CN111206150B - 一种基于浮游萃取的溶解态高相似稀贵金属富集分离方法 - Google Patents

一种基于浮游萃取的溶解态高相似稀贵金属富集分离方法 Download PDF

Info

Publication number
CN111206150B
CN111206150B CN202010167443.5A CN202010167443A CN111206150B CN 111206150 B CN111206150 B CN 111206150B CN 202010167443 A CN202010167443 A CN 202010167443A CN 111206150 B CN111206150 B CN 111206150B
Authority
CN
China
Prior art keywords
rare
parts
agent
floating
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010167443.5A
Other languages
English (en)
Other versions
CN111206150A (zh
Inventor
韩桂洪
刘兵兵
黄艳芳
苏盛鹏
薛毓斌
王益壮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhengzhou University
Original Assignee
Zhengzhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhengzhou University filed Critical Zhengzhou University
Priority to CN202010167443.5A priority Critical patent/CN111206150B/zh
Publication of CN111206150A publication Critical patent/CN111206150A/zh
Application granted granted Critical
Publication of CN111206150B publication Critical patent/CN111206150B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B3/00Extraction of metal compounds from ores or concentrates by wet processes
    • C22B3/20Treatment or purification of solutions, e.g. obtained by leaching
    • C22B3/26Treatment or purification of solutions, e.g. obtained by leaching by liquid-liquid extraction using organic compounds
    • C22B3/40Mixtures
    • C22B3/409Mixtures at least one compound being an organo-metallic compound
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/001Flotation agents
    • B03D1/004Organic compounds
    • B03D1/016Macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D1/00Flotation
    • B03D1/02Froth-flotation processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B11/00Obtaining noble metals
    • C22B11/04Obtaining noble metals by wet processes
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/10Obtaining titanium, zirconium or hafnium
    • C22B34/14Obtaining zirconium or hafnium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/22Obtaining vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/22Obtaining vanadium
    • C22B34/225Obtaining vanadium from spent catalysts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/20Obtaining niobium, tantalum or vanadium
    • C22B34/24Obtaining niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/32Obtaining chromium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/34Obtaining molybdenum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/34Obtaining molybdenum
    • C22B34/345Obtaining molybdenum from spent catalysts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/36Obtaining tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B34/00Obtaining refractory metals
    • C22B34/30Obtaining chromium, molybdenum or tungsten
    • C22B34/36Obtaining tungsten
    • C22B34/365Obtaining tungsten from spent catalysts
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B58/00Obtaining gallium or indium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B59/00Obtaining rare earth metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B61/00Obtaining metals not elsewhere provided for in this subclass
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2201/00Specified effects produced by the flotation agents
    • B03D2201/007Modifying reagents for adjusting pH or conductivity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2201/00Specified effects produced by the flotation agents
    • B03D2201/02Collectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2203/00Specified materials treated by the flotation agents; Specified applications
    • B03D2203/02Ores
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B03SEPARATION OF SOLID MATERIALS USING LIQUIDS OR USING PNEUMATIC TABLES OR JIGS; MAGNETIC OR ELECTROSTATIC SEPARATION OF SOLID MATERIALS FROM SOLID MATERIALS OR FLUIDS; SEPARATION BY HIGH-VOLTAGE ELECTRIC FIELDS
    • B03DFLOTATION; DIFFERENTIAL SEDIMENTATION
    • B03D2203/00Specified materials treated by the flotation agents; Specified applications
    • B03D2203/02Ores
    • B03D2203/025Precious metal ores
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

本发明公开了一种基于浮游萃取的溶解态高相似稀贵金属深度富集分离方法,该方法是向含稀贵金属离子溶液中,依次加入pH调整剂I、选择性浮萃剂、气泡分散剂并通入微泡,促使气泡疏水矿化形成离子‑浮萃药剂‑气泡微液滴,最后通过浮游萃取深度富集稀贵金属组分;再向上述获得的高富集比稀贵金属溶液中依次加入pH调整剂II、选择性反萃剂,反萃分离稀贵金属组分。该方法对溶解态高相似稀贵金属的选择性分离效果好,有效克服传统溶剂萃取流程冗长、萃取剂高消耗的缺点,工艺流程简单、操作成本低,特别适用于溶解态高相似稀贵金属的深度分离。

Description

一种基于浮游萃取的溶解态高相似稀贵金属富集分离方法
技术领域
本发明属于冶金技术领域,具体涉及一种基于浮游萃取的溶解态高相似稀贵金属富集分离方法。
背景技术
钽、铌、钨、钼、钪、钇、锆、铪、铂、铑、钌、铼、镓、铟等稀贵金属是国家战略高科技产业不可替代的关键基础原材料,在电子、机械、能源、航空航天、原子能和医疗等领域具有重要应用。美国、欧盟和日本均将其列入重要战略金属而限制出口。我国稀贵金属资源非常有限,仅占全球储量的0.39%,对外依存度高。由于上述稀贵金属都属于过度金属元素,在元素周期表位置紧邻,且受镧系收缩效应影响,溶解态稀贵金属离子半径相近、化学共性多、性质高度相似导致分离极其困难,钨/钼、钽/铌、锆/铪、钪/钇等相似元素的深度分离一直是困扰冶金界的重要技术难题。目前,溶解态稀贵金属分离方法主要包括化学沉淀法、离子交换法、溶剂萃取法等。
化学沉淀法:通过离子的选择性沉淀实现浸出液中有价金属的分离回收,主要包括中和沉淀、硫化沉淀和钙/铵盐沉淀等。王存锦等(CN110106358A)采用锰/铁盐混合沉淀剂从高钨高钼钨钼酸盐溶液中沉淀分离钨钼,可以实现高钨高钼钨钼酸盐溶液中钨钼的初步分离。姚素玲等(CN102586607A)采用沉淀-络合法从失效铂合金网中提取铂、铑、钯,可以分步提取合金中的铂、铑。该法适合处理高浓度稀贵金属浸出液,对低浓度的浸出液选择性分离效果差,难以实现高相似金属深度分离,且沉淀过程中化学试剂消耗大,产生大量污泥容易造成二次污染。
离子交换法:依据离子交换树脂对金属离子吸附性能的差异实现有价元素的分离回收。王永平(CN105441679A)、曹佐英(CN109534403A)等采用离子交换法进行钨钼分离,首先将钼硫化得到硫代钼酸盐,再用弱碱性阴离子交换树脂进行离子交换吸附硫代钼酸盐,得到钨酸盐溶液。郭永忠等(CN104496076A)采用离子交换法处理钽铌湿法冶炼废水,实现了废水中有价组元的分离回收。离子交换法生产规模小、效率低、操作成本高等缺点严重限制其在稀贵金属分离领域的规模化工业应用。
溶剂萃取法:根据金属离子在水相和有机相之间分配系数的差异而实现金属离子的选择性分离。李大炳等(CN106929695A)采用多级逆流萃取-反萃工艺,实现浸出液中锆铪的高效分离。钟晖等(CN109022777A)研发出一种包括酸化后仲辛醇或酸化后MIBK的钽铌萃取剂,能够提高钽铌的一次萃取率。溶剂萃取法工艺流程复杂,理论收率与萃取级数间存在矛盾平衡,通常需要串级萃取强化传质才能实现金属离子深度分离。
上述溶解态高相似金属稀贵金属分离方法存在选择性差、成本高、流程复杂等缺点,且当溶液中金属离子浓度较低时,分离效率极低,难以实现深度分离。因此,研究溶解态高相似稀贵金属的选择性深度分离技术,对我国稀贵金属清洁分离与回收利用具有重要战略意义。
发明内容
针对现有溶解态高相似稀贵金属分离技术存在选择性差、成本高、流程复杂等问题,本发明的目的在于提供一种基于浮游萃取的溶解态高相似稀贵金属深度富集分离方法,该方法采用浮萃药剂对难分离稀贵金属钨/钼、钽/铌、锆/铪、钪/钇、铂/铑、钒/铬、钌/铼、镓/铟进行选择性调控,通过浮游萃取对特定离子深度富集,并经过反萃过程高效分离高富集比稀贵金属溶液,最终实现溶解态高相似稀贵金属的选择性富集与高效分离。
为了实现上述技术目的,本发明采取如下技术方案:
一种基于浮游萃取的溶解态高相似稀贵金属深度富集分离方法,向含稀贵金属离子的溶液中加入pH调整剂I调节溶液pH至4~6.5,再依次加入离子选择性浮萃剂、气泡分散剂并通入空气进行浮选分离,得到泡沫产品和浮选余液;向上述获得的泡沫产品中依次加入pH调整剂II、反萃剂,反萃后的泡沫相为稀贵金属组分,稀贵金属组分经过干燥、高温煅烧得到高纯度的稀贵金属产品。
本发明的关键在于调控溶解态高相似稀贵金属离子的选择性,通过改变溶液pH,调控金属离子存在形态,扩大离子选择性差异。如不同pH条件下,钨钼形成聚合离子的能力具有一定差异;不同酸度条件下,钽铌萃取能力具有显著差异。在此基础上,选用对特定稀贵金属离子具有高选择性的浮萃药剂,使金属离子形成离子-浮萃药剂-气泡微液滴,基于浮游萃取方法,通过非均相反应和动态扩散强化金属离子-药剂-气泡微液滴传质分离,再借助反萃分离过程,最终实现溶解态高相似稀贵金属的选择性富集与高效分离。
优选的方案,本发明所述离子选择性浮萃剂由以下质量份组分组成:C6~C18伯胺类浮萃剂30~60份;有机磷类浮萃剂 20~40份;十六烷基三甲基溴化铵 20~40份;腐植酸10~20份。上述离子选择性浮萃剂对特定离子具有高选择性,可以实现浸出液中特定离子的富集分离。
优选的方案,本发明所述伯胺类浮萃剂为己胺、壬胺、十二胺、十六胺和十八胺中的至少一种;有机磷类浮萃剂为P204、P507和Cyanex 207的至少一种;所述离子选择性浮萃剂的添加量为500 mg/L~10 g/L。
优选的方案,本发明所述气泡分散剂为水玻璃、六偏磷酸钠、木素黄酸盐、腐植酸中的一种或多种;所述气泡分散剂的添加量为20~100 mg/L。上述气泡分散剂可以将气泡分散为微纳气泡,促使气泡疏水矿化形成离子-浮萃药剂-气泡微液滴。
优选的方案,本发明所述反萃剂包括以下质量份组分:NH3·H2O 20~40份;(NH4)2CO3 20~40份;(NH4)2SO4 20~40份;所述反萃剂的添加量为2~15 g/L。上述的反萃剂具有较高的分离性能,可以实现高富集比稀贵金属溶液高效分离。
优选的方案,所述pH调整剂I为下述中的一种:(1)HNO3和/或NaNO3,(2)HCl和/或NaOH,(3)H2SO4和Na2CO3或 NaHCO3,加入pH调整剂I后溶液pH为4~6.5;pH调整剂II为盐酸、硫酸或硝酸,加入pH调整剂II后溶液pH为2.1~4.0。
优选的方案,本发明所述干燥是指100~150℃干燥30~60 min,高温煅烧是指500~700℃煅烧3~10 h。
优选的方案,本发明所述稀贵金属溶液来源于废弃钒/钼/钨催化剂、废弃钽铌电容器、赤泥、废弃铂铑合金、钽铁矿、铌铁矿、钼尾矿、钨渣以及钒铬渣的浸出液或废水,溶液中至少含下述金属离子对中的一种:(1)钽和铌、(2)钨和钼、(3)钪和钇、(4)锆和铪、(5)铂和铑、(6)钒和铬、(7)钌和铼、(8)镓和铟;溶液中金属离子浓度范围为200 mg/L~5 g/L。
相对现有技术,本发明的技术方案带来的有益效果在于:
本发明首次通过浮游萃取方法来实现溶解态高相似稀贵金属的深度富集分离。浮游萃取兼具溶剂萃取(湿法冶金)与泡沫浮选(矿物分选)双重优势。浮游萃取过程侧重气泡疏水矿化形成离子-浮萃药剂-气泡微液滴,通过非均相反应和动态扩散强化金属离子-药剂-气泡微液滴传质分离,同时实现离子富集与分离,克服传统分离方法处理溶解态高相似金属离子存在分离效率低、流程冗长、成本高的缺点,相对于传统分离方法具有明显优势。
本发明采用浮游萃取过程的优势在于:溶液中金属离子浓度适应范围广,可处理低浓度和高浓度金属离子的溶液;药剂消耗少,分离效率高,可以梯次分步分离溶液中的稀贵金属。此外,目前浮游萃取技术在溶解态高相似稀贵金属分离领域几乎没有相关报道。
附图说明
图1是本发明的工艺流程图。
具体实施方式
下面结合具体实施例对本发明作进一步说明。需要说明的是,这些实施例仅为了更好的理解本发明,而不是限制本发明所保护的范围。
实施例1
一种基于浮游萃取的溶解态高相似钨钼富集分离方法,如图1所示,过程如下:
(1)向1L钼酸根浓度为2 g/L、钨酸根浓度为1 g/L的溶液中,加入1 mol/L盐酸和/或1 mol/L氢氧化钠,调节溶液的pH值为6.5,向溶液中加入离子选择性浮萃剂,其组成为:十二胺50质量份,P204 20质量份,十六烷基三甲基溴化铵 20质量份,腐植酸10质量份,浓度为2 g/L,再加入六偏磷酸钠分散剂,浓度为50 mg/L,将混合液搅拌均匀得离子-浮萃药剂微液滴,向溶液中通入空气形成直径100 nm~10 μm微泡,将疏水矿化的气泡-钨酸根离子-浮萃药剂微液滴选择性浮选富集5 min,泡沫产品即为富钨组分物质;
(2)再向浮选余液中加入1 mol/L盐酸调节溶液pH值为4.0,向溶液中加入选择性浮萃剂,其组成为:十二胺为40质量份,P204为20质量份,十六烷基三甲基溴化铵为20质量份,腐植酸20质量份,浓度为4 g/L,再加入六偏磷酸钠分散剂,浓度为50 mg/L,搅拌均匀并通入空气得气泡-钼酸根离子-浮萃药剂微液滴,钼酸根通过浮选富集3 min,泡沫产品即为富钼组分物质;
(3)上述两种泡沫产品经选择性反萃,反萃剂组成为:NH3·H2O 30质量份,(NH4)2CO3 30质量份份,(NH4)2SO4 40质量份,选择性反萃剂浓度为3 g/L;
(4)上述反萃后的泡沫相钨、钼组分压滤后在120℃干燥30 min,经过650℃煅烧8h获得高纯度氧化钨和氧化钼产品。
氧化钨产品质量为968 mg,氧化钨产品中杂质钼含量为43 mg,氧化钨产品纯度为95.6%;氧化钼产品质量为1957 mg,氧化钼产品中杂质钨含量为32 mg,氧化钼产品纯度高达98.4%,钨钼分离效果良好。
实施例2
一种基于浮游萃取的溶解态高相似铌钽富集分离方法,如图1所示,过程如下:
(1)向1L钽酸根浓度为1g/L、铌酸浓度为1g/L溶液中,加入1 mol/L硫酸和1 mol/L碳酸钠,调节溶液的pH值为4.0,向溶液中加入离子选择性浮萃剂,其组成为:十八胺为50质量份,P507 20质量份,十六烷基三甲基溴化铵20质量份,腐植酸10质量份,浓度为2 g/L,再加入六偏磷酸钠分散剂,浓度为80 mg/L,将混合液搅拌均匀得离子-浮萃药剂微液滴,向溶液中通入空气形成直径100 nm~10 μm微泡,将疏水矿化的气泡-钽离子-浮萃药剂微液滴选择性浮选富集5 min,泡沫产品即为富钽组分物质;
(2)再向浮选余液中加入1 mol/L硫酸调节溶液pH值为2.5,向溶液中加入离子选择性浮萃剂,其组成为:十八胺为30质量份,P507为30质量份,十六烷基三甲基溴化铵为20质量份,腐植酸20质量份,浓度为400 mg/L,再加入六偏磷酸钠分散剂,浓度为50 mg/L,搅拌均匀并通入空气得气泡-铌离子-浮萃药剂微液滴,铌离子通过浮选富集3 min,泡沫产品即为富铌组分物质;
(3)上述泡沫产品经选择性反萃,反萃剂组成为:NH3·H2O 40质量份,(NH4)2CO3 40质量份份,(NH4)2SO4 20质量份,反萃剂浓度为2 g/L;
(4)上述反萃后的泡沫相钽、铌组分压滤后在150℃干燥60 min,经过650℃煅烧8h获得氧化钽、氧化铌产品。
氧化铌产品质量为987 mg,氧化铌产品中杂质钽含量为32 mg,氧化铌产品纯度高达96.8%;氧化钽产品质量为968 mg,氧化钽产品中杂质铌含量为13 mg,氧化钽产品纯度高达98.7%,钽铌分离效果良好。
实施例3
一种基于浮游萃取的溶解态高相似钪钇富集分离方法,如图1所示,过程如下:
(1)向1L钪离子浓度为100 mg/L、钇离子浓度为100 mg/L溶液中,加入1 mol/L盐酸和/或1 mol/L氢氧化钠,调节溶液的pH值为5.0,向溶液中加入离子选择性浮萃剂,其组成为:十六胺为40质量份,P507为20质量份,十六烷基三甲基溴化铵为30质量份,腐植酸10质量份,浓度为500 mg/L,再加入六偏磷酸钠分散剂,浓度为50 mg/L,将混合液搅拌均匀得离子-浮萃药剂微液滴,向溶液中通入空气形成直径100 nm~10 μm微泡,将疏水矿化的气泡-钽/钇离子-浮萃药剂微液滴浮选富集5 min,泡沫产品即为富钪钇组分物质;
(2)再向泡沫产品液中加入浓度为1 mol/L盐酸调节溶液pH值为2.1,向溶液中加入反萃剂,其组成为:NH3·H2O 40质量份,(NH4)2CO3 质量40份,(NH4)2SO4 20质量份,浓度为200 mg/L,搅拌均匀进行反萃分离钪,疏水相即为富钪组分物质,萃余相为富钇物质;
(3)上述反萃后的泡沫相钪、钇组分压滤后在140℃干燥50 min,经过650℃煅烧8h获得高纯度氧化钪、氧化钇产品。
氧化钪产品质量为96.3 mg,氧化钪产品中杂质钇含量为3.4 mg,氧化钪产品纯度高达96.5%;氧化钇产品质量为96.6 mg,氧化钇产品中杂质钪含量为2.7 mg,氧化钇产品纯度高达97.2%,钪钇分离效果良好。
对比例1
该对比例中pH不在优选范围内。
(1)向1L钼酸根浓度为2 g/L、钨酸根浓度为1 g/L溶液中,加入1 mol/L盐酸和/或1 mol/L氢氧化钠,调节溶液的pH值为9,向溶液中加入离子选择性浮萃剂,其组成为:十二胺50质量份,P204 20质量份,十六烷基三甲基溴化铵20质量份,腐植酸10质量份,浓度为2g/L,再加入六偏磷酸钠分散剂,浓度为50 mg/L,将混合液搅拌均匀得离子-浮萃药剂微液滴,向溶液中通入空气形成直径100 nm~10 μm微泡,将疏水矿化的气泡-钨酸根离子-浮萃药剂微液滴选择性浮选富集5 min,泡沫产品干燥即为富钨组分物质;
(2)再向浮选余液中加入1 mol/L盐酸调节溶液pH值为2.0,向溶液中加入离子选择性浮萃剂,其组成为:十二胺50质量份,P204为20质量份,十六烷基三甲基溴化铵20质量份,腐植酸10质量份,浓度为4 g/L,再加入六偏磷酸钠分散剂,浓度为50 mg/L,搅拌均匀并通入空气得气泡-钼酸根离子-浮萃药剂微液滴,钼酸根通过浮选富集3 min,泡沫产品干燥即为富钼组分物质;
(3)上述泡沫产品经选择性反萃,反萃剂组成为:NH3·H2O 20质量份,(NH4)2CO3 40质量份,(NH4)2SO4 40质量份,反萃剂浓度为3 g/L;
(4)上述反萃后的泡沫相钨、钼组分压滤后在120℃干燥30 min,经过650℃煅烧8h获得氧化钨、氧化钼产品。
氧化钨产品质量为734 mg,氧化钨产品中杂质钼含量为422 mg,氧化钨产品纯度为42.5%;氧化钼产品质量为1578 mg,氧化钼产品中杂质钨含量为266 mg,氧化钼产品纯度为83.1%,钨钼分离效果差。
对比例2
该对比例中浮萃剂配比不在优选范围内。
(1)向1L钽酸根浓度为1g/L、铌酸根浓度为1g/L溶液中,加入1 mol/L硫酸和1mol/L碳酸钠,调节溶液的pH值为4.0,向溶液中加入离子选择性浮萃剂,其组成为:十八胺为60质量份,P507为20质量份,十六烷基三甲基溴化铵为10质量份,腐植酸10质量份,浓度为2 g/L,再加入六偏磷酸钠分散剂,浓度为80 mg/L,将混合液搅拌均匀得离子-浮萃药剂微液滴,向溶液中通入空气形成直径100 nm~10 μm微泡,将疏水矿化的气泡-钽离子-浮萃药剂微液滴选择性浮选富集5 min,泡沫产品干燥即为富钽组分物质;
(2)再向浮选余液中加入1 mol/L硫酸调节溶液pH值为2.5,向溶液中加入离子选择性浮萃剂,其组成为:十八胺为60质量份,P507为20质量份,十六烷基三甲基溴化铵为10质量份,腐植酸10质量份,浓度为400 mg/L,再加入六偏磷酸钠分散剂,浓度为50 mg/L,搅拌均匀并通入空气得气泡-铌离子-浮萃药剂微液滴,铌离子通过浮选富集3 min,泡沫产品干燥即为富铌组分物质;
(3)上述泡沫产品经选择性反萃,反萃剂组成为NH3·H2O 40质量份,(NH4)2CO3 20质量份份,(NH4)2SO4 40质量份,反萃剂浓度为2 g/L;
(4)上述反萃后的泡沫相钽、铌组分压滤后在150℃干燥60 min,经过650℃煅烧8h获得氧化钽、氧化铌产品。
氧化铌产品质量为727 mg,氧化铌产品中杂质钽含量为287 mg,氧化铌产品纯度高达60.5%;氧化钽产品质量为713 mg,氧化钽产品中杂质铌含量为273 mg,氧化钽产品纯度高达61.7%,钽铌分离效果差。
综上所述,通过对比例分析,对于不同浓度范围的稀贵金属离子溶液,浮游萃取技术可以显著提高分离效率。且该技术药剂消耗少,操作简单,对设备要求较低,适合工业化放大生产。

Claims (2)

1. 一种基于浮游萃取的溶解态高相似稀贵金属富集分离方法,其特征在于,包括以下步骤:向含稀贵金属离子的溶液中加入pH调整剂I调节溶液pH至4~6.5,再依次加入离子选择性浮萃剂、气泡分散剂并通入空气进行浮选分离,得到泡沫产品和浮选余液;向泡沫产品中依次加入pH调整剂II、反萃剂,反萃后的泡沫相为稀贵金属组分,稀贵金属组分经过干燥、高温煅烧得到稀贵金属产品;所述离子选择性浮萃剂由以下质量份组分组成:C6~C18伯胺类浮萃剂30~50份;有机磷类浮萃剂20~40份;十六烷基三甲基溴化铵 20~40份;腐植酸10~20份;伯胺类浮萃剂为己胺、壬胺、十二胺、十六胺和十八胺中的至少一种;有机磷类浮萃剂为P204、P507和Cyanex 207的至少一种;所述离子选择性浮萃剂的添加量为500 mg/L~10g/L;气泡分散剂为水玻璃、六偏磷酸钠、木素黄酸盐、腐植酸中的至少一种;所述气泡分散剂的添加量为20~100 mg/L;所述反萃剂由以下质量份组分组成:NH3·H2O 20~40份;(NH4)2CO3 20~40份;(NH4)2SO4 20~40份;所述反萃剂的添加量为2~15 g/L;所述pH调整剂I为下述中的一种:(1)HNO3和/或NaNO3,(2)HCl和/或NaOH,(3)H2SO4和Na2CO3或 NaHCO3;pH调整剂II为盐酸、硫酸或硝酸,加入pH调整剂II后溶液pH为2.1~4.0;所述稀贵金属溶液至少含下述金属离子对中的一种:(1)钽和铌、(2)钨和钼、(3)钪和钇、(4)锆和铪、(5)铂和铑、(6)钒和铬、(7)钌和铼、(8)镓和铟;溶液中金属离子浓度范围为200 mg/L~5 g/L。
2. 根据权利要求1所述的基于浮游萃取的溶解态高相似稀贵金属富集分离方法,其特征在于,干燥是指100~150℃干燥30~60 min,高温煅烧是指500~700℃煅烧3~10 h。
CN202010167443.5A 2020-03-11 2020-03-11 一种基于浮游萃取的溶解态高相似稀贵金属富集分离方法 Active CN111206150B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010167443.5A CN111206150B (zh) 2020-03-11 2020-03-11 一种基于浮游萃取的溶解态高相似稀贵金属富集分离方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010167443.5A CN111206150B (zh) 2020-03-11 2020-03-11 一种基于浮游萃取的溶解态高相似稀贵金属富集分离方法

Publications (2)

Publication Number Publication Date
CN111206150A CN111206150A (zh) 2020-05-29
CN111206150B true CN111206150B (zh) 2022-01-28

Family

ID=70782446

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010167443.5A Active CN111206150B (zh) 2020-03-11 2020-03-11 一种基于浮游萃取的溶解态高相似稀贵金属富集分离方法

Country Status (1)

Country Link
CN (1) CN111206150B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112662873B (zh) * 2020-12-03 2022-11-29 郑州大学 一种用于强化镧和铈浮萃分离的浮萃药剂及选择性分离镧和铈的方法
CN112538570B (zh) * 2020-12-03 2022-07-29 郑州大学 一种基于浮游萃取系统分离稀贵金属的方法
CN115893490B (zh) * 2022-11-23 2024-06-04 郑州大学 一种烧绿石矿综合提取铌、钛和稀土的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101642633A (zh) * 2009-09-07 2010-02-10 长沙有色冶金设计研究院 一种利用浮选柱分离回收萃取剂的方法
CN102453801A (zh) * 2010-10-19 2012-05-16 北京有色金属研究总院 一种分离锆和铪的方法
BG111065A (bg) * 2011-10-25 2013-04-30 Vladko дкоПАНАЙОТОВ Вла Panayotov Метод за флотационно извличане на благородни метали в меден концентрат
CN104004921A (zh) * 2014-05-31 2014-08-27 北京工业大学 一种溶剂萃取法高效富集回收贵金属铂、钯的工艺
EP2960349A1 (en) * 2013-04-15 2015-12-30 Kyushu University, National University Corporation Extraction agent for precious metals and rhenium, and extraction method for precious metals and rhenium using same
CN108165743A (zh) * 2017-12-28 2018-06-15 郴州雄风环保科技有限公司 一种全萃取分离制备高纯金铂钯技术

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101642633A (zh) * 2009-09-07 2010-02-10 长沙有色冶金设计研究院 一种利用浮选柱分离回收萃取剂的方法
CN102453801A (zh) * 2010-10-19 2012-05-16 北京有色金属研究总院 一种分离锆和铪的方法
BG111065A (bg) * 2011-10-25 2013-04-30 Vladko дкоПАНАЙОТОВ Вла Panayotov Метод за флотационно извличане на благородни метали в меден концентрат
EP2960349A1 (en) * 2013-04-15 2015-12-30 Kyushu University, National University Corporation Extraction agent for precious metals and rhenium, and extraction method for precious metals and rhenium using same
CN104004921A (zh) * 2014-05-31 2014-08-27 北京工业大学 一种溶剂萃取法高效富集回收贵金属铂、钯的工艺
CN108165743A (zh) * 2017-12-28 2018-06-15 郴州雄风环保科技有限公司 一种全萃取分离制备高纯金铂钯技术

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
泡沫浮选萃取—一种从水溶液中分离金属的新方法;吉布洛夫 等;《国外金属矿选矿》;20000825;第25-30页 *

Also Published As

Publication number Publication date
CN111206150A (zh) 2020-05-29

Similar Documents

Publication Publication Date Title
CN111206150B (zh) 一种基于浮游萃取的溶解态高相似稀贵金属富集分离方法
CN102206755B (zh) 一种从钕铁硼废料中分离回收有价元素的方法
CN106367621B (zh) 从低含量稀土溶液和沉淀渣中回收和循环利用有价元素的方法
CN104726724B (zh) 从红土镍矿中提取钪的方法
CN106191447B (zh) 一种酸溶液中钪、钛、钒的分步提纯工艺
CN103243218B (zh) 一种从含钼高浓度酸性浸出液中萃取钼的方法及萃取剂的应用
CN111187908B (zh) 一种基于浮游萃取的钨钼选择性分离方法
CN105692698B (zh) 一种含钼钒溶液中钼、钒的深度分离方法
CN111286608B (zh) 一种基于浮游萃取选择性分步分离钽铌的方法
CN108707753B (zh) 一种溶剂萃取回收含稀土废料的工艺
Xie et al. Leaching process and kinetics of manganese in low-grade manganese ore
CN115198094A (zh) 一种二元溶剂协同萃取从硫酸钴溶液中除镉的工艺方法
CN103184334A (zh) 一种处理含钼氧硫铜混合矿的选冶联合工艺
CN113512652B (zh) 一种从煤系固体废弃物中提取金属镓的方法
Han et al. Deep separation of critical metals of Mo and Re from waste solution by stepwise precipitation flotation: selective chelation underlying separation mechanism
CN104862503A (zh) 从红土镍矿中提取钪的方法
CN107012342B (zh) 一种提取低品位离子型稀土原矿中稀土元素的方法
Long et al. Recovery of vanadium from alkaline leaching solution from roasted stone coal
CN108374085A (zh) 一种页岩提钒酸浸液的除铁方法
CN111304466B (zh) 一种从含钒铬溶液中选择性分离钒铬的方法
CN110983051A (zh) 一种低浓度钒液反洗富集方法
CN116356159A (zh) 低品位黏土型锂资源综合利用工艺
CN106892479B (zh) 一种从稀土草酸沉淀废水中回收草酸和盐酸的方法
CN109055747B (zh) 一种酸性条件下萃取分离钼、铼的方法
CN113151676A (zh) 一种从稀土废料内回收稀土的装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant