CN111218658A - 一种高电导率Mo金属薄膜结构及其制备方法和应用 - Google Patents

一种高电导率Mo金属薄膜结构及其制备方法和应用 Download PDF

Info

Publication number
CN111218658A
CN111218658A CN202010121353.2A CN202010121353A CN111218658A CN 111218658 A CN111218658 A CN 111218658A CN 202010121353 A CN202010121353 A CN 202010121353A CN 111218658 A CN111218658 A CN 111218658A
Authority
CN
China
Prior art keywords
layer
metal film
preparation
substrate
protective layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010121353.2A
Other languages
English (en)
Other versions
CN111218658B (zh
Inventor
毛圣成
栗晓辰
韩晓东
马东锋
王梦龙
张泽
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Technology
Original Assignee
Beijing University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Technology filed Critical Beijing University of Technology
Priority to CN202010121353.2A priority Critical patent/CN111218658B/zh
Publication of CN111218658A publication Critical patent/CN111218658A/zh
Application granted granted Critical
Publication of CN111218658B publication Critical patent/CN111218658B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • C23C14/35Sputtering by application of a magnetic field, e.g. magnetron sputtering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/68Temporary coatings or embedding materials applied before or during heat treatment
    • C21D1/70Temporary coatings or embedding materials applied before or during heat treatment while heating or quenching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/16Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of other metals or alloys based thereon
    • C22F1/18High-melting or refractory metals or alloys based thereon
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/02Pretreatment of the material to be coated
    • C23C14/024Deposition of sublayers, e.g. to promote adhesion of the coating
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/14Metallic material, boron or silicon
    • C23C14/18Metallic material, boron or silicon on other inorganic substrates
    • C23C14/185Metallic material, boron or silicon on other inorganic substrates by cathodic sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/34Nitrides
    • C23C16/345Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/401Oxides containing silicon
    • C23C16/402Silicon dioxide
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/02Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B13/00Apparatus or processes specially adapted for manufacturing conductors or cables
    • H01B13/0016Apparatus or processes specially adapted for manufacturing conductors or cables for heat treatment

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plasma & Fusion (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明公开了一种高电导率Mo金属薄膜结构及其制备方法和应用,其制备方法包括,在Mo金属膜表面生长保护层,随后进行高温退火处理;保护层为等离子体增强化学气相沉积法生长的100‑300nmSiO2层;高温退火处理为先抽真空至10‑4Pa,再在1750‑2400Pa氩气下800‑1100℃下退火45‑90min。本发明的方法通过在Mo金属膜表面生长保护层后进行高温退火处理,可改善其微观结构,进一步提高Mo金属薄膜结构的电学性能,实现其电阻率的有效控制;其工艺简单,工艺参数可控,重复性好,较常规制备方法而言其原料成本和加工成本大幅下降,应用前景好,能满足微机电系统和集成电路应用的需要。

Description

一种高电导率Mo金属薄膜结构及其制备方法和应用
技术领域
本发明属于薄膜材料技术领域,涉及微机电系统加热用薄膜材料的制备,具体涉及一种高电导率Mo金属薄膜结构及其制备方法和应用。
背景技术
Mo作为一种电阻率低、机械强度大的高熔点金属,具有高的热稳定性、优异的电学性能等特点,可用作CIGS薄膜太阳能电池的背接触层,Mo/Si系统用于集成电路互连线、欧姆接触和肖特基势垒,同时Mo/Si多层膜作为同步辐射软X射线的反射镜材料,其具有很好的热稳定性和界面平整度,Mo加热材料在国外也有少量报道,综上可知,Mo金属薄膜的调控及研究逐渐得到人们的广泛重视。
作为背接触层的Mo薄膜质量直接影响CIGS吸收层薄膜材料的表面形貌和电池使用寿命等。背接触层材料应具有较高的光反射率、较低的电阻率,并能够抵抗吸收层CIGS薄膜沉积过程中的高腐蚀性气氛,这就要求背接触层材料具有较高的纯度,且与基底结合要好。而金属硅化物的形成及性质与难熔金属的性质紧密相关,因此人们对薄膜电阻率做出广泛研究。
由于Mo与氧的吸附与作用,即便在高真空的溅射系统中,其电阻率也波动于几个数量级间,相差甚大,因此研究比较困难。季航等发表名为《磁控溅射Mo薄膜电阻率的原位研究》的论文研究了磁控溅射Mo薄膜的电阻率与薄膜厚度的关系,通过实验曲线拟合并计算得到Mo薄膜电阻率与薄膜厚度关系的理论曲线,得出其导电机制,但调控参数有限,不能得出其它参数对电阻率的影响。
鉴于此,特提出本发明。
发明内容
本发明弥补了现有技术存在的不足,提供一种高电导率Mo金属薄膜结构及其制备方法和应用,在工业上具有重要的推广价值。
为实现上述目的,本发明采用以下技术方案:
一种高电导率Mo金属薄膜结构的制备方法,包括,在Mo金属膜表面生长保护层,随后进行高温退火处理。
高温退火处理可使金属Mo的晶粒长大,达到热力学更稳定的状态,同时,晶界的减少降低了电子运动阻力,使晶体内部势场降低,从而体现出电阻率的下降;然而,晶粒的长大同时意味着导线图形化时边缘更加粗糙,产生线宽不均匀等问题。
在上述技术方案中,所述保护层为SiO2层或SiNx层。
具体地,上述SiNx层可为LPCVD法制备的SiNx层。
详细地,上述保护层需要具有优异的绝缘性和高温稳定性,同时,需与衬底及Mo金属膜有良好的黏附性,优选为SiO2层。
在上述技术方案中,所述保护层的厚度为50-500nm。
具体地,上述厚度的保护层能在保证薄膜应力合适的前提下,可有效将Mo金属膜与外界气氛隔绝,防止微量氧扩散与金属氧化,导致Mo金属膜破裂失效。
进一步地,在上述技术方案中,所述保护层为等离子体增强化学气相沉积法生长的SiO2层。
优选地,在上述技术方案中,所述SiO2层的厚度为100-300nm。
在上述技术方案中,所述高温退火处理的退火温度和退火时间分别为800-1100℃和45-90min。
优选地,在上述技术方案中,所述高温退火处理在1750-2400Pa的氩气保护气氛下进行。
再进一步地,在上述技术方案中,所述Mo金属膜的制备采用磁控溅射法,具体包括:将衬底置于高真空度的反应室内,通高纯氩气至15-20mTorr后,加热衬底至400-600℃,在500-600W的直流溅射功率下制备得到30-300nm后的Mo金属膜。
在本发明的一个具体实施方式中,所述制备方法还包括,在制备Mo金属膜前,在衬底表面制备过渡层。
优选地,在上述技术方案中,所述过渡层为SiO2层或SiNx层。
具体地,上述作为过渡层的SiNx层可为LPCVD法制备的SiNx层。
进一步优选地,在上述技术方案中,所述衬底为Si衬底或SOI衬底,所述过渡层为加热氧化衬底制备得到的50-200nm的热氧SiO2层。
在本发明的一个优选实施方式中,所述制备方法还包括,在所述高温退火处理后,去除Mo金属膜表面的保护层。
优选地,在上述技术方案中,所述保护层的去除采用湿化学腐蚀法。
本发明另一方面还提供了上述制备方法制备得到的高电导率Mo金属薄膜结构。
具体地,采用上述制备方法制备得到的厚度为200nm的Mo金属薄膜结构的方块电阻低至0.7ohm/sq,电阻率为154nohm·m,且环境稳定性良好。
本发明又一方面还提供了上述制备方法或上述高电导率Mo金属薄膜结构在微机电系统和集成电路中的应用。
与现有技术相比,本发明具有如下优点:
(1)本发明提供了一种高电导率Mo金属薄膜结构的制备方法,通过在Mo金属膜表面生长保护层后进行高温退火处理,可改善其微观结构,并进一步提高Mo金属薄膜结构的电学性能,从而实现其电阻率的有效控制;
(2)本发明所提供的高电导率Mo金属薄膜结构的制备方法制备工艺简单,工艺参数可控,重复性好,较常规制备方法而言其原料成本和加工成本大幅下降,应用前景好;
(3)本发明所制备得到的高电导率Mo金属薄膜结构的方块电阻小至0.7ohm/sq(厚度200nm),具有较高环境稳定性,能满足微机电系统和集成电路应用的需要。
附图说明
图1为本发明实施例中提供的一种高电导率Mo金属薄膜结构的剖面示意图;
图2为本发明实施例中高电导率Mo金属薄膜的电阻率和方块电阻随高温退火处理的退火温度的关系图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。
以下实施例仅用于说明本发明,并不用来限制本发明的保护范围。
以下实施例中所使用的实验方法如无特殊说明,均为常规方法。
以下实施例中所用的材料、试剂等,如无特殊说明,均可从商业途径得到。
实施例1
一种高电导率Mo金属薄膜结构的制备方法,具体包括如下步骤:
S1、选取硅片为衬底,依次在丙酮、乙醇和去离子水中清洗,之后用高纯氮气吹干,备用;
S2、采用热氧化方法在硅片衬底上热氧一层SiO2层,控制SiO2层厚度为100-200nm;
S3、磁控溅射靶材为高纯Mo靶材,其中,Mo靶材的纯度为Mo含量不低于99.95%,将衬底放置于磁控溅射预反应室,反应室真空至少抽到9.8*10-3mTorr,通入高纯氩气作为工作气体,压强为20mTorr,对衬底逐步进行加热,升温速率为10℃/min,保证衬底温度稳定在400℃,直流溅射沉积Mo薄膜层,溅射功率为550W,通过调整溅射时间控制薄膜层厚度,控制Mo薄膜层厚度约为200nm,随后在Mo薄膜层表面生长厚度约为200nm的SiO2薄膜;
S4、随后在2000Pa的氩气保护气氛下,1100℃高温退火处理60min,即得。
将步骤S4中制备得到的结构如图1所示的由Si衬底、SiO2过渡层、Mo金属膜和SiO2保护层组成的薄膜样品置于腐蚀溶液中进行湿法腐蚀,至表面的SiO2保护层去除干净,并在去离子水中清洗,之后用高纯氮气吹干。
采用四探针法测定湿法腐蚀后的薄膜样品的方块电阻的电学性能,如图2所示,结果显示其方块电阻为0.7ohm/sq,其中该测试样品氧化硅薄膜层厚度为200nm,Mo薄膜层厚度均为200nm;此外,为保证方块电阻结果具有对照性,如无特殊说明,后续结果统一采用Mo金属膜厚度为200nm。
对比例1
一种高电导率Mo金属薄膜结构的制备方法,具体包括如下步骤:
S1、选取硅片为衬底,在丙酮、乙醇、去离子水中依次清洗,之后用高纯氮气吹干,备用;
S2、热氧化方法在衬底上热氧一层氧化硅层,控制氧化硅膜层厚度为100-200nm;
S3、磁控溅射靶材为高纯Mo靶材,其中纯度不低于Mo含量不低于99.95%,将衬底放置于磁控溅射预反应室,反应室真空至少抽到9.8*10-3mTorr,通入高纯氩气作为工作气体,压强为20mTorr,对衬底逐步进行加热,升温速率为10℃/min,保证衬底温度稳定在400℃,直流溅射沉积Mo薄膜层,溅射功率为200W,通过调整溅射时间控制薄膜层厚度,控制Mo薄膜层厚度为200nm。
此外,采用四探针法测定湿法腐蚀后的薄膜样品的方块电阻的电学性能,结果显示其方块电阻为8.9ohm/sq。
对比例2
一种高电导率Mo金属薄膜结构的制备方法,其过程与对比例1相似,区别在于,溅射功率为550W。
同样,采用四探针法测定湿法腐蚀后的薄膜样品的方块电阻的电学性能,结果显示其方块电阻为3.8ohm/sq。
对比例3
一种高电导率Mo金属薄膜结构的制备方法,其过程与对比例2相似,区别在于,将所制备高温加热材料多层薄膜,制得的样品放入管式炉中进行退火处理,管式炉真空抽至9.8×10-4Pa,退火温度:1100℃;保温时间1小时;随炉冷却。
所得到的样品可观察到表面具有一层氧化膜,导致形貌褶皱,会对Mo薄膜电学性能产生恶化效果。
同样,采用四探针法测定湿法腐蚀后的薄膜样品的方块电阻的电学性能,结果显示其方块电阻为2.3ohm/sq。
综上,可以看出,如图2所示,当高温加热材料多层薄膜中热氧氧化硅薄膜层厚度为200nm,Mo薄膜层厚度为200nm,表面层氧化硅薄膜厚度为200nm,样品在氩气中1100℃退火保温1h,样品方块电阻小于文献中所给出电阻率,得到的样品电阻率最佳。
最后,以上仅为本发明的较佳实施方案,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (9)

1.一种高电导率Mo金属薄膜结构的制备方法,其特征在于,包括,在Mo金属膜表面生长保护层,随后进行高温退火处理。
2.根据权利要求1所述的制备方法,其特征在于,
所述保护层为SiO2层或SiNx层,优选为SiO2层;
和/或,所述保护层的厚度为50-500nm。
3.根据权利要求1或2所述的制备方法,其特征在于,所述保护层为等离子体增强化学气相沉积法生长的SiO2层;
优选地,所述SiO2层的厚度为100-300nm。
4.根据权利要求1所述的制备方法,其特征在于,
所述高温退火处理的退火温度和退火时间分别为800-1100℃和45-90min;
优选地,所述高温退火处理在1750-2400Pa的氩气保护气氛下进行。
5.根据权利要求1-4任一项所述的制备方法,其特征在于,所述Mo金属膜的制备采用磁控溅射法,具体包括:将衬底置于高真空度的反应室内,通高纯氩气至15-20mTorr后,加热衬底至400-600℃,在500-600W的直流溅射功率下制备得到30-300nm后的Mo金属膜。
6.根据权利要求5所述的制备方法,其特征在于,还包括,在制备Mo金属膜前,在衬底表面制备过渡层;
优选地,所述过渡层为SiO2层或SiNx层;
进一步优选地,所述衬底为Si衬底或SOI衬底,所述过渡层为加热氧化衬底制备得到的50-200nm的热氧SiO2层。
7.根据权利要求1-6任一项所述的制备方法,其特征在于,还包括,在所述高温退火处理后,去除Mo金属膜表面的保护层;
优选地,所述保护层的去除采用湿化学腐蚀法。
8.权利要求1-7任一项所述的制备方法制备得到的高电导率Mo金属薄膜结构。
9.权利要求1-7任一项所述的制备方法或权利要求8所述的高电导率Mo金属薄膜结构在微机电系统和集成电路中的应用。
CN202010121353.2A 2020-02-26 2020-02-26 一种高电导率Mo金属薄膜结构及其制备方法和应用 Active CN111218658B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010121353.2A CN111218658B (zh) 2020-02-26 2020-02-26 一种高电导率Mo金属薄膜结构及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010121353.2A CN111218658B (zh) 2020-02-26 2020-02-26 一种高电导率Mo金属薄膜结构及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111218658A true CN111218658A (zh) 2020-06-02
CN111218658B CN111218658B (zh) 2022-02-01

Family

ID=70812020

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010121353.2A Active CN111218658B (zh) 2020-02-26 2020-02-26 一种高电导率Mo金属薄膜结构及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111218658B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108118340A (zh) * 2017-12-21 2018-06-05 安徽工业大学 钼及钼合金电极表面Mo5Si3-MoSi2-SiO2高温防护复合涂层及制备方法
CN108878570A (zh) * 2018-06-01 2018-11-23 上海大学 空穴选择型MoOx/SiOx(Mo)/n-Si异质结、太阳电池器件及其制备方法
CN110783412A (zh) * 2019-10-21 2020-02-11 华南理工大学 基于等离子体增强原子层沉积栅极绝缘层的氧化锡基薄膜晶体管及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108118340A (zh) * 2017-12-21 2018-06-05 安徽工业大学 钼及钼合金电极表面Mo5Si3-MoSi2-SiO2高温防护复合涂层及制备方法
CN108878570A (zh) * 2018-06-01 2018-11-23 上海大学 空穴选择型MoOx/SiOx(Mo)/n-Si异质结、太阳电池器件及其制备方法
CN110783412A (zh) * 2019-10-21 2020-02-11 华南理工大学 基于等离子体增强原子层沉积栅极绝缘层的氧化锡基薄膜晶体管及制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
魏其睿,等: "Mo-SiO2太阳选择性吸收涂层的空气高温热稳定性", 《太阳能学报》 *
黄岩彬,殷志强,史月艳: "太阳光谱选择性吸收表面光学性能计算 ", 《太阳能学报》 *

Also Published As

Publication number Publication date
CN111218658B (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
TWI493728B (zh) 透明導電膜積層體以及其製造方法、及矽系薄膜太陽電池
EP2371989B1 (en) Methods of forming a conductive transparent oxide film layer for use in a cadmium telluride based thin film photovoltaic device
WO2000014812A1 (en) Photovaltaic devices comprising zinc stannate buffer layer and method for making
CN109449214B (zh) 一种氧化镓半导体肖特基二极管及其制作方法
CN104711528A (zh) 一种片状三氧化钨光电极及其制备方法
CN101174671A (zh) 具有相变特性二氧化钒纳米薄膜的制备方法
US20130133734A1 (en) Photovoltaic cell
CN101798680B (zh) 环境友好半导体材料Mg2Si薄膜的磁控溅射制备工艺
CN111218658B (zh) 一种高电导率Mo金属薄膜结构及其制备方法和应用
JP6609324B2 (ja) 光電変換装置の製造方法
CN106356418A (zh) 一种硅基异质结电池片及其TiNx阻挡层的制备方法
CN101413102A (zh) 两步制备NiO透明导电薄膜的方法
CN109860058B (zh) 一种氧化镓/铜镓氧异质结的制备方法
CN113403594B (zh) 陶瓷基复合材料用耐高温、抗水氧低红外发射率复合薄膜及制备方法
CN113658852A (zh) 硅基尺寸可控β-Ga2O3纳米线的制备方法
CN109811313B (zh) 一种高电阻率基底上多孔氧化铝模板的制备方法
CN111962153A (zh) 一种单晶TiN电极薄膜及其制备方法
US20200312659A1 (en) Method for the preparation of gallium oxide/copper gallium oxide heterojunction
CN105483617A (zh) 一种在非硅衬底上制备Mg2Si薄膜的方法
TWI246204B (en) Electrode for p-type SiC
CN111048404B (zh) 一种缓冲层结构及其制备方法
Lin et al. Study of AZO thin films under different annealing atmosphere on structural, optical and electrical properties by rf magnetron sputtering
CN114524431B (zh) 一种在绝缘衬底上低温生长高质量石墨烯的工艺方法
Lyubenova et al. Electrical and Morphological study of Mo thin films for solar cell applications
WO2012047592A2 (en) Electronic device including a semiconductor layer and a metal-containing layer, and a process of forming the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant