双手性化合物的应用
CN113604446B (zh) 7α-羟基类固醇脱氢酶St-2-2的突变体R16Q
CN111944775A (zh) 经修饰的7β-羟基甾体脱氢酶及其应用
CN111500600B (zh) 3-甾酮-1,2-脱氢酶及其基因序列和应用
CN113430183B (zh) 7α-羟基类固醇脱氢酶St-2-2的突变体T15G、T15S和T15A
CN114231508B (zh) 一种7β-羟基类固醇脱氢酶突变体及其应用
CN112175980A (zh) 通过定点突变提高聚合酶大片段活性的方法及应用
CN114672470A (zh) 一种细胞色素p450 bm3突变酶及其在生物催化合成对羟基联苯中的应用
CN112646044B (zh) TFF2-Fc融合蛋白及其高效表达生产方法
CN110835639B (zh) 一种制备(s)-1,2,3,4-四氢异喹啉-1-甲酸及其衍生物的方法
CN111254170B (zh) 一种多酶耦合制备(s)-1,2,3,4-四氢异喹啉-3-甲酸的方法
CN109722456B (zh) 一种丙烯酸的生物合成方法及应用
KR102504343B1 (ko) 단량체 이소시트레이트 디하이드로게나아제에 기반한 nadph 재생 시스템 및 이의 용도
CN116536280A (zh) 2-酮戊二酸依赖性双加氧酶及其应用
CN116083453A (zh) 肌氨酸氧化酶的制备方法和应用
CN116426546A (zh) 重组胆固醇氧化酶及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant