CN111234529B - 聚酰亚胺介电薄膜及其制备方法和应用 - Google Patents

聚酰亚胺介电薄膜及其制备方法和应用 Download PDF

Info

Publication number
CN111234529B
CN111234529B CN202010175773.9A CN202010175773A CN111234529B CN 111234529 B CN111234529 B CN 111234529B CN 202010175773 A CN202010175773 A CN 202010175773A CN 111234529 B CN111234529 B CN 111234529B
Authority
CN
China
Prior art keywords
dielectric film
polyimide
tetracarboxylic dianhydride
polyimide dielectric
mixed solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010175773.9A
Other languages
English (en)
Other versions
CN111234529A (zh
Inventor
汪宏
董久锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southern University of Science and Technology
Original Assignee
Southern University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southern University of Science and Technology filed Critical Southern University of Science and Technology
Priority to CN202010175773.9A priority Critical patent/CN111234529B/zh
Publication of CN111234529A publication Critical patent/CN111234529A/zh
Application granted granted Critical
Publication of CN111234529B publication Critical patent/CN111234529B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1003Preparatory processes
    • C08G73/1007Preparatory processes from tetracarboxylic acids or derivatives and diamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1057Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain
    • C08G73/1064Polyimides containing other atoms than carbon, hydrogen, nitrogen or oxygen in the main chain containing sulfur
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • C08G73/1067Wholly aromatic polyimides, i.e. having both tetracarboxylic and diamino moieties aromatically bound
    • C08G73/1071Wholly aromatic polyimides containing oxygen in the form of ether bonds in the main chain
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2379/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2361/00 - C08J2377/00
    • C08J2379/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08J2379/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2217Oxides; Hydroxides of metals of magnesium
    • C08K2003/222Magnesia, i.e. magnesium oxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2227Oxides; Hydroxides of metals of aluminium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2244Oxides; Hydroxides of metals of zirconium
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)

Abstract

本发明公开了一种聚酰亚胺介电薄膜及其制备方法和应用,该制备方法包括:在惰性气体保护下,将聚酰亚胺介电薄膜的原料与极性有机溶剂混合,搅拌反应,得前驱体混合溶液,脱泡后流延成膜,进行热处理;聚酰亚胺介电薄膜的原料包括芳香族二胺类化合物、芳香族四甲酸二酐类化合物和纳米粉体,纳米粉体的能带隙大于4eV;或者,聚酰亚胺介电薄膜的原料包括芳香族二胺类化合物二和芳香族四甲酸二酐类化合物二,芳香族二胺类化合物二和芳香族四甲酸二酐类化合物二中含有羰基、醚键、氰基、胺基、砜基、亚甲基中的至少一种。本发明聚酰亚胺介电薄膜的制备方法工艺简单,成本低,所制得聚酰亚胺介电薄膜具有高介电常数、高储能密度和高温高电场稳定性。

Description

聚酰亚胺介电薄膜及其制备方法和应用
技术领域
本发明涉及膜电容器技术领域,尤其是涉及一种聚酰亚胺介电薄膜及其制备方法和应用。
背景技术
介电电容器是各种电能储存装置中的一种特殊装置,因为其能在极短的时间内(微妙级)释放储存的能量,产生强烈的功率脉冲。这种能力使许多脉冲功率应用成为可能,如医疗除颤、横向激励的大气激光器和先进的电磁系统,其中电容器将低功率、长时间的输入转换为高功率、短时间的输出。最近,与可再生能源相关的新型产品,如混合动力汽车(HEV)、并网光伏发电和风力发电机,对介电电容器产生了巨大的需求。而由于这些产品往往应用于大功率、大电流和高温条件下,如混合动力汽车逆变器中的电容器工作温度为140℃,地下油气勘探中甚至可达250℃以上,因此,迫切需要介电电容器具有更高的储能密度和更高的耐温工作能力。
目前的商用介电储能电容器通常采用BOPP薄膜电容器,在汽车电子逆变器中的应用则需要采用冷却系统降温以保证其正常工作,这给集成电力系统带来了额外的能量消耗,降低了其可靠性和效率,此外,BOPP的介电常数较低(2.25),导致其能量密度也不高(3J/cm3)。目前,有许多工程聚合物已被用作高温应用的介电材料,如聚酰亚胺(PI)、聚醚酰亚胺(PEI)、聚醚醚酮(PEEK)、聚碳酸酯(PC)、聚酰胺酰亚胺(PAI)等。其中,相较于其他材料,聚酰亚胺具有更高的耐热能力(Tg≈360℃),同时具有优良的机械性能、耐辐射性和稳定性,但其在高温高电场下急剧增加的漏电流,会引起较高的电导损耗,最终导致其储能密度大富下降。此外,普通的芳香PI本身介电常数较低(约为3.4),很难获得高的极化强度,无法满足电子器件对于小型化、轻量化和高温环境应用的需求。通过掺杂高介电常数的陶瓷粒子(如BT、CCTO等)虽能大幅提高复合材料的介电参数,但同时也导致了击穿场强降低和介电损耗增加,且高温下性能恶化更为严重,不符合实际应用。因此,亟需寻求一种具有高储能密度和高温高电场稳定性的介电复合薄膜的制备方法。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。为此,本发明提出一种聚酰亚胺介电薄膜及其制备方法和应用,该制备方法工艺简单,成本低,所制备的聚酰亚胺介电薄膜具有高介电常数和高储能密度,且其耐高温,具有高电场稳定性。
本发明所采取的技术方案是:
本发明的第一方面,提供一种聚酰亚胺介电薄膜的制备方法,包括以下步骤:
S1、在惰性气体的保护下,将聚酰亚胺介电薄膜的原料与极性有机溶剂混合,搅拌反应,制备前驱体混合溶液;
所述聚酰亚胺介电薄膜的原料包括芳香族二胺类化合物一、芳香族四甲酸二酐类化合物一和纳米粉体,所述纳米粉体的能带隙大于4eV;或者,所述聚酰亚胺介电薄膜的原料包括芳香族二胺类化合物二和芳香族四甲酸二酐类化合物二,所述芳香族二胺类化合物二和所述芳香族四甲酸二酐类化合物二中含有羰基(-C(=O)-)、醚键(-O-)、氰基(-CN-)、胺基(-NH-)、砜基(-SO2-)、亚甲基(-CH2-)中的至少一种极性基团;
S2、将所述前驱体混合溶液进行真空脱泡,而后流延成膜,再进行热处理,得到聚酰亚胺介电薄膜。
根据本发明的一些实施例,步骤S1中,所述聚酰亚胺介电薄膜的原料包括芳香族二胺类化合物一、芳香族四甲酸二酐类化合物一和纳米粉体,所述纳米粉体的能带隙大于4eV;所述芳香族二胺类化合物一和所述芳香族四甲酸二酐类化合物一中含有羰基、醚键、氰基、胺基、砜基、亚甲基中的至少一种极性基团。
根据本发明的一些实施例,所述芳香族二胺类化合物一选自4,4’-二氨基二苯醚(4,4’-ODA)、3,4’-二氨基二苯醚(3,4'-ODA)、3,3’-二氨基二苯砜(mDS)、4,4’-二氨基二苯砜(pDS)、4,4’-二氨基二苯甲酮(4,4’-DABPO)、间苯二胺(MPD)、对苯二胺(p-PDA)、二氨基二苯甲烷(4,4’-MDA)、2,2’-二甲氧基-4,4’-二氨基苯酰替苯胺(MODABA)、1,4-双(4-氨苯氧基)苯(144APB)、1,3-双(4-氨苯氧基)苯(134APB)中的至少一种。
根据本发明的一些实施例,所述芳香族四甲酸二酐类化合物一选自均苯四甲酸二酐(PMDA)、3,3’-4,4’-联苯四甲酸二酐(BPDA)、3,3’-4,4’-二苯醚四甲酸二酐(ODPA)、3,3’-4,4’-二苯酮四酸二酐(BTDA)、3,3’-4,4’-二苯砜四羧酸二酐(DSDA)、双酚A型二醚二酐(DPADA)中的至少一种。
根据本发明的一些实施例,所述芳香族二胺类化合物一和所述芳香族四甲酸二酐类化合物一的摩尔比为(0.95-1.05):1。优选地,所述聚酰亚胺介电薄膜中纳米粉体与聚酰亚胺的质量比为(0~0.1):1,通过采用低掺杂量的纳米粉体,可避免纳米复合过程中分散不均的情况,保证薄膜的机械性能同时具有高击穿场强。
根据本发明的一些实施例,步骤S1中,所述聚酰亚胺介电薄膜的原料包括芳香族二胺类化合物一、芳香族四甲酸二酐类化合物一和纳米粉体,所述纳米粉体的能带隙大于4eV;所述纳米粉体选自氧化铝(Al2O3)、氧化镁(MgO)、氧化锆(ZrO2)、氧化钛(TiO2)、氮化硼(BNNS)、氧化铪(HfO2)、氧化钇(Y2O3)、氧化钪(Sc2O3)、氧化锌(ZnO)、氧化镧(La2O3)、氧化锶(SrO)、氧化铌(Nb2O3)、氢氧氧铝(AlO(OH))、磷酸钡(Ba3(PO4)2)、硫酸钠(Na2SO4)、硼酸钇(YBO3)、四硼酸钙(CaB4O7)中的至少一种。
根据本发明的一些实施例,步骤S1具体包括:先将纳米粉体分散于所述极性有机溶剂中,得混合溶液;而后在惰性气体的保护下,向所述混合溶液中依次加入芳香族二胺类化合物和芳香族四甲酸二酐类化合物,在10~40℃下搅拌反应,制得前驱体混合溶液。
极性有机溶剂具体可选自N,N-二甲基乙酰胺、N,N-二甲基甲酰胺、N-甲基吡咯烷酮、四氢呋喃、二氯甲烷中的至少一种。惰性气体具体可采用氮气、氦气、氖气、氩气、氪气、氙气、氡气中的至少一种。
另外,若聚酰亚胺介电薄膜的原料包括芳香族二胺类化合物二和芳香族四甲酸二酐类化合物二,芳香族二胺类化合物二和芳香族四甲酸二酐类化合物二的摩尔比优选为(0.95-1.05):1。芳香族二胺类化合物二具体可采用4,4’-二氨基二苯醚(4,4’-ODA)、3,4’-二氨基二苯醚(3,4'-ODA)、3,3’-二氨基二苯砜(mDS)、4,4’-二氨基二苯砜(pDS)、4,4’-二氨基二苯甲酮(4,4’-DABPO)、间苯二胺(MPD)、对苯二胺(p-PDA)、二氨基二苯甲烷(4,4’-MDA)、2,2’-二甲氧基-4,4’-二氨基苯酰替苯胺(MODABA)、1,4-双(4-氨苯氧基)苯(144APB)、1,3-双(4-氨苯氧基)苯(134APB)中的至少一种。芳香族四甲酸二酐类化合物二具体可采用均苯四甲酸二酐(PMDA)、3,3’-4,4’-联苯四甲酸二酐(BPDA)、3,3’-4,4’-二苯醚四甲酸二酐(ODPA)、3,3’-4,4’-二苯酮四酸二酐(BTDA)、3,3’-4,4’-二苯砜四羧酸二酐(DSDA)、双酚A型二醚二酐(DPADA)中的至少一种。
根据本发明的一些实施例,步骤S1中,所述前驱体混合溶液的固含量为10wt%~20wt%。
以上制备方法中,步骤S2具体可包括:将所述前驱体混合溶液置于10~40℃真空烘箱中,进行抽真空脱泡;将脱泡后的前驱体混合溶液置于洁净的基板上流延成膜,而后在60~120℃下热处理60~120min,130~180℃下热处理20~80min,220~280℃下热处理20~80min,300~360℃下热处理20~60min。
本发明的第二方面,提供一种聚酰亚胺介电薄膜,由本发明第一方面所提供的任一种聚酰亚胺介电薄膜的制备方法制得。
本发明的第三方面,提供一种本发明第二方面所提供的任一种聚酰亚胺介电薄膜在制备介电电容器中应用。
本发明实施例的有益效果是:
本发明实施例提供了一种聚酰亚胺介电薄膜的制备方法,其中通过在原料中加入具有宽带隙纳米粉体和/或采用含有羰基、醚键、氰基、胺基、砜基、亚甲基中至少一种具有高偶极矩的极性基团的芳香族二胺类化合物和芳香族四甲酸二酐类化合物,可使所制备的聚酰亚胺介电薄膜具有高介电常数和高储能密度,以及高温高电场稳定性。具体地,若采用以上具有高偶极矩极性基团的芳香族二胺类化合物和芳香族四甲酸二酐类化合物,可在聚酰亚胺的主链中引入具有高偶极矩的极性基团,增加偶极极化,实现兼具高介电常数、低介电损耗和高耐热能力,可在250℃下长期使用。若采用具有宽带隙(Eg>4eV)纳米粉体,其具有高绝缘特性和较高的介电常数,可提供薄膜的介电性能和电位移极化,并且宽带隙纳米粉体可显著提高基体聚合物和电极界面处的势垒高度,有效抑制了电荷的注入和内部电荷的扩散,达到了大幅度降低高温高电场下的电导损耗目的,显著提高材料的高温储能能力。本发明制备方法工艺简单,成本低,易于实现规模化制造,所制得聚酰亚胺介电薄膜相比于现有介电薄膜具有更高的高温储能密度和耐热能力,可有效减少介电电容器的尺寸和降低能源消耗,可应用于诸如新能源电动汽车、地下油气勘探、风力或太阳能发电等温度要求较高的领域。
附图说明
图1是实施例1所制得PI介电薄膜和对比例PI膜的介电性能对比图;
图2是实施例1~5所制得PI介电薄膜和对比例PI膜的高温充放电回归曲线对比图;
图3是实施例1~5所制得PI介电薄膜和对比例PI膜的高温放电能量密度图;
图4是实施例1~5所制得PI介电薄膜和对比例PI膜的高温充放电效率图。
具体实施方式
以下将结合实施例对本发明的构思及产生的技术效果进行清楚、完整地描述,以充分地理解本发明的目的、特征和效果。显然,所描述的实施例只是本发明的一部分实施例,而不是全部实施例,基于本发明的实施例,本领域的技术人员在不付出创造性劳动的前提下所获得的其他实施例,均属于本发明保护的范围。
实施例1
一种聚酰亚胺介电薄膜的制备方法,包括以下步骤:
S1、将20g N,N-二甲基乙酰胺(DMAC)加入到50mL三口瓶中;
S2、在惰性气体的保护下,将0.01mol的3,3’-二氨基二苯砜(mDS)加入到步骤S1的三口瓶中,剧烈搅拌至完全溶解,随后加入0.011mol的3,3’-4,4’-联苯四甲酸二酐(BPDA),在25℃下搅拌12h至完全溶解,得到固含量为15wt%的稳定聚酰胺酸(PAA)前驱体混合溶液;
S3、将步骤S2获得的PAA前驱体混合溶液放置到真空烘箱中,在25℃温度下抽真空处理,排除多余的气泡;
S4、将步骤S3处理后的PAA前驱体混合溶液涂覆在干净的玻璃基板上,涂覆的厚度可通过流延刮刀的高度进行调节;在100℃下热处理60min,然后在150℃下热处理60min,220℃下热处理60min,最后在320℃下热处理30min,以使聚酰胺酸亚胺化;完成亚胺化后,置于去离子水中揭膜,经真空干燥后,得到厚度为10μm的PI介电薄膜。
实施例2
一种聚酰亚胺介电薄膜的制备方法,包括以下步骤:
S1、将0.08g Al2O3纳米粉体和20g N,N-二甲基乙酰胺(DMAC)加入到50mL三口瓶中;
S2、在惰性气体的保护下,将0.01mol的4,4’-二氨基二苯砜(pDS)加入到步骤S1的三口瓶中,剧烈搅拌至完全溶解,随后加入0.011mol的均苯四甲酸二酐(PDMA),在25℃下搅拌12h至完全溶解,得到包含聚酰胺酸(PAA)和Al2O3纳米粉体的前驱体混合溶液,前驱体混合溶液的固含量为10wt%;
S3、将步骤S2获得的前驱体混合溶液放置到真空烘箱中,在25℃温度下抽真空处理,排除多余的气泡;
S4、将步骤S3处理后的前驱体混合溶液涂覆在干净的玻璃基板上;然后在100℃下热处理60min,在150℃下热处理60min,250℃下热处理60min,最后在320℃下热处理30min,以使聚酰胺酸亚胺化;完成亚胺化后,置于去离子水中揭膜,经真空干燥后,得到厚度为9μm的PI介电薄膜。
实施例3
一种聚酰亚胺介电薄膜的制备方法,包括以下步骤:
S1、将0.09g MgO纳米粉体和20g N,N-二甲基甲酰胺(DMF)加入到50mL三口瓶中,并进行超声分散30min;
S2、在惰性气体的保护下,将0.01mol的4,4’-二氨基二苯甲酮(4,4’-DABPO)加入到步骤S1的三口瓶中,剧烈搅拌至完全溶解,随后加入0.011mol的3,3’-4,4’-二苯醚四甲酸二酐(ODPA),在25℃下搅拌12h至完全溶解,得到包含聚酰胺酸(PAA)和MgO纳米粉体的前驱体混合溶液,前驱体混合溶液的固含量为15wt%;
S3、将步骤S2获得的前驱体混合溶液放置到真空烘箱中,在25℃温度下抽真空处理,排除多余的气泡;
S4、将步骤S3处理后的前驱体混合溶液涂覆在干净的玻璃基板上,在80℃下热处理60min,然后在150℃下热处理60min,250℃下热处理60min,最后在350℃下热处理30min,以使聚酰胺酸亚胺化;完成亚胺化后,置于去离子水中揭膜,经真空干燥后,得到厚度为11μm的PI介电薄膜。
实施例4
一种聚酰亚胺介电薄膜的制备方法,包括以下步骤:
S1、将0.08g ZrO2纳米粉体和20g N-甲基吡咯烷酮(NMP)加入到50mL三口瓶中,并进行超声分散30min;
S2、在惰性气体的保护下,将0.01mol的二氨基二苯甲烷(4,4’-MDA)加入到步骤S1的三口瓶中,剧烈搅拌至完全溶解,随后加入0.011mol的3,3’-4,4’-二苯砜四羧酸二酐(DSDA),在25℃下搅拌12h至完全溶解,得到包含聚酰胺酸(PAA)和ZrO2纳米粉体的前驱体混合溶液,前驱体混合溶液的固含量为15wt%;
S3、将步骤S2获得的前驱体混合溶液放置到真空烘箱中,在25℃温度下抽真空处理,排除多余的气泡;
S4、将步骤S3处理后的前驱体混合溶液涂覆在干净的玻璃基板上,在80℃下热处理60min,然后在150℃下热处理60min,250℃下热处理60min,最后在350℃下热处理30min,以使聚酰胺酸亚胺化;完成亚胺化后,置于去离子水中揭膜,经真空干燥后,得到厚度为9μm的PI介电薄膜。
实施例5
一种聚酰亚胺介电薄膜的制备方法,包括以下步骤:
S1、将0.1g HfO2纳米粉体和20g N,N-二甲基乙酰胺(DMAC)加入到50mL三口瓶中,并进行超声分散30min;
S2、在惰性气体的保护下,将0.01mol的2,2’-二甲氧基-4,4’-二氨基苯酰替苯胺(MODABA)加入到步骤S1的三口瓶中,剧烈搅拌至完全溶解,随后加入0.011mol的3,3’-4,4’-二苯砜四羧酸二酐(DSDA),在25℃下搅拌12h至完全溶解,得到包含聚酰胺酸(PAA)和HfO2纳米粉体的前驱体混合溶液,前驱体混合溶液的固含量为10wt%;
S3、将步骤S2获得的前驱体混合溶液放置到真空烘箱中,在25℃温度下抽真空处理,排除多余的气泡;
