CN111252753A - 一种三维有序多孔氮掺杂石墨烯及其制备方法与应用 - Google Patents

一种三维有序多孔氮掺杂石墨烯及其制备方法与应用 Download PDF

Info

Publication number
CN111252753A
CN111252753A CN201811458592.6A CN201811458592A CN111252753A CN 111252753 A CN111252753 A CN 111252753A CN 201811458592 A CN201811458592 A CN 201811458592A CN 111252753 A CN111252753 A CN 111252753A
Authority
CN
China
Prior art keywords
doped graphene
ordered porous
nitrogen
dimensional ordered
porous nitrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201811458592.6A
Other languages
English (en)
Inventor
邵志刚
唐雪君
杨丽梦
黄河
秦晓平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Institute of Chemical Physics of CAS
Original Assignee
Dalian Institute of Chemical Physics of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Institute of Chemical Physics of CAS filed Critical Dalian Institute of Chemical Physics of CAS
Priority to CN201811458592.6A priority Critical patent/CN111252753A/zh
Publication of CN111252753A publication Critical patent/CN111252753A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/86Inert electrodes with catalytic activity, e.g. for fuel cells
    • H01M4/90Selection of catalytic material
    • H01M4/9075Catalytic material supported on carriers, e.g. powder carriers
    • H01M4/9083Catalytic material supported on carriers, e.g. powder carriers on carbon or graphite
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Electrochemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明涉及一种三维有序多孔氮掺杂石墨烯复合结构的制备方法,包括(1)在多巴胺(DA)的聚合过程中,通过多巴胺的氨基与氧化石墨烯(GO)上的含氧基团间的相互作用,使聚多巴胺(PDA)包覆在氧化石墨烯纳米片上,同时氧化石墨烯被PDA还原为石墨烯(rGO),得到PDA‑rGO;(2)在高温惰性气氛下,PDA分解,生成的氮原子掺杂进入rGO的石墨结构中,得到三维网状结构的有序多孔氮掺杂石墨稀(3D‑OPNG)。本发明可以分别通过控制多巴胺的浓度和退火温度,来调控氮的掺杂量和掺杂类型。该方法绿色环保,简便易行,对设备无特殊要求,成本低,易于推广使用。所制备的三维有序多孔氮掺杂石墨烯在燃料电池和电解池等领域具有广阔的应用前景。

Description

一种三维有序多孔氮掺杂石墨烯及其制备方法与应用
技术领域
本发明属于材料合成化学领域,具体涉及一种以氧化石墨烯为基底,以多巴胺为氮源,在惰性气体保护下采用高温加热的技术制备多孔氮掺杂石墨烯的方法。
背景技术
石墨烯是一层由碳原子构成的二维碳纳米材料,其具有大的比表面积、高的电导率和热导率以及出色的机械性能,引起了人们的广泛关注。石墨稀的独特结构和优越性能使其在诸多领域都有非常广阔的应用前景。在绝大多数实际应用中,通常需要将石墨稀组装成宏观的物体。然而由于石墨烯层与层之间存在很强的π-π相互作用和范德华力,石墨稀片层通常会发生团聚和堆叠,极大降低了石墨烯的有效面积,从而使其应用潜能大打折扣。为了克服这个阻碍以便更好的开发和利用石墨烯的性能,人们把目光投向了三维结构的石墨烯,比如石墨稀水凝胶、气凝胶、和泡沫等。三维石墨烯除二维石墨烯片的固有性质外,还具有大的孔隙率、相互连接的导电网络和特殊的微环境,能够为电子/离子、气体和液体的传输和存储提供更多的空间,在电催化、能量存储与转换、电化学传感及储氢等领域具有广阔的应用前景。除构建三维结构外,杂原子的掺杂能进一步改善纯石墨烯的酸碱特性,同时调控其电子特性,从而提高其电化学性能。目前掺杂原子的类型主要包括氮原子、硫原子、硼原子、磷原子等。相比而言,氮原子掺杂由于方法简单、原子掺杂率高而被普遍采用。
基于上述情况,将氮掺杂和构筑三维网状结构相结合成为当前的研究重点和热点,受到广泛的关注。制备三维氮掺杂石墨烯的方法主要分为两类,一类是化学气相沉积法,也称模板法(Zhang F,Liu T,Li M,et al,2017,Nano Lett,17:3097-3104.),这种方法得到的石墨烯电导率高,但是在模板除去过程中三维孔状结构会遭到破坏,削弱了其性能,且由于操作复杂,成本高难以大规模生产。相比而言,第二类自组装显得比较占优势,但是目前的方法包括先通过抽滤制备氧化石墨烯泡沫,再进行还原及氮原子的掺杂,这种方法掺氮形态不能控制且掺氮不均匀(Chen L F,Huang Z H,Liang H W,et al,2014,Adv Funct Mater,24(32):5104-11.);或者将氧化石墨烯与还原剂进行水热处理,形成凝胶后冻干,这种氮掺杂石墨烯泡沫往往电导率不好,不利于电化学应用(Zhu C,Liu T,Qian F,et al,2016,Nano Lett,16(6):3448-56.)。因此,目前需要设计一种简便有效的制备氮掺杂三维石墨烯材料的方法。
发明内容
本发明是要解决目前制备三维氮掺杂石墨烯面临的过程复杂、成本高且不易操控等技术问题,提供了一种简便高效的制备三维有序多孔氮掺杂石墨烯的制备方法及其应用。
本发明一方面提供一种制备三维有序多孔氮掺杂石墨烯的制备方法,所述,所述方法包括以下步骤:
(1)将石墨烯氧化物(GO)在水中超声分散,得到GO分散液;
(2)将多巴胺(DA)溶解在三羟甲基氨基甲烷-盐酸(Tris-HCl)溶液中,得到多巴胺溶液;所述多巴胺(DA)的浓度0.1-10mmol/L;
(3)将多巴胺溶液和GO分散液超声分散均匀,在25-100℃下搅拌0.5-24h,得到PDA-GO复合物;
(4)将PDA-rGO复合物在450-900℃下置于惰性气氛下进行焙烧0.5-8h;得到所述三维有序多孔氮掺杂石墨稀(3D-OPNG)。
基于以上技术方案,优选的,所述GO在水中超声分散的时间为0.5-24h,优选1-2h;GO分散液的浓度为0.1-10mg/ml,优选0.5-2mg/ml。
基于以上技术方案,优选的,所述Tris-HCl溶液的浓度为0.1~1mol/L,pH为8.5。
基于以上技术方案,优选的,所述步骤(3)的搅拌温度为25-80℃
基于以上技术方案,优选的,所述步骤(3)搅拌的时间为3-24h。
基于以上技术方案,优选的,PDA-rGO高温焙烧步骤具体为:将PDA-rGO放入石英舟后置于管式炉中间加热区域,通入高纯度惰性气体除氧,30-60分钟后,按5℃/min的升温速率升温至450-900℃,保持0.5-8h;然后降至室温。
基于以上技术方案,优选的,所述的惰性气体为纯度≥99%的氩气或氮气。
本发明另一方面提供一种上述制备方法制备的三维有序多孔氮掺杂石墨烯,所述三维有序多孔氮掺杂石墨烯额比表面积为200-1000g/m2,N掺杂量为3-10wt%.;孔径50nm-20um,孔体积为0.1-5cm3/g。
本发明再一方面提供一种上述三维有序多孔氮掺杂石墨烯的应用,所述三维有序多孔氮掺杂石墨烯作为催化剂或载体在燃料电池和电解池中的应用。本发明制备的三维有序多孔氮掺杂石墨稀可以担载铂、金、钯、铱等贵金属,铁、钴、镍、铜等非贵金属以及二氧化钛、二氧化锡、三氧化钨、四氧化三铁等氧化物形成三维氮掺杂石墨烯复合材料,并应用于燃料电池和电解池等领域。
有益效果
(1)本发明未采用任何有毒化学试剂,是一种环境友好的制备三维氮掺杂石墨烯的方法;
(2)本发明通过化学还原-热处理的方法制备三维氮掺杂石墨烯,方法简单易操作,可实现大规模生产;
(3)本发明所制备的三维氮掺杂石墨烯具有大的比表面积,有序的孔结构,易调节的N掺杂量,有利于材料性能的提高;
(4)本发明制备的三维氮掺杂石墨烯可以与多种金属及氧化物纳米颗粒复合,用于燃料电池和电解池的电催化反应。
附图说明
图1为氧化石墨烯的扫描电镜图;
图2为实施例1制备的三维有序多孔氮掺杂石墨烯的扫描电镜图;
图3为实施例1制备的三维有序多孔氮掺杂石墨烯的X光电子能谱图;
图4为实施例7制备的铂纳米颗粒/三维有序多孔氮掺杂石墨烯的透射电镜图;
图5实施例7制备的铂纳米颗粒/三维有序多孔氮掺杂石墨烯的元素扫描谱图;
图6为实施例7制备的铂纳米颗粒/三维有序多孔氮掺杂石墨烯催化燃料电池阴极氧还原的活性曲线图。
具体实施方式
下面结合附图和实施例对本发明的技术方案作进一步的说明,但并不局限如此,凡是对本发明技术方案进行修改或者等同替换,而不脱离本发明技术方案的精神和范围,均应涵盖在本发明的保护范围中。
实施例1
(1)将石墨烯氧化物(GO)在水中超声分散2h,得到浓度为0.5mg/ml的GO分散液。
(2)将多巴胺(DA)溶解在0.1mol/L,pH=8.5的三羟甲基氨基甲烷-盐酸(Tris-HCl)溶液中,得到多巴胺溶液,多巴胺(DA)的浓度为0.2mg/ml。
(3)将多巴胺溶液和GO分散液超声分散均匀,继续在80℃下搅拌24h,使多巴胺在GO表面聚合形成聚多巴胺(PDA)膜,得到PDA-GO。
(4)将PDA-rGO置于管式炉进行高温焙烧,焙烧温度500℃,焙烧时间2h,焙烧过程中通入纯度≥99%的氮气进行惰性气氛保护。
(5)收集产物,得到三维网状结构的有序多孔氮掺杂石墨稀(3D-OPNG)
图1为对比氧化石墨烯的扫描电镜图,图中显示氧化石墨烯为片状结构。
图2为本实施例制备的氮掺杂石墨烯的扫描电镜图,从中可以看出该例制备的3D-OPNG具有三维相连的孔道结构,且孔径大小均一。
图3为实施例1制备的氮掺杂石墨烯的X光电子能谱,揭示了3D-OPNG中氮的有效掺杂及掺杂氮的类型。
实施例2
(1)将石墨烯氧化物(GO)在水中超声分散1,得到浓度为1mg/ml的GO分散液。
(2)将多巴胺(DA)溶解在0.5mol/L,pH=8.5的三羟甲基氨基甲烷-盐酸(Tris-HCl)溶液中,得到多巴胺溶液,多巴胺(DA)的浓度为0.5mg/ml。
(3)将多巴胺溶液和GO分散液超声分散均匀,继续在60℃下搅拌12h,使多巴胺在GO表面聚合形成聚多巴胺(PDA)膜,得到PDA-GO。
(4)将PDA-rGO置于管式炉进行高温焙烧,焙烧温度600℃,焙烧时间1h,焙烧过程中通入纯度≥99%的氩气进行惰性气氛保护。
(5)收集产物,得到三维网状结构的有序多孔氮掺杂石墨稀(3D-OPNG)
实施例3
(1)将石墨烯氧化物(GO)在水中超声分散4h,得到浓度为2mg/ml的GO分散液。
(2)将多巴胺(DA)溶解在1mol/L,pH=8.5的三羟甲基氨基甲烷-盐酸(Tris-HCl)溶液中,得到多巴胺溶液,多巴胺(DA)的浓度为1mg/ml。
(3)将多巴胺溶液和GO分散液超声分散均匀,继续在25℃下搅拌24h,使多巴胺在GO表面聚合形成聚多巴胺(PDA)膜,得到PDA-GO。
(4)将PDA-rGO置于管式炉进行高温焙烧,焙烧温度750℃,焙烧时间3h,焙烧过程中通入纯度≥99%的氮气进行惰性气氛保护。
(5)收集产物,得到三维网状结构的有序多孔氮掺杂石墨稀(3D-OPNG)
实施例4
(1)将石墨烯氧化物(GO)在水中超声分散12h,得到浓度为5mg/ml的GO分散液。
(2)将多巴胺(DA)溶解在0.1~1mol/L,pH=8.5的三羟甲基氨基甲烷-盐酸(Tris-HCl)溶液中,得到多巴胺溶液,多巴胺(DA)的浓度为1mg/ml。
(3)将多巴胺溶液和GO分散液超声分散均匀,继续在70℃下搅拌6h,使多巴胺在GO表面聚合形成聚多巴胺(PDA)膜,得到PDA-GO。
(4)将PDA-rGO置于管式炉进行高温焙烧,焙烧温度800℃,焙烧时间5h,焙烧过程中通入纯度≥99%的氩气进行惰性气氛保护。
(5)收集产物,得到三维网状结构的有序多孔氮掺杂石墨稀(3D-OPNG)
实施例5
(1)将石墨烯氧化物(GO)在水中超声分散6h,得到浓度为3mg/ml的GO分散液。
(2)将多巴胺(DA)溶解在0.3mol/L,pH=8.5的三羟甲基氨基甲烷-盐酸(Tris-HCl)溶液中,得到多巴胺溶液,多巴胺(DA)的浓度为2mg/ml。
(3)将多巴胺溶液和GO分散液超声分散均匀,继续在80℃下搅拌10h,使多巴胺在GO表面聚合形成聚多巴胺(PDA)膜,得到PDA-GO。
(4)将PDA-rGO置于管式炉进行高温焙烧,焙烧温度900℃,焙烧时间0.5h,焙烧过程中通入纯度≥99%的氩气进行惰性气氛保护。
(5)收集产物,得到三维网状结构的有序多孔氮掺杂石墨稀(3D-OPNG)
实施例6
(1)将石墨烯氧化物(GO)在水中超声分散24h,得到浓度为10mg/ml的GO分散液。
(2)将多巴胺(DA)溶解在1mol/L,pH=8.5的三羟甲基氨基甲烷-盐酸(Tris-HCl)溶液中,得到多巴胺溶液,多巴胺(DA)的浓度为5mg/ml。
(3)将多巴胺溶液和GO分散液超声分散均匀,继续在50℃下搅拌12h,使多巴胺在GO表面聚合形成聚多巴胺(PDA)膜,得到PDA-GO。
(4)将PDA-rGO置于管式炉进行高温焙烧,焙烧温度450℃,焙烧时间1.5h,焙烧过程中通入纯度≥99%的氩气进行惰性气氛保护。
(5)收集产物,得到三维网状结构的有序多孔氮掺杂石墨稀(3D-OPNG)。
实施例7
将实施例1制备的3D-OPNG分散于乙二醇中,加入氯铂酸(H2PtCl6·6H2O),并调节溶液的pH≈10,随后在140℃下加热回流12h,得到铂纳米颗粒/三维有序多孔氮掺杂石墨烯复合结构(Pt/3D-OPNG)。
图4为本实施例制备的铂纳米颗粒/三维有序多孔氮掺杂石墨烯的不同倍数下的透射电镜图,图中显示Pt纳米颗粒均匀地分散在多孔氮掺杂石墨烯表面,且粒径均一,无团聚现象。
图5本实施例制备的铂纳米颗粒/三维有序多孔氮掺杂石墨烯的元素扫描谱图,说明3D-OPNG能有效地担载Pt纳米颗粒。
图6为本实施例制备的铂纳米颗粒/三维有序多孔氮掺杂石墨烯催化燃料电池阴极氧还原的活性曲线,表明Pt/3D-OPNG具有良好的催化活性。

Claims (9)

1.一种三维有序多孔氮掺杂石墨烯的制备方法,其特征在于,包括如下步骤:
(1)将石墨烯氧化物(GO)在水中超声分散,得到GO分散液;
(2)将多巴胺(DA)溶解在三羟甲基氨基甲烷-盐酸(Tris-HCl)溶液中,得到多巴胺溶液;所述多巴胺(DA)的浓度0.1-10mmol/L;
(3)将所述多巴胺溶液和所述GO分散液混合、超声分散均匀,在25-100℃下搅拌0.5-24h,得到PDA-GO复合物;
(4)将所述PDA-rGO复合物在450-900℃下置于惰性气氛下进行焙烧0.5-8h;得到所述三维有序多孔氮掺杂石墨稀(3D-OPNG)。
2.根据权利要求1所述三维有序多孔氮掺杂石墨烯的制备方法,其特征在于,GO在水中超声分散的时间为0.5-24h,优选1-2h;GO分散液的浓度为0.1-10mg/ml,优选0.5-2mg/ml。
3.根据权利要求1所述三维有序多孔氮掺杂石墨烯的制备方法,其特征在于,所述Tris-HCl溶液的浓度为0.1~1mol/L,pH为8.5。
4.根据权利要求1所述三维有序多孔氮掺杂石墨烯的制备方法,其特征在于,所述步骤(3)的搅拌温度为25-80℃。
5.根据权利要求1所述三维有序多孔氮掺杂石墨烯的制备方法,其特征在于,所述步骤(3)搅拌的时间为3-24h。
6.根据权利要求1所述三维有序多孔氮掺杂石墨烯的制备方法,其特征在于,PDA-rGO高温焙烧步骤具体为:将PDA-rGO放入石英舟后置于管式炉中间加热区域,通入高纯度惰性气体除氧,30-60分钟后,按5℃/min的升温速率升温至450-900℃,保持0.5-8h;然后降至室温。
7.根据权利要求1所述三维有序多孔氮掺杂石墨烯的制备方法,其特征在于,所述的惰性气体为纯度≥99%的氩气或氮气。
8.一种权利要求1所述制备方法制备的三维有序多孔氮掺杂石墨烯,其特征在于,所述三维有序多孔氮掺杂石墨烯的比表面积为200-1000g/m2,N掺杂量为3-10wt%.;孔径50nm-20um,孔体积为0.1-5cm3/g。
9.一种权利要求8所述的三维有序多孔氮掺杂石墨烯的应用,其特征在于,所述三维有序多孔氮掺杂石墨烯作为催化剂或载体在燃料电池和电解池中的应用。
CN201811458592.6A 2018-11-30 2018-11-30 一种三维有序多孔氮掺杂石墨烯及其制备方法与应用 Pending CN111252753A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811458592.6A CN111252753A (zh) 2018-11-30 2018-11-30 一种三维有序多孔氮掺杂石墨烯及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811458592.6A CN111252753A (zh) 2018-11-30 2018-11-30 一种三维有序多孔氮掺杂石墨烯及其制备方法与应用

Publications (1)

Publication Number Publication Date
CN111252753A true CN111252753A (zh) 2020-06-09

Family

ID=70942836

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811458592.6A Pending CN111252753A (zh) 2018-11-30 2018-11-30 一种三维有序多孔氮掺杂石墨烯及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN111252753A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112928289A (zh) * 2021-01-26 2021-06-08 上海应用技术大学 N杂三维泡沫石墨烯-二氧化钛微生物燃料电池电极材料及制备方法和应用
CN114515552A (zh) * 2022-03-11 2022-05-20 山东大学 一种NiCo合金@氮掺杂石墨烯多级孔气凝胶及其制备方法与在锌-空气电池中的应用

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104617281A (zh) * 2015-02-12 2015-05-13 中南大学 一种钠离子电池锑/掺氮碳纳米片负极复合材料的制备方法
CN106694014A (zh) * 2015-11-13 2017-05-24 天津大学 一种氮掺杂非金属催化剂、其制备方法和用途
CN107910515A (zh) * 2017-11-07 2018-04-13 大连理工大学 一种可用于锂离子电池负极的Fe3O4/氮掺杂石墨烯材料的制备方法
KR20180092150A (ko) * 2017-02-08 2018-08-17 한국과학기술원 황 코팅된 폴리도파민 개질 그래핀 산화물 복합체, 이를 이용한 리튬-황 이차전지, 및 이의 제조방법
CN108584905A (zh) * 2018-04-25 2018-09-28 湖南农业大学 一种氮-磷共掺杂碳材料及其制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104617281A (zh) * 2015-02-12 2015-05-13 中南大学 一种钠离子电池锑/掺氮碳纳米片负极复合材料的制备方法
CN106694014A (zh) * 2015-11-13 2017-05-24 天津大学 一种氮掺杂非金属催化剂、其制备方法和用途
KR20180092150A (ko) * 2017-02-08 2018-08-17 한국과학기술원 황 코팅된 폴리도파민 개질 그래핀 산화물 복합체, 이를 이용한 리튬-황 이차전지, 및 이의 제조방법
CN107910515A (zh) * 2017-11-07 2018-04-13 大连理工大学 一种可用于锂离子电池负极的Fe3O4/氮掺杂石墨烯材料的制备方法
CN108584905A (zh) * 2018-04-25 2018-09-28 湖南农业大学 一种氮-磷共掺杂碳材料及其制备方法和应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FUHUA YANG ET AL.: "Dopamine derived nitrogen-doped carbon sheets as anode materials for high-performance sodium ion batteries", 《CARBON》 *
KONGGANG QU ET AL.: "Polydopamine–graphene oxide derived mesoporous carbon nanosheets for enhanced oxygen reduction", 《NANOSCALE》 *
XINHONG SONG ET AL.: "Mussel-inspired, ultralight, multifunctional 3D nitrogen-doped graphene aerogel", 《CARBON》 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112928289A (zh) * 2021-01-26 2021-06-08 上海应用技术大学 N杂三维泡沫石墨烯-二氧化钛微生物燃料电池电极材料及制备方法和应用
CN112928289B (zh) * 2021-01-26 2022-04-05 上海应用技术大学 N杂三维泡沫石墨烯-二氧化钛微生物燃料电池电极材料及制备方法和应用
CN114515552A (zh) * 2022-03-11 2022-05-20 山东大学 一种NiCo合金@氮掺杂石墨烯多级孔气凝胶及其制备方法与在锌-空气电池中的应用
CN114515552B (zh) * 2022-03-11 2023-03-07 山东大学 一种NiCo合金@氮掺杂石墨烯多级孔气凝胶及其制备方法与在锌-空气电池中的应用

Similar Documents

Publication Publication Date Title
Zhang et al. Core-corona Co/CoP clusters strung on carbon nanotubes as a Schottky catalyst for glucose oxidation assisted H 2 production
Chen et al. From bimetallic metal-organic framework to porous carbon: high surface area and multicomponent active dopants for excellent electrocatalysis
Soo et al. An overview of the electrochemical performance of modified graphene used as an electrocatalyst and as a catalyst support in fuel cells
CN108080034B (zh) 一种基于镍基三维金属有机框架物催化剂制备方法和应用
She et al. Nitrogen-doped graphene derived from ionic liquid as metal-free catalyst for oxygen reduction reaction and its mechanisms
Zhuang et al. A review of nitrogen-doped graphene catalysts for proton exchange membrane fuel cells-synthesis, characterization, and improvement
CN101820066B (zh) 一种金属单质/多壁碳纳米管型复合材料及其制备方法和应用
CN109589974B (zh) 一种用于水电解器的低贵金属载量的析氧催化剂
CN111659401A (zh) 一种三维多孔碳纳米管石墨烯复合膜及其制备方法
CN109926054B (zh) 一种高分散NiCo合金-石墨烯纳米复合催化剂的制备方法
Huang et al. 3D hierarchical CMF/MoSe2 composite foam as highly efficient electrocatalyst for hydrogen evolution
Zhou et al. Free-standing S, N co-doped graphene/Ni foam as highly efficient and stable electrocatalyst for oxygen evolution reaction
Shen et al. Selective and continuous electrosynthesis of hydrogen peroxide on nitrogen-doped carbon supported nickel
Zhou et al. Nitrogen-doped carbon nanotubes as an excellent substrate for electroless deposition of Pd nanoparticles with a high efficiency toward the hydrogen evolution reaction
Tong et al. Amorphous FeO x (x= 1, 1.5) coated Cu 3 P nanosheets with bamboo leaves-like morphology induced by solvent molecule adsorption for highly active HER catalysts
Liu et al. Porous coordination polymer-derived ultrasmall CoP encapsulated in nitrogen-doped carbon for efficient hydrogen evolution in both acidic and basic media
CN115896848A (zh) 一种氮/硫共掺杂多孔碳负载锌单原子/金属铜串联催化剂及其制备方法和应用
CN114045526B (zh) 一种自支撑层状双金属磷化物-石墨炔复合催化剂及其制备方法和用途
Luo et al. MOF-derived porous carbon supported iron-based catalysts with optimized active sites towards oxygen reduction reaction
CN111252753A (zh) 一种三维有序多孔氮掺杂石墨烯及其制备方法与应用
Zhao et al. Highly dispersed cobalt decorated uniform nitrogen doped graphene derived from polydopamine positioning metal-organic frameworks for highly efficient electrochemical water oxidation
JP2017091736A (ja) 積層体及びその製造方法、燃料電池用膜電極接合体、固体高分子形燃料電池、並びに、直接メタノール形燃料電池
CN111969218A (zh) 一种石墨烯基铱铜纳米复合材料的制备方法
CN104525218A (zh) 一种高效Pt-CoSi2/石墨烯复合电催化剂的制备方法
CN114892197B (zh) 一种电催化合成h2o2用催化剂及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200609

RJ01 Rejection of invention patent application after publication