CN111211294B - 一种锂离子电池正极及其制备方法 - Google Patents

一种锂离子电池正极及其制备方法 Download PDF

Info

Publication number
CN111211294B
CN111211294B CN202010201105.9A CN202010201105A CN111211294B CN 111211294 B CN111211294 B CN 111211294B CN 202010201105 A CN202010201105 A CN 202010201105A CN 111211294 B CN111211294 B CN 111211294B
Authority
CN
China
Prior art keywords
layer
particle size
average particle
active substance
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010201105.9A
Other languages
English (en)
Other versions
CN111211294A (zh
Inventor
谈益
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dongguan Xinrui Electronic Co.,Ltd.
Original Assignee
Dongguan Xinrui Electronic Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dongguan Xinrui Electronic Co ltd filed Critical Dongguan Xinrui Electronic Co ltd
Priority to CN202010201105.9A priority Critical patent/CN111211294B/zh
Publication of CN111211294A publication Critical patent/CN111211294A/zh
Application granted granted Critical
Publication of CN111211294B publication Critical patent/CN111211294B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/50Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese
    • H01M4/505Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of manganese of mixed oxides or hydroxides containing manganese for inserting or intercalating light metals, e.g. LiMn2O4 or LiMn2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/028Positive electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

本发明提供了一种锂离子电池正极及其制备方法,所述正极的活性物质为LiMnxN2‑XO4,0.9≤x≤1,N选自Ni,Co,Ti,Cr,Zr,Ca,Mg,Cu,Al;所述正极包括底层,中间层和表层,所述底层活性物质的平均粒径为X1,所述中间层的平均粒径为X2,所述表层的平均粒径为X3,其中所述X1为1.5‑1.7μm,X3为2.4‑2.6μm,其中X2=k*(n*X1+m*X3),其中k,n,m为调整系数,k=0.21‑0.23,n=2.8‑3.2,m=2.0‑2.2;所述底层的厚度为Y1,所述中间层的厚度为Y2,所述表层的厚度为Y3,其中Y2=y*(Y1+Y3);当所述正极的底层,中间层和表层的活性物质的平均粒径和厚度满足上述关系式时,活性物质层的涂覆性能好,各层之间应力均一,结构稳固,能够避免长时间循环导致的活性物质层结构崩塌,防止活性物质脱落,提高循环寿命。

Description

一种锂离子电池正极及其制备方法
技术领域
本发明涉及一种锂离子电池正极及其制备方法。
背景技术
锂离子电池与其它二次电池相比,它具有工作电压和能量密度高、循环寿命长、体积小、重量轻,自放电率低、无记忆效应和无污染等显著优点。其中,由于锰资源丰富,价格低廉,对环境友好,安全性好,锰酸锂所具有的独特的三维隧道结构有利于锂离子的嵌入与脱出,LiMn2O4成为21世纪极具发展前途的绿色能源材料。近几年,对锰酸锂的研究一直是国内外开发新型锂离子电池正极材料的重点。但是该材料在循环中会发生Jahn-Teller效应而导致结构发生破坏,容量快速衰减。目前,针对尖晶石型锰酸锂所存在的这一问题,对材料进行的改性大体上有元素掺杂法和包覆法。现有技术中,已研发的活性物质有LiMnxN2- XO4,0.9≤x≤1,N选自Ni,Co,Ti,Cr,Zr,Ca,Mg,Cu,Al;基本上已经解决容量衰减的问题,但是,随着充放电的进行,由于活性物质层的体积变化,活性物质层的结构容易发生崩塌,从而导致活性物质脱落,导致循环寿命降低。
发明内容
本发明提供了一种锂离子电池正极及其制备方法,所述正极的活性物质为LiMnxN2-XO4,0.9≤x≤1,N选自Ni,Co,Ti,Cr,Zr,Ca,Mg,Cu,Al;所述正极包括底层,中间层和表层,所述底层活性物质的平均粒径为X1,所述中间层的平均粒径为X2,所述表层的平均粒径为X3,其中所述X1为1.5-1.7μm,X3为2.4-2.6μm,其中X2=k*(n*X1+m*X3),其中k,n,m为调整系数,k=0.21-0.23,n=2.8-3.2,m=2.0-2.2;所述底层的厚度为Y1,所述中间层的厚度为Y2,所述表层的厚度为Y3,其中Y2=y*(Y1+Y3),其中y为调整系数,y=1.5-1.7;当所述正极的底层,中间层和表层的活性物质的平均粒径和厚度满足上述关系式时,活性物质层的涂覆性能好,各层之间应力均一,结构稳固,能够避免长时间循环导致的活性物质层结构崩塌,防止活性物质脱落,提高循环寿命。
具体的方案如下:
一种锂离子电池正极的制备方法,所述正极的活性物质为LiMnxN2-XO4,0.9≤x≤1,N选自Ni,Co,Ti,Cr,Zr,Ca,Mg,Cu,Al;所述正极包括底层,中间层和表层,所述底层活性物质的平均粒径为X1,所述中间层的平均粒径为X2,所述表层的平均粒径为X3,其中所述X1为1.5-1.7μm,X3为2.4-2.6μm,其中X2=k*(n*X1+m*X3),其中k,n,m为调整系数,k=0.21-0.23,n=2.8-3.2,m=2.0-2.2;所述底层的厚度为Y1,所述中间层的厚度为Y2,所述表层的厚度为Y3,其中Y2=y*(Y1+Y3),其中y为调整系数,y=1.5-1.7;其中具体包括:
1)向真空搅拌釜中加入溶剂,加入粘结剂和导电剂,搅拌均匀,加入平均粒径为X1的活性物质,抽真空搅拌均匀,得到底层浆料;
2)向真空搅拌釜中加入溶剂,加入粘结剂和导电剂,搅拌均匀,加入平均粒径为X2的活性物质,抽真空搅拌均匀,得到中间层浆料;
3)向真空搅拌釜中加入溶剂,加入粘结剂和导电剂,搅拌均匀,加入平均粒径为X3的活性物质,抽真空搅拌均匀,得到表层浆料;
4)按照顺序分别将底层浆料,中间层浆料,表层浆料涂覆在集流体表面上,干燥,热压,得到所述正极。
进一步的,所述底层的厚度Y1为10-25μm,所述表层的厚度Y3为5-15μm。
进一步的,其中k=0.22,n=3.0,m=2.1。
进一步的,其中所述X1为1.6μm,X3为2.5μm。
进一步的,其中y=1.6。
进一步的,一种锂离子电池正极,所述锂离子电池正极由所述的方法制备得到。
进一步的,一种锂离子电池,其包括所述的锂离子电池正极。
本发明具有如下有益效果:
1)、结构化正极,表层采用表面积较低的大粒径活性物质,能够降低电解液在电极表面反应堆界面,延长寿命,并且底层采用小颗粒活性物质,有利于提高锂离子的传导效率,有利于倍率性能的发挥。
2)、针对底层和表层的粒径差异导致的体积变化率的差异,为缓解两层之间的应力差值,设置中间粒径的中间层,并且研究人员发现,当中间层粒径范围满足本发明的公式范围时,其应力差值能够得到最大的平衡,从而提高循环效率。
3)、同时,研究人员进一步发现,在颗粒粒径满足本发明的粒径范围的基础上,当中间层的厚度满足本发明的厚度范围时,能够进一步提高活性物质层的稳固性能,提高循环效率。
具体实施方式
本发明下面将通过具体的实施例进行更详细的描述,但本发明的保护范围并不受限于这些实施例。
本发明的实施例和对比例的制备方法如下:
1)向真空搅拌釜中加入NMP,加入PVDF和乙炔黑,搅拌4h,加入平均粒径为X1的活性物质,抽真空搅拌4h,得到底层浆料,其中,活性物质:粘结剂:导电剂=100:3:5;
2)向真空搅拌釜中加入NMP,加入PVDF和乙炔黑,搅拌4h,加入平均粒径为X2的活性物质,抽真空搅拌4h,得到中间层浆料,其中,活性物质:粘结剂:导电剂=100:4:4;
3)向真空搅拌釜中加入NMP,加入PVDF和乙炔黑,搅拌4h,加入平均粒径为X3的活性物质,抽真空搅拌4h,得到表层浆料,其中,活性物质:粘结剂:导电剂=100:5:5;
4)按照顺序分别将底层浆料,中间层浆料,表层浆料涂覆在集流体表面上,120摄氏度干燥,110摄氏度/0.3Mpa热压,得到所述正极。
各实施例和对比例的粒径分布和各层厚度见表1。
表1
Figure BDA0002419405810000031
测试及结果
将实施例1-3和对比例1-6的正极与锂片组成试验电池,以0.5C的电流进行充放电试验200次,测量容量保持率,结果见表2。由表2的数据可见,底层,中间层和表层中的粒径分布对于容量保持率的影响十分明显,同时,各层的厚度也会对容量保持率产生一定的作用。位于本发明的数值范围以内的实施例具有较好的循环性能。
表2
容量保持率(%)
实施例1 96.4
实施例2 95.8
实施例3 96.6
对比例1 91.2
对比例2 90.4
对比例3 90.3
对比例4 93.5
对比例5 92.7
对比例6 93.0
尽管本发明的内容已经通过上述优选实施例作了详细介绍,但是应当认识到上述的描述不应被认为是对本发明的限制。

Claims (1)

1.一种锂离子电池正极的制备方法,所述正极的活性物质为LiMn1.9Co0.07Ni0.03O4,所述正极包括底层,中间层和表层,所述底层活性物质的平均粒径为X1,所述中间层的平均粒径为X2,所述表层的平均粒径为X3,其特征在于:其中所述X1为1.6μm,X2为2.2μm,X3为2.5μm,所述底层的厚度Y1为20μm,所述中间层的厚度Y2为48μm,所述表层的厚度Y3为10μm,其中具体包括:
1)向真空搅拌釜中加入NMP,加入PVDF和乙炔黑,搅拌4h,加入平均粒径为X1的活性物质,抽真空搅拌4h,得到底层浆料,其中,活性物质:粘结剂:导电剂=100:3:5;
2)向真空搅拌釜中加入NMP,加入PVDF和乙炔黑,搅拌4h,加入平均粒径为X2的活性物质,抽真空搅拌4h,得到中间层浆料,其中,活性物质:粘结剂:导电剂=100:4:4;
3)向真空搅拌釜中加入NMP,加入PVDF和乙炔黑,搅拌4h,加入平均粒径为X3的活性物质,抽真空搅拌4h,得到表层浆料,其中,活性物质:粘结剂:导电剂=100:5:5;
4)按照顺序分别将底层浆料,中间层浆料,表层浆料涂覆在集流体表面上,120摄氏度干燥,110摄氏度/0.3Mpa热压,得到所述正极。
CN202010201105.9A 2020-03-20 2020-03-20 一种锂离子电池正极及其制备方法 Active CN111211294B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010201105.9A CN111211294B (zh) 2020-03-20 2020-03-20 一种锂离子电池正极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010201105.9A CN111211294B (zh) 2020-03-20 2020-03-20 一种锂离子电池正极及其制备方法

Publications (2)

Publication Number Publication Date
CN111211294A CN111211294A (zh) 2020-05-29
CN111211294B true CN111211294B (zh) 2021-07-13

Family

ID=70787153

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010201105.9A Active CN111211294B (zh) 2020-03-20 2020-03-20 一种锂离子电池正极及其制备方法

Country Status (1)

Country Link
CN (1) CN111211294B (zh)

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103682351B (zh) * 2012-09-03 2016-03-02 中国科学院宁波材料技术与工程研究所 锂离子电池负极材料、其制备方法和锂离子电池
KR102538830B1 (ko) * 2016-07-05 2023-05-31 가부시키가이샤 한도오따이 에네루기 켄큐쇼 양극 활물질, 양극 활물질의 제작 방법, 및 이차 전지
JP6919657B2 (ja) * 2016-09-29 2021-08-18 Tdk株式会社 全固体リチウムイオン二次電池
CN108933242B (zh) * 2018-07-10 2019-12-10 江西迪比科股份有限公司 一种锂离子电池混合正极的制备方法
CN209641735U (zh) * 2019-02-03 2019-11-15 星恒电源股份有限公司 一种锂离子电池用正负极极片
CN110660965B (zh) * 2019-08-29 2021-12-17 孚能科技(赣州)股份有限公司 负极片及其制备方法和锂离子电池及其制备方法和应用
CN110581255B (zh) * 2019-10-18 2020-11-24 宇恒电池有限公司 一种锂离子电池正极以及制备锂离子电池正极的方法
CN110649226B (zh) * 2019-11-07 2020-12-11 泰州纳新新能源科技有限公司 一种锰基锂氧化物正极及其制备方法

Also Published As

Publication number Publication date
CN111211294A (zh) 2020-05-29

Similar Documents

Publication Publication Date Title
CN108682803A (zh) 一种提高锂离子电池硅负极材料性能的方法
CN110649226B (zh) 一种锰基锂氧化物正极及其制备方法
CN111883725A (zh) 一种锂离子电池补锂陶瓷隔膜及其制备方法
CN115566170B (zh) 一种高能量密度快充锂离子电池负极材料的制备方法
CN110707293B (zh) 一种锂离子电池阴极的制备方法
CN109473637B (zh) 一种长循环寿命锂负极的保护方法
CN113066988B (zh) 一种负极极片及其制备方法和用途
CN111740084B (zh) 一种硫掺杂预锂化硅碳复合材料及其制备方法
CN113809316A (zh) 一种三元合金负极活性材料及其制备方法和应用
CN110970609B (zh) 一种电动工具用锂离子电池的正极的制备方法
EP4145476A1 (en) Positive electrode of hybrid capacitor and manufacturing method therefor and use thereof
CN112289995A (zh) 复合正极浆料与正极极片、固态电池
CN111710829A (zh) 一种锂离子电池的制备方法
CN111211294B (zh) 一种锂离子电池正极及其制备方法
CN115275166A (zh) 一种长寿命石墨复合材料及其制备方法
CN111446438B (zh) 一种锂电池正极材料及其制备方法
CN115020682A (zh) 一种高能量密度快充石墨负极材料的制备方法
CN114975974A (zh) 一种高能量密度石墨复合材料及其制备方法、锂离子电池
CN114242994A (zh) 一种复合负极材料的制备方法及复合负极材料和应用
CN112467131A (zh) 一种镁离子电池负极材料的制备方法
CN112993412A (zh) 一种高性能磷酸铁锂电池的制备方法
CN113140816B (zh) 用于长寿命和高倍率性能钠离子电池的p2型层状氧化物正极与醚类电解液体系
CN109148831B (zh) 一种氟化物钠离子电池电极材料的制备方法
CN112234193A (zh) 一种用于石墨负极的制备方法
CN117039167A (zh) 一种快充型高镍高电压锂离子电池及其制备方法和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20210625

Address after: 523000 Room 201, building 1, 351 gongchang Road, Huangjiang Town, Dongguan City, Guangdong Province

Applicant after: Dongguan Xinrui Electronic Co.,Ltd.

Address before: 224700 Room 401, building 44, xiyuanxin village, Jianhu County, Yancheng City, Jiangsu Province

Applicant before: Tan Yi

GR01 Patent grant
GR01 Patent grant