S4、将步骤S3处理后的前驱体混合溶液涂覆在干净的玻璃基板上,在100℃下热处理60min,然后在150℃下热处理60min,220℃下热处理60min,最后在350℃下热处理30min,以使聚酰胺酸亚胺化;完成亚胺化后,置于去离子水中揭膜,经真空干燥后,得到厚度为10μm的PI介电薄膜。
以市面上所购买的Kapton的PI膜作为对比例,采用安捷伦4980A测试实施例1所制得PI介电薄膜和对比例PI膜的介电常数和介电损耗,以考察介电薄膜的介电性能,具体测试温度为25℃,测试频率为1KHz~1MHz,所得结果如图1所示,其中(a)表示实施例1中PI介电薄膜。
由图1可知,与对比例中Kapton的PI膜相比,实施例1所制得的PI介电薄膜具有更高的介电常数(约为5.25),远大于对比例中Kapton的PI膜的介电常数(约为3.3);且实施例1中PI介电薄膜具有较低的介电损耗(0.005)。
另外,采用美国Radiant Multiferroic II型铁电测试仪分别进行实施例1~5所制得PI介电薄膜和对比例PI膜的充放电回归曲线测试,测试频率为10Hz,测试温度为150℃,所得结果如图2所示;而后分别在150℃条件下测试实施例1~5所制得PI介电薄膜和对比例PI膜的高温放电能量密度和高温充放电效率随电场强度的变化,所得结果分别如图3和图4所示;图2~图4中,(a)~(e)对应分别表示实施例1~6所制得PI介电薄膜。
由图2可知,相比于对比例PI膜,本发明实施例1~5所制得PI介电薄膜具有更高的极化强度,实施例1~5的PI介电薄膜的最大极化强度分别为2.4μC/cm2、3.3μC/cm2、3.31μC/cm2、3.45μC/cm2、3.67μC/cm2,且在150℃环境下,仍具有较细的充放电回归曲线。
由图3和图4可知,在温度为150℃、电场强度400MV/m的条件下,实施例1~5的PI介电薄膜的储能密度分别为4.16J/cm3、6.32J/cm3、5.68J/cm3、5.81J/cm3、6.34J/cm3,远大于对比例里PI膜的储能密度(0.5J/cm3);实施例1~5的PI介电薄膜在温度为150℃、电场强度400MV/m的条件下的储能效率分别高达84%、90%、82%、81%、84%,而对比例PI膜在高温高电场下储能密度急剧降低。
对比例1
采用0.08g的BaTiO3纳米粉体(Eg=3.2eV)代替实施例2中的Al2O3纳米粉体,按照实施例2的方法制备聚酰亚胺介电薄膜。
采用以上类似的方法测试所制得聚酰亚胺介电薄膜的放电回归曲线和储能性能,得出该聚酰亚胺介电薄膜的最大极化强度为4.5μC/cm2,在温度为150℃、电场强度300MV/m的条件下储能密度为3.18J/cm3,储能效率仅为62%。
对比例2
采用0.1g的ZnO纳米粉体(Eg=3.27eV)代替实施例2中的Al2O3纳米粉体,按照实施例2的方法制备聚酰亚胺介电薄膜。
采用以上类似的方法测试所制得聚酰亚胺介电薄膜的放电回归曲线和储能性能,得出该聚酰亚胺介电薄膜的最大极化强度为3.89μC/cm2,在温度为150℃、电场强度400MV/m的条件下储能密度为4.15J/cm3,储能效率为69%。
对比例3
采用0.6g的MoS2纳米粉体(Eg=1.17eV)代替实施例2中的Al2O3纳米粉体,按照实施例2的方法制备聚酰亚胺介电薄膜。
采用以上类似的方法测试所制得聚酰亚胺介电薄膜的放电回归曲线和储能性能,得出该聚酰亚胺介电薄膜的最大极化强度为4.8μC/cm2,在温度为150℃、电场强度350MV/m的条件下储能密度为3.87J/cm3,储能效率为51%。
由上可知,相比于对比例Kapton的PI膜和对比例1~3的聚酰亚胺介电薄膜,本发明实施例1~5所制得PI介电薄膜在高温高电场下具有更高的高温储能密度,且可保持较高的储能效率,可用于制备介电电容器。

Claims (4)

1.一种介电电容器用聚酰亚胺介电薄膜的制备方法,其特征在于,包括以下步骤:
S1、先将纳米粉体分散于极性有机溶剂中,得混合溶液;而后在惰性气体的保护下,向所述混合溶液中依次加入芳香族二胺类化合物一和芳香族四甲酸二酐类化合物一,在10~40℃下搅拌反应,制得前驱体混合溶液;
所述纳米粉体的能带隙大于4eV,所述纳米粉体选自氧化铪;所述芳香族二胺类化合物一选自2 ,2’-二甲氧基-4 ,4’-二氨基苯酰替苯胺,所述芳香族四甲酸二酐类化合物一选自3,3’-4,4’-二苯砜四羧酸二酐;所述芳香族二胺类化合物一和所述芳香族四甲酸二酐类化合物一的摩尔比为0.91:1;
S2、将所述前驱体混合溶液进行真空脱泡,而后流延成膜,再进行热处理,得到聚酰亚胺介电薄膜;所述聚酰亚胺介电薄膜中纳米粉体与聚酰亚胺的质量比为0.015:1。
2.根据权利要求1所述的聚酰亚胺介电薄膜的制备方法,其特征在于,步骤S1中,所述前驱体混合溶液的固含量为10 wt%~20 wt%。
3.一种聚酰亚胺介电薄膜,其特征在于,由权利要求1或2所述的制备方法制得。
4.权利要求3所述聚酰亚胺介电薄膜在制备介电电容器中的应用。
CN202010175773.9A 2020-03-13 2020-03-13 聚酰亚胺介电薄膜及其制备方法和应用 Active CN111234529B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010175773.9A CN111234529B (zh) 2020-03-13 2020-03-13 聚酰亚胺介电薄膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010175773.9A CN111234529B (zh) 2020-03-13 2020-03-13 聚酰亚胺介电薄膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111234529A CN111234529A (zh) 2020-06-05
CN111234529B true CN111234529B (zh) 2024-04-02

Family

ID=70877013

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010175773.9A Active CN111234529B (zh) 2020-03-13 2020-03-13 聚酰亚胺介电薄膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111234529B (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111978540B (zh) * 2020-09-01 2024-01-09 中国科学技术大学 一种共聚物基纳米复合材料的高温介电储能应用
CN112789326B (zh) * 2020-12-18 2023-02-28 清华大学 一种高温储能杂化聚醚酰亚胺介电薄膜及其制备方法与应用
CN113045784A (zh) * 2021-03-16 2021-06-29 佛山(华南)新材料研究院 一种耐高温电介质薄膜的制备方法
CN114369362B (zh) * 2022-01-27 2023-06-06 西安交通大学 一种高绝缘强度聚醚酰亚胺纳米复合电介质的制备方法
CN115725101A (zh) * 2022-11-21 2023-03-03 乌镇实验室 纳米氧化铝/聚酰亚胺高温电介质复合薄膜的制备方法
CN117186458B (zh) * 2023-08-07 2024-08-13 深圳大学 双马来酰亚胺基热固性电介质薄膜及其制备方法、电容器

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104672901A (zh) * 2015-02-28 2015-06-03 重庆杰博科技有限公司 透明聚酰亚胺薄膜及其制备方法
CN105038226A (zh) * 2015-07-01 2015-11-11 江苏南方贝昇光电材料有限公司 一种非均质白色聚酰亚胺功能薄膜及其制备方法
CN107652679A (zh) * 2017-09-29 2018-02-02 安徽国风塑业股份有限公司 一种耐电晕pi薄膜及其制备方法
CN108841003A (zh) * 2018-06-12 2018-11-20 中国科学院电工研究所 一种聚酰亚胺电介质薄膜及其制备方法与应用
CN109776828A (zh) * 2019-02-15 2019-05-21 哈尔滨理工大学 一种氧化铝纳米颗粒/聚酰亚胺基储能介质及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104672901A (zh) * 2015-02-28 2015-06-03 重庆杰博科技有限公司 透明聚酰亚胺薄膜及其制备方法
CN105038226A (zh) * 2015-07-01 2015-11-11 江苏南方贝昇光电材料有限公司 一种非均质白色聚酰亚胺功能薄膜及其制备方法
CN107652679A (zh) * 2017-09-29 2018-02-02 安徽国风塑业股份有限公司 一种耐电晕pi薄膜及其制备方法
CN108841003A (zh) * 2018-06-12 2018-11-20 中国科学院电工研究所 一种聚酰亚胺电介质薄膜及其制备方法与应用
CN109776828A (zh) * 2019-02-15 2019-05-21 哈尔滨理工大学 一种氧化铝纳米颗粒/聚酰亚胺基储能介质及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Tuning Nano llers in In Situ Prepared Polyimide Nanocomposites for High-Temperature Capacitive Energy Storage;Ding Ai等;《Advanced Energy Materials》;第10卷(第16期);1903881 *
天津大学无线电材料与元件教研室."电容器".《电容器》.技术标准出版社出版,1981,(第1版),第356-358页. *

Also Published As

Publication number Publication date
CN111234529A (zh) 2020-06-05

Similar Documents

Publication Publication Date Title
CN111234529B (zh) 聚酰亚胺介电薄膜及其制备方法和应用
KR101831009B1 (ko) 폴리이미드 전구체 수용액 조성물, 및 폴리이미드 전구체 수용액 조성물의 제조 방법
EP2485307B1 (en) Binder resin composition for electrode, electrode mixture paste, and electrode
CN100441652C (zh) 一种含酚羟基聚酰亚胺粘合剂的制备方法
EP3154110B1 (en) Electrode manufacturing method
WO2013133333A1 (ja) 気泡層入り絶縁電線、電気機器及び気泡層入り絶縁電線の製造方法
US20110091732A1 (en) Polyamic acid resin composition and polyimide film prepared therefrom
CN108997754B (zh) 一种聚酰亚胺高温介电复合膜及其制备方法
CN111819225A (zh) 用于具有改善的导热性的石墨片的聚酰亚胺膜、其制造方法以及使用其制造的石墨片
KR20240089369A (ko) 개질된 복합 분리막 및 이의 제조방법
WO2017138604A1 (ja) 二次電池用バインダ
CN112789326B (zh) 一种高温储能杂化聚醚酰亚胺介电薄膜及其制备方法与应用
CN109880133B (zh) 一种含氟树脂混合物薄膜及覆铜板制备方法
Liu et al. High-temperature energy storage performances of “isomer-like” polyimide and its thermoplastic polyurethane blending system
CN113831570A (zh) 特种线缆用聚酰亚胺复合膜及其制备方法
JP2019133922A (ja) 二次電池、及び二次電池用多孔質セパレータ
CN114874474A (zh) 一种耐高温高储能全有机聚酰亚胺复合薄膜及其制备方法和应用
CN112608597B (zh) 一种高储能密度聚合物复合材料及其制备方法
CN113861454A (zh) 一种聚酰亚胺/二氧化硅微球及其制备方法
Zha et al. High-temperature polyimide dielectric materials for energy storage
CN113353926A (zh) 一种用于制备石墨膜的聚酰亚胺薄膜、该聚酰亚胺薄膜制备的高导热石墨膜及其制备方法
Sun et al. High-Temperature Dielectric Energy Storage Performance of MgO/PEI Nanocomposites
KR101711437B1 (ko) 이차전지 음극재용 바인더
CN114044901B (zh) 一种聚酰亚胺材料及其制备方法和应用
CN113603887B (zh) 一种钛酸钡与聚酰亚胺杂化材料的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant