CN111193054B - 一种质子交换膜的制备方法 - Google Patents

一种质子交换膜的制备方法 Download PDF

Info

Publication number
CN111193054B
CN111193054B CN202010024351.1A CN202010024351A CN111193054B CN 111193054 B CN111193054 B CN 111193054B CN 202010024351 A CN202010024351 A CN 202010024351A CN 111193054 B CN111193054 B CN 111193054B
Authority
CN
China
Prior art keywords
ether ketone
polyether ether
sulfonated polyether
graphene oxide
chloromethylated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN202010024351.1A
Other languages
English (en)
Other versions
CN111193054A (zh
Inventor
宇海银
秦路路
孙飞
马忠香
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Anhui Normal University
Original Assignee
Anhui Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Anhui Normal University filed Critical Anhui Normal University
Priority to CN202010024351.1A priority Critical patent/CN111193054B/zh
Publication of CN111193054A publication Critical patent/CN111193054A/zh
Application granted granted Critical
Publication of CN111193054B publication Critical patent/CN111193054B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1025Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having only carbon and oxygen, e.g. polyethers, sulfonated polyetheretherketones [S-PEEK], sulfonated polysaccharides, sulfonated celluloses or sulfonated polyesters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1041Polymer electrolyte composites, mixtures or blends
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/1088Chemical modification, e.g. sulfonation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Composite Materials (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Fuel Cell (AREA)
  • Polyethers (AREA)

Abstract

本发明公开了一种质子交换膜的制备方法,包括以下步骤:1、氯甲基化的磺化聚醚醚酮的制备步骤;2、分散步骤3、流延步骤;本发明与现有技术相比,本发明与现有的SPEEK膜相比,质子传导率提升了一倍,甲醇渗透率减少了170多倍,稳定性也明显提高。当测试环境温度为25℃时,电池开路电压为0.93V,电池输出功率为113.79mWcm‑2

Description

一种质子交换膜的制备方法
技术领域
本发明涉及高分子膜材料的制备方法,特别是质子交换膜的制备方法这一技术领域。
背景技术
质子交换膜燃料电池(PEMFCs)作为一种环境友好、高能效的替代能源,具有广泛的应用前景。质子交换膜(PEM)是膜电极组装的关键部件,它支撑着催化剂层,充当阳极和阴极之间的屏障。质子交换膜是燃料电池的重要组件,燃料电池膜的质子传导率、吸水率、吸氧性能都对整个燃料电池的性能起到关键作用。
传统的质子交换膜Nafion具有优良的性能但是由于其昂贵的价格和在80度的条件下质子传输率下降等因素限制了Nafion膜的应用范围。
由于磺化聚醚醚酮膜的优异性能和相对低廉的价格,使得改性磺化聚醚醚酮膜在商业复合膜使用中占到重要地位。
李云涛报道了“一种新型聚合物质子交换膜及其制备方法”(公开号:CN102838863A),该质子交换膜由磺化聚醚醚酮,苯乙烯-二乙烯苯交联聚合物组成,具有良好的质子传导能力,质子交换膜中交联网络结构的存在可大幅度提高质子交换膜的尺寸稳定性和耐水性能,采用Ivium电化学综合站,测试电池性能。结果表明,当测试环境温度为25℃时,电池开路电压为0.382V比较低,说明膜的阻甲醇性能不好,电池输出功率6.3mV.cm-2比较低。
发明内容
本发明所要解决的技术问题是提供一种阻甲醇性能好的质子交换膜的制备方法。
本发明解决技术问题的技术方案为:一种质子交换膜的制备方法,包括以下步骤:
1、氯甲基化的磺化聚醚醚酮的制备步骤;参考(Journal ofMembrane Science229(2004)95–106);
2、分散步骤:将步骤1制备的氯甲基化的磺化聚醚醚酮(SPEEK-CH2Cl)溶解于二甲基亚砜中,然后加入氧化石墨烯GO在超声仪器中超声2-3h进行分散,形成分散物;氯甲基化的磺化聚醚醚酮与二甲基亚砜的重量体积比为1:10-15(g/ml);
氯甲基化的磺化聚醚醚酮与氧化石墨烯GO的重量比为100:0.25-2;
3、流延步骤:将分散步骤制备好的分散物涂到玻璃板上,于50-70℃干燥不小于8h,升温至130-150℃,反应16-30h,冷却至室温,即可。
优选的氯甲基化的磺化聚醚醚酮与氧化石墨烯GO的重量比为100:0.5-1;
所述的氧化石墨烯GO的通过modified Hummers method制备.参照W.S.HummersJr文章(J.Am.Chem.Soc.,1958,80,1339.)
磺化聚醚醚酮(SPEEK)是一种廉价的聚合物电解质,具有良好的力学性能、热性能和良好的化学稳定性。然而SPEEK膜的质子电导率主要取决于含水量,限制了高温燃料电池的运行。
氧化石墨烯GO具有优良的机械性能、热稳定性、导电性同时掺杂不同含量氧化石墨烯GO具有不同的微观结构会进一步表现出不同的性质来影响制备复合膜的性能。
由于磺化聚醚醚酮中含有氯甲基基团可以与芳环发生反应。本发明通过先成膜的方法,然后升高温度到130℃以上发生Friedel-Crafts alkylation制备出复合膜,本发明的反应原理为:
Figure GDA0003669105340000031
本发明通过一锅法使的两种混合物混合,在成膜的过程中磺化聚醚醚酮发生反应形成网状结构使氧化石墨烯GO束缚在网络结构中,通过键合的方式连接使得膜在长时间的使用过程中不会出现氧化石墨烯GO的流失导致的性能降低,增加了使用寿命。由于复合膜中含有大量亲水性基团,使得膜的吸水性和质子电导率提高,和SPEEK膜相比提高的一倍。
本发明与现有的SPEEK膜相比,质子传导率提升了一倍,甲醇渗透率减少了170多倍,稳定性也明显提高。当测试环境温度为25℃时,电池开路电压为0.93V。电池输出功率为113.79mWcm-2
具体实施方式
下面结合实施例对本发明作详细的说明。
氧化石墨烯GO通过以下方法制备:使用modified Hummers method制备.参照W.S.Hummers Jr文章(J.Am.Chem.Soc.,1958,80,1339.)具体方法;以天然鳞片石墨为原料。分别称取石墨1g、硝酸钠0.5g、高锰酸钾3g,在250毫升烧瓶中加入23毫升98%浓硫酸(0℃);将石墨、硝酸钠加入浓硫酸中搅拌3分钟,均匀分散,然后缓慢加入高锰酸钾烧瓶;反应温度控制在20℃以下,搅拌3小时。升温至35℃,继续搅拌2h,加入去离子水46ml,升温至98℃,保温30分钟,溶液呈棕黄色,出现红色烟雾。加入5ml H2O2(30%),离心(9000RPM),离心时用盐酸和去离子水清洗;然后超声处理,干燥即可。
实施例1:
1、氯甲基化的磺化聚醚醚酮的制备步骤:5g聚醚醚酮PEEK(购买中研有限公司)溶解在100mL98%浓硫酸中,放入搅拌装置的圆底烧瓶内,在50℃下反应10h,加入2.5mL氯甲基甲醚(C2H5ClO),在温度-10℃,反应90min后,将聚合物加入到冰水沉降,用去离子水冲洗后放入真空干燥箱,于50℃,真空干燥24h,制备得氯甲基化磺化聚醚醚酮(SPEEK-CH2Cl);
2、分散步骤:取1g SPEEK-CH2Cl加入10mL二甲亚砜(DMSO)溶剂中溶解,然后加入聚合物SPEEK-CH2Cl质量分数0wt.%氧化石墨烯GO在80W的超声仪器中超声2h进行分散,形成分散物;
3、流延步骤:取分散物涂到玻璃板上,放入烘箱50℃干燥8h,然后烘箱温度调到130℃反应30h,冷却至室温,制备得到复合膜1。
实施例2:
1、氯甲基化的磺化聚醚醚酮的制备步骤:取5g聚醚醚酮(PEEK)溶解在100mL98%浓硫酸中,放入搅拌装置的圆底烧瓶内,在50℃下反应10h,加入2.5mL氯甲基甲醚(C2H5ClO),在温度-10℃,反应90min后,将聚合物加入到冰水沉降,用去离子水冲洗后放入真空干燥箱,于50℃,真空干燥24h,制备得氯甲基化磺化聚醚醚酮(SPEEK-CH2Cl);
2、分散步骤:取1g SPEEK-CH2Cl加入10mL二甲亚砜(DMSO)溶剂中溶解,然后加入聚合物SPEEK-CH2Cl质量分数0.25wt.%氧化石墨烯GO在80W的超声仪器中超声2h进行分散,形成分散物;
3、流延步骤:将分散物涂到玻璃板上,放入烘箱70℃干燥8h,然后烘箱温度调到130℃反应16h,冷却至室温,制备得到复合膜2。
实施例3:
1、氯甲基化的磺化聚醚醚酮的制备步骤:5g聚醚醚酮(PEEK)溶解在100mL98%浓硫酸中,放入搅拌装置的圆底烧瓶内,在50℃下反应10h,加入和2.5mL氯甲基甲醚(C2H5ClO),在温度-10℃,反应90min后,将聚合物加入到冰水沉降,用去离子水冲洗后放入真空干燥箱,于50℃,真空干燥24h,制备得氯甲基化磺化聚醚醚酮(SPEEK-CH2Cl);
2、分散步骤:取1g SPEEK-CH2Cl加入10mL二甲亚砜(DMSO)溶剂中溶解,然后加入聚合物SPEEK-CH2Cl质量分数0.5wt.%氧化石墨烯GO在80W的超声仪器中超声2h进行分散,形成分散物;
3、流延步骤:将分散物涂到玻璃板上,放入烘箱70℃干燥8h,然后烘箱温度调到130℃反应16h,冷却至室温,制备得到复合膜3。
实施例4:
1、氯甲基化的磺化聚醚醚酮的制备步骤:5g聚醚醚酮(PEEK)溶解在100mL98%浓硫酸中,放入搅拌装置的圆底烧瓶内,在50℃下反应10h,加入2.5mL氯甲基甲醚(C2H5ClO),在温度-10℃,反应90min后,将聚合物加入到冰水沉降,用去离子水冲洗后放入真空干燥箱,于50℃,真空干燥24h,制备得氯甲基化磺化聚醚醚酮(SPEEK-CH2Cl);
2、分散步骤:取1g SPEEK-CH2Cl加入10mL二甲亚砜(DMSO)溶剂中溶解,然后加入聚合物SPEEK-CH2Cl质量分数1.0wt.%氧化石墨烯GO在80W的超声仪器中超声2h进行分散,形成分散液;
3、流延步骤:将分散物涂到玻璃板上,放入烘箱70℃干燥8h,然后烘箱温度调到130℃反应16h,冷却至室温,制备得到复合膜4。
实施例5:
1、氯甲基化的磺化聚醚醚酮的制备步骤:将5g聚醚醚酮(PEEK)溶解在100mL98%浓硫酸中,放入搅拌装置的圆底烧瓶内,在50℃下反应10h,加入2.5mL氯甲基甲醚(C2H5ClO),在温度-10℃,反应90min后,将聚合物加入到冰水沉降,用去离子水冲洗后放入真空干燥箱,于50℃,真空干燥24h,制备得氯甲基化磺化聚醚醚酮(SPEEK-CH2Cl);
2、分散步骤:取1g SPEEK-CH2Cl加入10mL二甲亚砜(DMSO)溶剂中溶解,然后加入聚合物SPEEK-CH2Cl质量分数2.0wt.%氧化石墨烯GO在80W的超声仪器中超声2h进行分散;
3、流延步骤:将分散物涂到玻璃板上,放入烘箱70℃干燥8h,然后烘箱温度调到130℃反应16h,冷却至室温,制备得到复合膜5。
实施例6:
测试条件和测试方法:
制得的复合膜2.5M甲醇水溶液中测试甲醇渗透率。
在25℃下纯水中下采用双电极法测量交流阻抗(电化学工作站为BioLogicVSP-300,FR),得到膜的电阻然后用导电率表征质子传导率。
在25℃下用纯水浸泡膜测试吸水率。
采用酸碱滴定法测试离子交换容量(IEC),将质子交换膜放入2mol/L氯化钠溶液中,浸泡48收集浸泡后溶液,用0.01mol/L的氢氧化钠溶液滴定,计算出离子交换容量。
具体测试方法可以参照Ravi Kumar.文章(RSCAdv.,2014,4,617)。
表1:
Figure GDA0003669105340000061
Figure GDA0003669105340000071
由表1所示:可以发现自交联膜的质子传导率有所增加同时甲醇渗透率减少,交联后分子链间的空隙减少所有渗透的甲醇溶液也会减少,链与链之间更加密集传输的质子效率进一步增加所以质子传导率进一步增加。自交联膜掺杂氧化石墨烯GO后分子间的空隙率会更小,同时磺化聚醚醚酮上磺酸基团与氧化石墨烯GO之间的质子传输通道相互连接,从而大大提高了质子传导率和减少甲醇渗透率。对于自交联掺杂膜我们可以看出复合膜2具有最高的质子传导率为23.46mS/cm,当掺杂氧化石墨烯GO后离子交换容增加所以质子传导率增加,随着掺杂量的增加到0.5wt%氧化石墨烯GO就会出现聚集导致性能下降。甲醇渗透率随着掺杂氧化石墨烯的含量先减少后增加因为随着片状氧化石墨烯加入SPEEK链间空隙减少阻止了甲醇的渗透其中氧化石墨烯含有的含氧基团可以与磺酸基团形成氢键进一步减少甲醇渗透但是随着氧化石墨烯含量增加到2%的时候甲醇渗透率也会增加因为氧化石墨烯上的含氧基团具有吸水性同时对甲醇的羟基也有很好的透过性。

Claims (2)

1.一种质子交换膜的制备方法,包括以下步骤:
1、氯甲基化的磺化聚醚醚酮的制备步骤;
2、分散步骤:将步骤1制备的氯甲基化的磺化聚醚醚酮SPEEK-CH2Cl溶解于二甲基亚砜中,然后加入氧化石墨烯GO在超声仪器中超声2-3h进行分散,形成分散物;氯甲基化的磺化聚醚醚酮与二甲基亚砜的重量体积比为1g:10-15ml;
氯甲基化的磺化聚醚醚酮与氧化石墨烯GO的重量比为100:0.25-2。
3、流延步骤:将分散步骤制备好的分散物涂到玻璃板上,于50-70℃干燥不小于8h,升温至130-150℃,反应16-30h,冷却至室温,即可。
2.根据权利要求1所述的一种质子交换膜的制备方法,其特征在于:氯甲基化的磺化聚醚醚酮与氧化石墨烯GO的重量比为100:0.5-1。
CN202010024351.1A 2020-01-09 2020-01-09 一种质子交换膜的制备方法 Expired - Fee Related CN111193054B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010024351.1A CN111193054B (zh) 2020-01-09 2020-01-09 一种质子交换膜的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010024351.1A CN111193054B (zh) 2020-01-09 2020-01-09 一种质子交换膜的制备方法

Publications (2)

Publication Number Publication Date
CN111193054A CN111193054A (zh) 2020-05-22
CN111193054B true CN111193054B (zh) 2022-08-02

Family

ID=70710026

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010024351.1A Expired - Fee Related CN111193054B (zh) 2020-01-09 2020-01-09 一种质子交换膜的制备方法

Country Status (1)

Country Link
CN (1) CN111193054B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114085402A (zh) * 2021-10-14 2022-02-25 湖北大学 一种碱基交联的磺化聚醚醚酮离子交换膜及其制备方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100928718B1 (ko) * 2007-10-09 2009-11-27 성균관대학교산학협력단 유기 용매 건조법에 의한 균일하게 황산기가 부착된peek 전해질 막의 제조 방법
US20160036081A1 (en) * 2013-02-12 2016-02-04 University Of Florida Research Foundation, Inc. Graphene-Based Proton Exchange Membrane for Direct Methanol Fuel Cells
US9099711B2 (en) * 2013-09-11 2015-08-04 King Fahd University Of Petroleum And Minerals Fuel cell membrane
CN103715438B (zh) * 2013-12-27 2015-09-30 郑州大学 一种纳米复合质子交换膜及其制备方法和应用
CN104852065B (zh) * 2015-05-26 2017-06-30 宁波工程学院 一种用于直接甲醇燃料电池的复合质子交换膜及其制备方法
CN104893275A (zh) * 2015-06-17 2015-09-09 上海大学 对氨基苯磺酸氧化石墨烯掺杂磺化聚醚醚酮/环氧树脂半互穿网络质子交换膜材料及其制备方法
CN105778133A (zh) * 2016-03-23 2016-07-20 复旦大学 碳纳米管/氧化石墨烯纳米带-聚合物杂化质子交换膜及其制备方法
CN105694358B (zh) * 2016-04-08 2019-03-22 天津工业大学 磺化聚醚醚酮-磺化氧化石墨烯杂化膜及制备和应用
CN107221691B (zh) * 2017-05-26 2020-04-14 厦门大学 氧化石墨烯/咪唑聚苯醚复合阴离子交换膜的制备方法
CN107946619A (zh) * 2017-11-09 2018-04-20 北京秦天科技集团有限公司 高磺化聚醚醚酮与氧化石墨烯的共聚物材料及其质子交换膜制备方法
CN109535457B (zh) * 2018-11-26 2021-03-16 安徽师范大学 一种磺化聚醚醚酮/磺化氧化石墨烯复合质子交换膜的制备方法
CN110010940A (zh) * 2019-04-03 2019-07-12 山东星火科学技术研究院 一种磺化聚醚醚酮负载单一催化剂直接制备质子交换膜的方法
CN110350223B (zh) * 2019-06-27 2021-07-06 山东奥德储能科技有限公司 纳米插层内选择SPEEK/GO/TiO2复合离子选择膜的制备方法

Also Published As

Publication number Publication date
CN111193054A (zh) 2020-05-22

Similar Documents

Publication Publication Date Title
Zhang et al. Sulfonated polysulfone proton exchange membrane influenced by a varied sulfonation degree for vanadium redox flow battery
JP4416778B2 (ja) 燃料電池用スルホン化パーフルオロシクロブタン多価電解質膜
Dong et al. Influence of alkaline 2D carbon nitride nanosheets as fillers for anchoring HPW and improving conductivity of SPEEK nanocomposite membranes
Muthumeenal et al. Investigation of SPES as PEM for hydrogen production through electrochemical reforming of aqueous methanol
Hasani-Sadrabadi et al. Novel high-performance nanocomposite proton exchange membranes based on poly (ether sulfone)
Nor et al. Crosslinked carbon nanodots with highly sulfonated polyphenylsulfone as proton exchange membrane for fuel cell applications
Di et al. Novel composite proton-exchange membrane based on proton-conductive glass powders and sulfonated poly (ether ether ketone)
KR101292214B1 (ko) 전기방사에 의한 연료전지용 술폰화 폴리에테르에테르케톤 나노 이온교환막의 제조방법
Zhang et al. Construction of new alternative transmission sites by incorporating structure-defect metal-organic framework into sulfonated poly (arylene ether ketone sulfone) s
JP2018116935A (ja) 向上した性能を有する活性層の形成
Meng et al. Semi-interpenetrating network membrane from polyethyleneimine-epoxy resin and polybenzimidazole for HT-PEM fuel cells
Yu et al. Polymeric ionic liquids and MXene synergistically improve proton conductivity and mechanical properties of polybenzimidazole-based high-temperature proton exchange membranes
Amoozadeh et al. Novel nanocomposite membrane based on Fe 3 O 4@ TDI@ TiO 2–SO 3 H: hydration, mechanical and DMFC study
Ju et al. Construction of effective transmission channels by anchoring metal‐organic framework on side‐chain sulfonated poly (arylene ether ketone sulfone) for fuel cells
CN111193054B (zh) 一种质子交换膜的制备方法
KR20120092055A (ko) 고분자 전해질 막, 수전해 장치, 연료 전지 및 이를 포함하는 연료 전지 시스템
Zhang et al. Poly (vinylidene fluoride) based anion conductive ionomer as a catalyst binder for application in anion exchange membrane fuel cell
He et al. Hybrid network sulfonated polynorbornene/silica membranes with enhanced proton conductivity by doped phosphotungstic acid
CN110176617B (zh) 一种提高nafion膜阻醇选择性的方法
CN106663492B (zh) 包含含有磺酸基的多面体低聚倍半硅氧烷的纳米复合膜及其制造方法
Bhavani et al. Proton conducting composite membranes for fuel cell application
Marques et al. Nafion/sulfonated poly (indene) polyelectrolyte membranes for fuel cell application
CN115536885A (zh) 一种亚微相分离阴离子交换膜的制备方法
Hu et al. Surface fluorination of poly (fluorenyl ether ketone) ionomers as proton exchange membranes for fuel cell application
CN112421085B (zh) 一种全氟磺酸树脂氢燃料电池质子膜及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20220802

CF01 Termination of patent right due to non-payment of annual fee