CN111208185A - 一种复合纳米材料的制备方法 - Google Patents

一种复合纳米材料的制备方法 Download PDF

Info

Publication number
CN111208185A
CN111208185A CN202010117669.4A CN202010117669A CN111208185A CN 111208185 A CN111208185 A CN 111208185A CN 202010117669 A CN202010117669 A CN 202010117669A CN 111208185 A CN111208185 A CN 111208185A
Authority
CN
China
Prior art keywords
salt
composite
fecl
nano material
mol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202010117669.4A
Other languages
English (en)
Other versions
CN111208185B (zh
Inventor
聂秋林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dragon Totem Technology Hefei Co ltd
Shenzhen Dragon Totem Technology Achievement Transformation Co ltd
Original Assignee
Hangzhou Dianzi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hangzhou Dianzi University filed Critical Hangzhou Dianzi University
Priority to CN202010117669.4A priority Critical patent/CN111208185B/zh
Publication of CN111208185A publication Critical patent/CN111208185A/zh
Application granted granted Critical
Publication of CN111208185B publication Critical patent/CN111208185B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/327Biochemical electrodes, e.g. electrical or mechanical details for in vitro measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

本发明公开一种复合纳米材料的制备方法。将镍盐、钴盐、铁盐、亚铁盐以及阳离子交联剂加入去离子水中,磁力搅拌分散均匀后缓慢加入水合肼、l氢氧化钠、聚丙烯酸钠,搅拌均匀后得到混合液;将上述混合液转移到不锈钢反应釜中,在110~140℃温度下反应12~24h;反应结束后,自然冷却至室温,将所得产物过滤、蒸馏水冲洗、烘干得到Ni‑Co/Fe3O4复合纳米材料。本发明采用亲水性高分子聚合物聚丙烯酸钠与交联剂在水溶液中交联形成凝胶,限制了Ni‑Co/Fe3O4复合纳米材料的生长,能获得尺寸小,分散性好的Ni‑Co/Fe3O4复合纳米材料,并具有优异的葡萄糖传感性能。

Description

一种复合纳米材料的制备方法
技术领域
本发明属于电化学传感技术领域,涉及一种复合纳米材料的制备方法,具体是一种Ni-Co/Fe3O4葡萄糖传感用纳米复合材料的制备方法。
背景技术
糖尿病作为一种全球性的慢性疾病,源于胰岛素缺乏症,其特点是血糖水平升高。此外,糖尿病会导致一系列继发性并发症例如心脏病,失明或肾衰竭。通过对糖尿病患者血糖含量的准确检测,可以有效地对糖尿病进行监测和治疗,因此葡萄糖的定量分析在临床医学上具有十分重要的意义。电化学传感器方法尤其是无酶葡萄糖电化学传感器由于不受酶易变性失活的影响,并具有灵敏度高、检出限低、操作简便的优点在葡萄糖的定量分析中扮演了重要的角色。进一步,电极活性材料的成分和结构无疑对无酶葡萄糖电化学传感器的性能有至关重要的作用。最近,双金属材料尤其是双金属与其他材料形成复合纳米结构由于其出色的催化性能、优异的生物相容性和出色的稳定性在葡萄糖无酶传感检测方面受到越来越多的关注。P.Vennila等(Ni-Co/Fe3O4 flower-like nanocomposite highlysensitive selective enzyme free glucose sensor applications,Journal of alloysand compounds,2017,703,633-642)采用湿化学方法制备了Ni、Co与Fe3O4复合纳米材料,并应用于葡萄糖传感检测,但获得的Ni-Co/Fe3O4复合纳米颗粒的尺寸大小为亚微米级并且严重团聚,限制了其葡萄糖传感性能。
发明内容
本发明目的在于针对现有Ni-Co/Fe3O4复合纳米颗粒尺寸大且严重团聚的不足,提供一种Ni-Co/Fe3O4复合纳米材料的制备方法。
本发明的一种Ni-Co/Fe3O4纳米复合材料的制备方法具体包括步骤:
1)将1~3mmol的镍盐、2~6mmol钴盐、0.2~0.6mol铁盐、0.1~0.3mol亚铁盐以及0.05~0.1mmol阳离子交联剂加入50~100ml去离子水中,磁力搅拌分散均匀后缓慢加入0.03~0.06mol的水合肼、0.03~0.06mol氢氧化钠、0.5~1.0g聚丙烯酸钠,搅拌均匀后得到混合液;
2)将上述混合液转移到不锈钢反应釜中,在110~140℃温度下反应12~24h;
3)反应结束后,自然冷却至室温,将所得产物过滤、蒸馏水冲洗、烘干得到Ni-Co/Fe3O4复合纳米材料。
所述的镍盐为Ni(NO3)2·6H2O、NiCl2·6H2O或NiCl2
所述的钴盐为Co(NO3)2·6H2O、CoCl2·6H2O或CoCl2
所述的铁盐为FeCl3或FeCl3·6H2O;
所述的亚铁盐为FeCl2·4H2O、FeCl2或FeSO4·7H2O;
所述的阳离子交联剂为十二烷基三甲基溴化铵,十四烷基三甲基溴化铵或十六烷基三甲基溴化铵;
所述的聚丙烯酸钠,分子量为500~700万。
本发明采用亲水性高分子聚合物聚丙烯酸钠与阳离子交联剂在水溶液中交联形成凝胶,限制了结晶材料的生长,能获得尺寸小,分散性良好的Ni-Co/Fe3O4复合纳米材料,并具有优异的葡萄糖传感性能。
具体实施方式
下面结合具体实施例对本发明做进一步的分析。
实施例1:
称取1mmolNiCl2·6H2O、2mmol CoCl2·6H2O、0.2mol FeCl3、0.1mol FeCl2·4H2O以及0.05mmol十二烷基三甲基溴化铵加入到50ml去离子水中。磁力搅拌分散均匀后缓慢加入0.03mol水合肼和0.03mol氢氧化钠。然后再加入0.5g聚丙烯酸钠,并搅拌均匀。将所得溶液转移到不锈钢反应釜中,在温度110℃下反应时间24h。反应结束后,自然冷却至室温,将所得产物过滤、蒸馏水冲洗、烘干得到Ni-Co/Fe3O4复合纳米材料。
实施例2:
称取3mmol Ni(NO3)2·6H2O、6mmol Co(NO3)2·6H2O、0.6mol FeCl3·6H2O、0.3molFeSO4·7H2O以及0.1mmol十二烷基三甲基溴化铵加入到100ml去离子水中。磁力搅拌分散均匀后缓慢加入0.06mol的水合肼和0.06mol氢氧化钠。然后再加入1.0g聚丙烯酸钠,并搅拌均匀。将所得溶液转移到不锈钢反应釜中,在温度140℃下反应时间12h。反应结束后,自然冷却至室温,将所得产物过滤、蒸馏水冲洗、烘干得到Ni-Co/Fe3O4复合纳米材料。
实施例3:
称取2mmol NiCl2、4mmol CoCl2、0.4mol FeCl3·6H2O、0.2mol FeCl2·4H2O以及0.08mmol十二烷基三甲基溴化铵加入到80ml去离子水中。磁力搅拌分散均匀后缓慢加入0.05mol的水合肼和0.05mol氢氧化钠。然后再加入0.7g聚丙烯酸钠,并搅拌均匀。将所得溶液转移到不锈钢反应釜中,在温度130℃下反应时间17h。反应结束后,自然冷却至室温,将所得产物过滤、蒸馏水冲洗、烘干得到Ni-Co/Fe3O4复合纳米材料。
实施例4:
称取1.5mmol Ni(NO3)2·6H2O、3mmol Co(NO3)2·6H2O、0.3mol FeCl3·6H2O、0.15mol FeCl2·4H2O以及0.06mmol十四烷基三甲基溴化铵加入到60ml去离子水中。磁力搅拌分散均匀后缓慢加入0.04mol水合肼和0.05mol氢氧化钠。然后再加入0.7g聚丙烯酸钠,并搅拌均匀。将所得溶液转移到不锈钢反应釜中,在温度120℃下反应时间20h。反应结束后,自然冷却至室温,将所得产物过滤、蒸馏水冲洗、烘干得到Ni-Co/Fe3O4复合纳米材料。
实施例5:
称取2.5mmol NiCl2·6H2O、5mmolCoCl2·6H2O、0.4mol FeCl3·6H2O、0.2molFeCl2以及0.09mmol十二烷基三甲基溴化铵加入到90ml去离子水中。磁力搅拌分散均匀后缓慢加入0.045mol的水合肼和0.05mol氢氧化钠。然后再加入0.8g聚丙烯酸钠,并搅拌均匀。将所得溶液转移到不锈钢反应釜中,在温度135℃下反应时间15h。反应结束后,自然冷却至室温,将所得产物过滤、蒸馏水冲洗、烘干得到Ni-Co/Fe3O4复合纳米材料。
实施例6:
称取1.8mmol Ni(NO3)2·6H2O、2.2mmol Co(NO3)2·6H2O、0.34mol FeCl3、0.2molFeSO4·7H2O以及0.07mmol十六烷基三甲基溴化铵加入到70ml去离子水中。磁力搅拌分散均匀后缓慢加入0.04mol水合肼和0.04mol氢氧化钠。然后再加入0.7g聚丙烯酸钠,并搅拌均匀。将所得溶液转移到不锈钢反应釜中,在温度125℃下反应时间17h。反应结束后,自然冷却至室温,将所得产物过滤、蒸馏水冲洗、烘干得到Ni-Co/Fe3O4复合纳米材料。
性能分析实验:
葡萄糖传感性能使用CHI630D电化学分析工作站的三电极体系进行测试。将5mg上述实施例Ni-Co/Fe3O4复合纳米材料样品溶于5mL无水乙醇中,并加入20μLNafion溶液,超声振荡直到样品完全分散到溶液中。取20μL的样品分散液涂抹到已清理的裸玻碳电极上,待其晾干即获得工作电极。对电极为铂电极,参比电极为银/氯化银电极。电解质溶液为0.1M的氢氧化钠溶液。所有电化学测试使用的溶液都需用高纯氮去氧至少15min以去除溶液中的溶解氧且提高葡萄糖催化氧化效率,计时电流法设定恒定电压0.5V。手动操作移液枪完成葡萄糖的连续加入。样品的颗粒粒度使用激光粒度分析仪分析。
表1为各实例样品的颗粒粒度和葡萄糖传感性能
Figure BDA0002391996550000041
上述实施例并非是对于本发明的限制,本发明并非仅限于上述实施例,只要符合本发明要求,均属于本发明的保护范围。

Claims (7)

1.一种复合纳米材料的制备方法,其特征在于包括以下步骤:
1)将1~3mmol的镍盐、2~6mmol钴盐、0.2~0.6mol铁盐、0.1~0.3mol亚铁盐以及0.05~0.1mmol阳离子交联剂加入去离子水中,磁力搅拌分散均匀后缓慢加入0.03~0.06mol的水合肼、0.03~0.06mol氢氧化钠、0.5~1.0g聚丙烯酸钠,搅拌均匀后得到混合液;
2)将上述混合液转移到不锈钢反应釜中,在110~140℃温度下反应12~24h;
3)反应结束后,自然冷却至室温,将所得产物过滤、蒸馏水冲洗、烘干得到Ni-Co/Fe3O4复合纳米材料。
2.如权利要求1所述的一种复合纳米材料的制备方法,其特征在于所述的镍盐为Ni(NO3)2·6H2O、NiCl2·6H2O或NiCl2
3.如权利要求1-2任一所述的一种复合纳米材料的制备方法,其特征在于所述的钴盐为Co(NO3)2·6H2O、CoCl2·6H2O或CoCl2
4.如权利要求1-3任一所述的一种复合纳米材料的制备方法,其特征在于所述的铁盐为FeCl3或FeCl3·6H2O。
5.如权利要求1-4任一所述的一种复合纳米材料的制备方法,其特征在于所述的亚铁盐为FeCl2·4H2O、FeCl2或FeSO4·7H2O。
6.如权利要求1-5任一所述的一种复合纳米材料的制备方法,其特征在于所述的阳离子交联剂为十二烷基三甲基溴化铵,十四烷基三甲基溴化铵或十六烷基三甲基溴化铵。
7.如权利要求1-6任一所述的一种复合纳米材料的制备方法,其特征在于所述的聚丙烯酸钠,分子量为500~700万。
CN202010117669.4A 2020-02-25 2020-02-25 一种复合纳米材料的制备方法 Active CN111208185B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010117669.4A CN111208185B (zh) 2020-02-25 2020-02-25 一种复合纳米材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010117669.4A CN111208185B (zh) 2020-02-25 2020-02-25 一种复合纳米材料的制备方法

Publications (2)

Publication Number Publication Date
CN111208185A true CN111208185A (zh) 2020-05-29
CN111208185B CN111208185B (zh) 2023-01-13

Family

ID=70786063

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010117669.4A Active CN111208185B (zh) 2020-02-25 2020-02-25 一种复合纳米材料的制备方法

Country Status (1)

Country Link
CN (1) CN111208185B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101219480A (zh) * 2008-01-23 2008-07-16 厦门大学 一种聚丙烯酸水热合成纳米金的方法
CN101591036A (zh) * 2008-05-30 2009-12-02 北京化工大学 一种水热法制备纳米氧化锌的方法
CN101607742A (zh) * 2008-06-18 2009-12-23 中国科学院理化技术研究所 一种水溶性纳米四氧化三铁的制备方法
CN101791704A (zh) * 2010-03-25 2010-08-04 江苏大学 一种制备纳米银的方法
CN103111614A (zh) * 2013-02-05 2013-05-22 西安金磁纳米生物技术有限公司 表面修饰功能性基团的金磁纳米微粒的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101219480A (zh) * 2008-01-23 2008-07-16 厦门大学 一种聚丙烯酸水热合成纳米金的方法
CN101591036A (zh) * 2008-05-30 2009-12-02 北京化工大学 一种水热法制备纳米氧化锌的方法
CN101607742A (zh) * 2008-06-18 2009-12-23 中国科学院理化技术研究所 一种水溶性纳米四氧化三铁的制备方法
CN101791704A (zh) * 2010-03-25 2010-08-04 江苏大学 一种制备纳米银的方法
CN103111614A (zh) * 2013-02-05 2013-05-22 西安金磁纳米生物技术有限公司 表面修饰功能性基团的金磁纳米微粒的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MARIA TERESA BUSCAGLIA ET.AL: "Morphological Control of Hydrothermal Ni(OH)<sub>2</sub> in the Presence of Polymers and Surfactants: Nanocrystals, Mesocrystals, and Superstructures", 《CRYSTAL GROWTH & DESIGN》 *
P. VENNILA ET.AL: "Ni-Co/Fe<sub>3</sub>O<sub>4</sub> flower-like nanocomposite for the highly sensitive and selective enzyme free glucose sensor applications", 《JOURNAL OF ALLOYS AND COMPOUNDS》 *
廖祖旺 等: "溶剂热法制备CaTi<sub>2</sub>O<sub>4</sub>(OH)<sub>2</sub>及其光催化性能的研究", 《中国陶瓷》 *

Also Published As

Publication number Publication date
CN111208185B (zh) 2023-01-13

Similar Documents

Publication Publication Date Title
Li et al. Molybdenum disulfide nanosheets supported Au-Pd bimetallic nanoparticles for non-enzymatic electrochemical sensing of hydrogen peroxide and glucose
Chang et al. Synthesis of highly dispersed Pt nanoclusters anchored graphene composites and their application for non-enzymatic glucose sensing
US6531304B1 (en) Method for modifying the dispersion characteristics of metal organic-prestabilized or pre-treated nanometal colloids
Huan et al. Composite-controlled electrospinning of CuSn bimetallic nanoparticles/carbon nanofibers for electrochemical glucose sensor
Zheng et al. Carbon nanohorns enhanced electrochemical properties of Cu-based metal organic framework for ultrasensitive serum glucose sensing
Xia et al. Hollow Fe2O3 polyhedrons: one-pot synthesis and their use as electrochemical material for nitrite sensing
He et al. Protein-supported RuO2 nanoparticles with improved catalytic activity, in vitro salt resistance, and biocompatibility: colorimetric and electrochemical biosensing of cellular H2O2
Wang et al. Metal–Organic Framework‐Derived Nickel/Cobalt‐Based Nanohybrids for Sensing Non‐Enzymatic Glucose
Xiao et al. Porous flower-like Ni5P4 for non-enzymatic electrochemical detection of glucose
CN111537589A (zh) 一种基于钴基金属有机框架无酶葡萄糖传感器检测葡萄糖的方法
Li et al. One-pot, rapid microwave-assisted synthesis of bimetallic metal–organic framework for efficient enzyme-free glucose detection
CN100487831C (zh) 溶液层共沉淀法制备磁性纳米颗粒的方法
Gao et al. Synthesis of core-shell structured Au@ Bi2S3 nanorod and its application as DNA immobilization matrix for electrochemical biosensor construction
Zhou et al. Cu-MOF@ Pt 3D nanocomposites prepared by one-step wrapping method with peroxidase-like activity for colorimetric detection of glucose
Shi et al. Co (OH) 2 nanosheets decorated Cu (OH) 2 nanorods for highly sensitive nonenzymatic detection of glucose
Hussein et al. A sensitive non-enzymatic electrochemical glucose sensor based on a ZnO/Co 3 O 4/reduced graphene oxide nanocomposite
CN111208185B (zh) 一种复合纳米材料的制备方法
Shu et al. Nickel foam electrode decorated with Fe-CdIn2O4 nanoparticles as an effective electrochemical sensor for non-enzymatic glucose detection
Liu et al. The dependence of Cu2O morphology on different surfactants and its application for non-enzymatic glucose detection
CN113120973B (zh) 一种铜掺杂的镍铝层状双金属氢氧化物的制备方法及所得产品和应用
Feng et al. NiNP/Cu-MOF-C/GCE for the the noninvasive detection of glucose in natural saliva samples
CN113340959A (zh) 金纳米粒子/氮掺杂石墨烯量子点纳米复合材料、传感电极及其制备方法和应用
Li et al. Application of a CuS/Au heterostructure with peroxidase-like activity in immunosensors
CN114878648B (zh) 一种半胱氨酸电化学传感器及其制备方法和应用
Solhi et al. Synthesis and characterization of a high-performance enzyme-free glucose sensor based on mesoporous copper oxide nanoparticles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231030

Address after: Room 2202, 22 / F, Wantong building, No. 3002, Sungang East Road, Sungang street, Luohu District, Shenzhen City, Guangdong Province

Patentee after: Shenzhen dragon totem technology achievement transformation Co.,Ltd.

Address before: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province

Patentee before: Dragon totem Technology (Hefei) Co.,Ltd.

Effective date of registration: 20231030

Address after: 230000 floor 1, building 2, phase I, e-commerce Park, Jinggang Road, Shushan Economic Development Zone, Hefei City, Anhui Province

Patentee after: Dragon totem Technology (Hefei) Co.,Ltd.

Address before: 310018 No. 2 street, Xiasha Higher Education Zone, Hangzhou, Zhejiang

Patentee before: HANGZHOU DIANZI University