CN111185134B - 一种复合MgO-CdO中温CO2吸附剂及其制备方法 - Google Patents

一种复合MgO-CdO中温CO2吸附剂及其制备方法 Download PDF

Info

Publication number
CN111185134B
CN111185134B CN202010034464.XA CN202010034464A CN111185134B CN 111185134 B CN111185134 B CN 111185134B CN 202010034464 A CN202010034464 A CN 202010034464A CN 111185134 B CN111185134 B CN 111185134B
Authority
CN
China
Prior art keywords
mgo
cdo
temperature
nitrate
adsorbent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010034464.XA
Other languages
English (en)
Other versions
CN111185134A (zh
Inventor
周志明
崔鸿劼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
East China University of Science and Technology
Original Assignee
East China University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by East China University of Science and Technology filed Critical East China University of Science and Technology
Priority to CN202010034464.XA priority Critical patent/CN111185134B/zh
Publication of CN111185134A publication Critical patent/CN111185134A/zh
Application granted granted Critical
Publication of CN111185134B publication Critical patent/CN111185134B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/04Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of alkali metals, alkaline earth metals or magnesium
    • B01J20/041Oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/46Removing components of defined structure
    • B01D53/62Carbon oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/81Solid phase processes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0277Carbonates of compounds other than those provided for in B01J20/043
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/0203Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04
    • B01J20/0274Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising compounds of metals not provided for in B01J20/04 characterised by the type of anion
    • B01J20/0296Nitrates of compounds other than those provided for in B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/06Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising oxides or hydroxides of metals not provided for in group B01J20/04
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2253/00Adsorbents used in seperation treatment of gases and vapours
    • B01D2253/10Inorganic adsorbents
    • B01D2253/112Metals or metal compounds not provided for in B01D2253/104 or B01D2253/106
    • B01D2253/1124Metal oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2257/00Components to be removed
    • B01D2257/50Carbon oxides
    • B01D2257/504Carbon dioxide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/42Materials comprising a mixture of inorganic materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4806Sorbents characterised by the starting material used for their preparation the starting material being of inorganic character
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2220/00Aspects relating to sorbent materials
    • B01J2220/40Aspects relating to the composition of sorbent or filter aid materials
    • B01J2220/48Sorbents characterised by the starting material used for their preparation
    • B01J2220/4812Sorbents characterised by the starting material used for their preparation the starting material being of organic character
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Environmental & Geological Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Abstract

本发明为一种复合MgO‑CdO中温CO2吸附剂及制备方法,该吸附剂为[MgxCdy]‑[(LiaNabKc)‑(NadKe)]m。x与y分别为MgO和CdO在MgO‑CdO复合氧化物中所占的摩尔百分比,x为50~90,y为10~50;a,b,c,d,e分别为LiNO3,NaNO3,KNO3,Na2CO3和K2CO3在所有碱金属碳酸盐和硝酸盐中所占的摩尔百分比,a为20~35,b为5~15,c为20~35,d为5~15,e为5~15;m为所有碱金属碳酸盐和硝酸盐与MgO‑CdO复合氧化物的摩尔百分比,m为15~25。本发明制备复合载体MgO‑CdO将五种碱金属盐负载其上,其吸附容量大吸附速率高。

Description

一种复合MgO-CdO中温CO2吸附剂及其制备方法
技术领域
本发明涉及一种复合MgO-CdO中温CO2吸附剂及其制备方法,尤其涉及一种用于中温CO2捕集的高性能吸附剂及其制备方法,该吸附剂的一部分是单分散的片状结构复合载体MgO-CdO,另一部分是负载在MgO-CdO上具有特定比例的碱金属盐助剂。
背景技术
众所周知,CO2为温室气体之一,其大量排放会加剧全球气候变暖,引发一系列的自然灾害。在各个领域中,工业与化石燃料燃烧的电力方面所排放的CO2占据了主要地位。因此,如何将工业与燃煤电厂所排放的CO2进行有效捕集成为国内外关注的研究热点。
目前工业CO2捕集最常用的技术主要有胺吸收法、膜分离法、变压吸附法、固体吸附法。其中胺吸收法的工艺技术成熟、操作简单、国内外应用较多,但是此方法的溶剂再生能耗高,且一定程度会腐蚀设备;膜分离法则由于对原料气要求高、分离效率较低、工业放大困难等问题难以实现工业化应用;变压吸附法技术较为成熟,操作过程程序化,但是装置投资成本高,能耗也较大。与前三者相比,固体吸附法对工业中CO2的进行捕集,具有适用范围广、成本低廉、便于自动化操作等优点,具有广阔的应用前景。
针对现有的工业燃煤发电体系,燃煤电厂的CO2捕集主要有三条技术路线,分别为燃烧前捕集、燃烧后捕集和富氧燃烧。其中富氧燃烧是指CO2捕集是在燃料燃烧过程中,以高纯度的氧气代替空气作为助燃剂,以提高烟道尾气中的 CO2浓度,但是此方法由于制氧成本较高而受到限制;燃烧后捕集是指在燃料燃烧后将工业尾气中的CO2分离,但由于尾气中的CO2浓度较低,所以CO2分离成本较高;燃烧前捕集则是在燃料燃烧前将CO2分离,该方法主要应用于整体煤气化联合循环发电系统。与传统煤电技术相比,整体煤气化联合循环发电系统将煤气化和燃气-蒸汽联合循环发电技术有机结合起来,具有发电效率高、污染物排放低,CO2捕集成本低等优势,是目前国际上被验证的、能够工业化的、最具发展前景的清洁高效煤电技术。在该系统中,经煤气化单元产生的合成气通过水气变换反应得到较高浓度的CO2,此时反应器出口的气体通常在250-450℃,若能在此阶段进行CO2捕集,可以降低能耗并提高过程效率。
MgO作为中温CO2固体吸附剂中的代表,其具有理论CO2吸附量高、廉价易得、制备简易、且吸附CO2温度与工业水汽变换气体的出口温度一致等优势,被认为是最具有潜力的燃烧前捕集的固体CO2吸附剂。然而局限于纯MgO的实际低CO2吸附量、较慢的吸附速率、较差的吸附-再生循环稳定性,MgO基吸附剂实际应用受到了很大的限制。因此,为了提升MgO基吸附剂的CO2吸附量、吸附速率与循环稳定性,可以用熔融碱金属硝酸盐与碳酸盐(硝酸锂、硝酸钠、硝酸钾、碳酸钠、碳酸钾)进行修饰促进、掺杂其他组分(氧化镉、氧化钙)等。为此开发出高性能的MgO基吸附剂,从而对CO2进行高效捕集。
发明内容
本发明的目的是制备出一种负载碱金属盐的片状结构复合MgO-CdO中温 CO2吸附剂,且其具有优异的CO2吸附性能。
一种复合MgO-CdO中温CO2吸附剂,其特征在于,所述的吸附剂由五种碱金属盐和具有片状结构MgO-CdO组成,表示如下:
[MgxCdy]-[(LiaNabKc)-(NadKe)]m
[MgxCdy]代表MgO与CdO;(Li,Na,K)代表LiNO3,NaNO3和KNO3;(Na,K) 代表Na2CO3和K2CO3
x与y分别代表MgO和CdO在MgO-CdO复合氧化物中所占的摩尔百分比, x介于50~90之间,y介于10~50之间;
a,b,c,d,e分别代表LiNO3,NaNO3,KNO3,Na2CO3和K2CO3在所有碱金属碳酸盐和硝酸盐中所占的摩尔百分比,a介于20~35之间,b介于5~15 之间,c介于20~35之间,d介于5~15之间,e介于5~15之间;
m代表所有碱金属碳酸盐和硝酸盐与MgO-CdO复合氧化物的摩尔百分比, m介于15~25之间。
本发明还提供上述吸附剂的制备方法,所述方法包括如下步骤:
(1)分别称量镁盐和镉盐,溶于100mL去离子水中,磁力搅拌约20min至溶液透明澄清,
其中:所述镁盐为乙酸镁和硝酸镁的一种,镉盐为乙酸镉和硝酸镉的一种,镁盐的摩尔数介于0.01~0.02之间;
(2)分别称量碳酸钠和氢氧化钠,量取100mL去离子水与平均分子量为400 的聚乙二醇即PEG400于500mL三口烧瓶内,在50℃水浴下搅拌10min至溶液透明澄清;
其中:所述碳酸钠的摩尔数介于0.02~0.025之间,碳酸钠和氢氧化钠的摩尔比介于1.5~2之间,PEG400的体积介于5~15mL之间;
(3)将步骤(1)所得的澄清液逐滴加入到步骤(2)的500mL三口烧瓶内的混合溶液内,水浴恒温50℃保持4h后,取出在室温下老化4h;
(4)将步骤(3)所得的液固混合物进行抽滤分离,并分别用水和乙醇洗涤白色沉淀物两次;
(5)将步骤(4)所得的白色沉淀物进行放入真空烘箱中,恒温60℃保持12h 后取出研磨,得到的干燥白色固体粉末;
(6)将步骤(5)所得的白色固体粉末进行放入马弗炉中进行煅烧,以5℃/min 的升温速率升到500℃,恒温4h,煅烧后便得到片状结构MgO-CdO;
(7)按所述比例分别称量硝酸锂,硝酸钠,硝酸钾,碳酸钠与碳酸钾,放入 150mL单口烧瓶中,加入60~100mL无水甲醇,超声使碱金属盐完全溶解;
(8)按所述比例称量步骤(6)所得的MgO-CdO,加入步骤(7)的溶液中,磁力搅拌12h;
(9)将步骤(8)所得含MgO-CdO的悬浮液在60℃下进行旋转蒸发,除去甲醇溶剂后制得所述的吸附剂。
有益效果
本方法制备的复合MgO-CdO吸附剂在五种碱金属盐的共同作用下表现出了优异的CO2吸附性能。主要优点在于,其一,本发明制备的负载碱金属盐的复合MgO-CdO吸附剂具有吸附容量大、吸附速率高、制备方法简便等特点;其二,碱金属盐在中温CO2吸附过程中处于熔融态,而复合MgO-CdO所特有的片形结构能够让熔融碱金属盐均匀分布在其表面,从而提升其CO2吸附性能,并能有效地抑制碱金属盐在多次吸附-再生循环中的流动;此外,掺入的CdO能抑制MgO的烧结,从而提升其稳定性;其三,MgO与CdO具有协同效应,掺入的 CdO作为活性组分,也能参与CO2吸附反应,从而进一步提升吸附速率。
附图说明
图1为本发明实施例1中[Mg90Cd10]-[(Li30Na15K30)-(Na10K15)]20的扫描电镜图
图2(a)为本发明实施例1中[Mg90Cd10]-[(Li30Na15K30)-(Na10K15)]20的吸附/再生循环性能图
图2(b)为本发明对比例1中[Mg100]-[(Li30Na15K30)-(Na10K15)]20的吸附/再生循环性能图
吸附条件:350℃,100%CO2,30min;再生条件:400℃,100%N2,10min
图3为本发明实施例1中[Mg90Cd10]-[(Li30Na15K30)-(Na10K15)]20的吸附等温线
吸附条件:275/300/325/350℃,100%CO2,60min
图4为本发明实施例2中[Mg80Cd20]-[(Li35Na10K30)-(Na15K10)]20的吸附/再生循环性能图
吸附条件:350℃,100%CO2,30min;再生条件:400℃,100%N2,10min
图5为本发明实施例3中[Mg50Cd50]-[(Li35Na10K30)-(Na15K10)]25的吸附/再生循环性能图
吸附条件:350℃,100%CO2,30min;再生条件:400℃,100%N2,10min
图6比较本发明实施例1、实施例2、对比例1、对比例2、对比例3的吸附速率
吸附条件:350℃,100%CO2,30min
图7为本发明实施例2与对比例3的XRD图
具体实施方式
本发明具体实施例叙述于下,但本发明不限于此。
实施例1
称量0.018mol四水乙酸镁和0.002mol二水乙酸镉,溶于100mL去离子水中,磁力搅拌约20min至溶液透明澄清。然后称量0.024mol碳酸钠和0.012mol氢氧化钠,量取100mL去离子水与10mL PEG400于500mL三口烧瓶内,在50℃水浴下搅拌10min至溶液透明澄清,在搅拌条件下,逐滴加入上述的乙酸镁与乙酸镉溶液,水浴依旧恒温50℃保持4h后,取出在室温下老化4h。将所得的液固混合物进行抽滤分离,并分别用水和乙醇洗涤白色沉淀物两次后,放入真空烘箱中,恒温60℃保持12h后取出研磨,得到的干燥白色固体粉末放进马弗炉中,以5℃/min的升温速率升到500℃,恒温4h,煅烧后便得到片状载体[Mg90Cd10]。称量0.30mmol硝酸锂,0.15mmol硝酸钠,0.30mmol硝酸钾,0.10mmol碳酸钠, 0.15mmol碳酸钾放入250mL单口烧瓶中,加入100mL无水甲醇,超声仪中超声2h,使碱金属盐完全溶解。称量0.244g上述[Mg90Cd10]粉末,加入上述碱金属盐溶液中,磁力搅拌12h。然后将上述含MgO的悬浮液在60℃下真空旋转蒸发,除去甲醇溶剂后得到吸附剂[Mg90Cd10]-[(Li30Na15K30)-(Na10K15)]20,其扫描电镜图如图1所示。
性能测试:在热重分析仪上对所制得的吸附剂进行吸附-再生循环实验,记录10次循环过程的吸附容量。
循环稳定性性能测试方法:
本发明采用热重分析仪测试的吸附剂吸附-再生各个循环的吸附容量。热重分析的条件是:(1)在热天平内装入约5mg吸附剂样品,在N2气氛下以10℃/min 升温至350℃,然后进行CO2吸附,通入的气体为50mL CO2。吸附时间为30min; (2)吸附结束后,切换气体为50mL N2,使体系温度升高到400℃(20℃/min) 进行吸附剂再生,时间10min;(3)再生结束后,以20℃/min的速率将加热炉温度降至350℃,切换气体为50mL CO2进行吸附,如此循环往复则可进行吸附剂的循环稳定性考察,本实例进行了10个循环。实验结果如图2(a)所示。
吸附等温线性能测试方法:
在热天平内装入约5mg吸附剂样品,在N2气氛下以10℃/min升温至 275/300/325/350℃,然后进行CO2吸附,通入的气体为50mL CO2,吸附时间为 60min。实验结果如图3所示。
根据实验过程中记录的吸附剂质量变化数据,计算吸附剂的吸附容量,其定义如下:
Figure BDA0002365473230000051
实施例2
称量0.016mol六水硝酸镁和0.004mol四水硝酸镉,溶于100mL去离子水中,磁力搅拌约20min至溶液透明澄清。然后称量0.024mol碳酸钠和0.012mol氢氧化钠,量取100mL去离子水与12mL PEG400于500mL三口烧瓶内,在50℃水浴下搅拌10min至溶液透明澄清,在搅拌条件下,逐滴加入上述的硝酸镁与硝酸镉溶液,水浴依旧恒温50℃保持4h后,取出在室温下老化4h。将所得的液固混合物进行抽滤分离,并分别用水和乙醇洗涤白色沉淀物两次后,放入真空烘箱中,恒温60℃保持12h后取出研磨,得到的干燥白色固体粉末放进马弗炉中,以5℃/min的升温速率升到500℃,恒温4h,煅烧后便得到纳米片状[Mg80Cd20]。称量0.35mmol硝酸锂,0.10mmol硝酸钠,0.3mmol硝酸钾,0.15mmol碳酸钠, 0.10mmol碳酸钾放入250mL单口烧瓶中,加入100mL无水甲醇,超声仪中超声2h,使碱金属盐完全溶解。称量0.288g上述[Mg80Cd20]粉末,加入上述碱金属盐溶液中,磁力搅拌12h。然后将上述含MgO的悬浮液在60℃下真空旋转蒸发,除去甲醇溶剂后得到吸附剂[Mg80Cd20]-[(Li35Na10K30)-(Na15K10)]20,其XRD 谱图如图7所示。
性能测试:在热重分析仪上对所制得的吸附剂进行吸附-再生循环实验,记录10次循环过程的吸附容量。实验结果如图4所示。吸附温度为350℃,时间为30min,50mL CO2;再生温度为400℃,时间为10min,50mL N2
实施例3
称量0.010mol四水乙酸镁和0.010mol二水乙酸镉,溶于100mL去离子水中,磁力搅拌约20min至溶液透明澄清。然后称量0.024mol碳酸钠和0.012mol氢氧化钠,量取100mL去离子水与10mL PEG400于500mL三口烧瓶内,在50℃水浴下搅拌10min至溶液透明澄清,在搅拌条件下,逐滴加入上述的乙酸镁与乙酸镁溶液,水浴依旧恒温50℃保持4h后,取出在室温下老化4h。将所得的液固混合物进行抽滤分离,并分别用水和乙醇洗涤白色沉淀物两次后,放入真空烘箱中,恒温60℃保持12h后取出研磨,得到的干燥白色固体粉末放进马弗炉中,以5℃/min的升温速率升到500℃,恒温4h,煅烧后便得到纳米片状[Mg50Cd50]。称量0.35mmol硝酸锂,0.10mmol硝酸钠,0.3mmol硝酸钾,0.15mmol碳酸钠,0.10mmol碳酸钾放入250mL单口烧瓶中,加入100mL无水甲醇,超声仪中超声2h,使碱金属盐完全溶解。称量0.336g上述[Mg50Cd50]粉末,加入上述碱金属盐溶液中,磁力搅拌12h。然后将上述含MgO的悬浮液在60℃下真空旋转蒸发,除去甲醇溶剂后得到吸附剂[Mg50Cd50]-[(Li35Na10K30)-(Na15K10)]25
性能测试:在热重分析仪上对所制得的吸附剂进行吸附-再生循环实验,记录10次循环过程的吸附容量。实验结果如图5所示。吸附温度为350℃,时间为30min,50mL CO2;再生温度为400℃,时间为10min,50mL N2
对比例1
称量0.02mol四水乙酸镁,溶于100mL去离子水中,磁力搅拌约20min至溶液透明澄清。然后称量0.024mol碳酸钠和0.012mol氢氧化钠,量取100mL去离子水于500mL三口烧瓶内,在50℃水浴下搅拌10min至溶液透明澄清,在搅拌条件下,逐滴加入上述的乙酸镁与乙酸镁溶液,水浴依旧恒温50℃保持4h 后,取出在室温下老化4h。将所得的液固混合物进行抽滤分离,并分别用水和乙醇洗涤白色沉淀物两次后,放入真空烘箱中,恒温60℃保持12h后取出研磨,得到的干燥白色固体粉末放进马弗炉中,以5℃/min的升温速率升到500℃,恒温4h,煅烧后便得到MgO。称量0.30mmol硝酸锂,0.15mmol硝酸钠,0.30mmol 硝酸钾,0.10mmol碳酸钠,0.15mmol碳酸钾放入250mL单口烧瓶中,加入100mL 无水甲醇,超声仪中超声2h,使碱金属盐完全溶解。称量0.200g上述MgO粉末,加入上述碱金属盐溶液中,磁力搅拌12h。然后将上述含MgO的悬浮液在 60℃下真空旋转蒸发,得到吸附剂[Mg100]-[(Li30Na15K30)-(Na10K15)]20
性能测试:在热重分析仪上对所制得的吸附剂进行吸附-再生循环实验,记录10次循环过程的吸附容量。实验结果如图2(b)所示。吸附化温度为350℃,时间为30min,50mLCO2;再生温度为400℃,时间为10min,50mL N2
对比例2
称量0.02mol二水乙酸镉,溶于100mL去离子水中,磁力搅拌约20min至溶液透明澄清。然后称量0.024mol碳酸钠和0.012mol氢氧化钠,量取100mL去离子水于500mL三口烧瓶内,在50℃水浴下搅拌10min至溶液透明澄清,在搅拌条件下,逐滴加入上述的乙酸镁与乙酸镁溶液,水浴依旧恒温50℃保持4h 后,取出在室温下老化4h。将所得的液固混合物进行抽滤分离,并分别用水和乙醇洗涤白色沉淀物两次后,放入真空烘箱中,恒温60℃保持12h后取出研磨,得到的干燥白色固体粉末放进马弗炉中,以5℃/min的升温速率升到500℃,恒温4h,煅烧后便得到CdO。称量0.3mmol硝酸锂,0.15mmol硝酸钠,0.3mmol 硝酸钾,0.10mmol碳酸钠,0.15mmol碳酸钾放入250mL单口烧瓶中,加入100mL 无水甲醇,超声仪中超声2h,使碱金属盐完全溶解。称量0.200g上述CdO粉末,加入上述碱金属盐溶液中,磁力搅拌12h。然后将上述含MgO的悬浮液在60℃下真空旋转蒸发,得到吸附剂[Cd100]-[(Li30Na15K30)-(Na10K15)]20
对比例3
称量0.016mol六水硝酸镁和0.004mol四水硝酸镉,溶于100mL去离子水中,磁力搅拌约20min至溶液透明澄清。然后称量0.024mol碳酸钠和0.012mol氢氧化钠,量取100mL去离子水与12mL PEG400于500mL三口烧瓶内,在50℃水浴下搅拌10min至溶液透明澄清,在搅拌条件下,逐滴加入上述的乙酸镁与乙酸镁溶液,水浴依旧恒温50℃保持4h后,取出在室温下老化4h。将所得的液固混合物进行抽滤分离,并分别用水和乙醇洗涤白色沉淀物两次后,放入真空烘箱中,恒温60℃保持12h后取出研磨,得到的干燥白色固体粉末放进马弗炉中,以5℃/min的升温速率升到500℃,恒温4h,煅烧后便得到纳米片状[Mg80Cd20]。
由上述附图和实例可见,相比于纯MgO负载碱金属盐后所制备的吸附剂(对比例1),复合MgO-CdO负载碱金属盐后所制备的吸附剂(实施例1)具有较高的吸附速率和循环稳定性,10次循环后稳定在0.4克CO2/克吸附剂;纯CdO负载碱金属盐后所制备的吸附剂(对比例2),对于CO2吸附也显示出一定的活性;相比于复合MgO-CdO所制备的吸附剂(对比例3),复合MgO/CdO负载碱金属盐后所制备的吸附剂(实施例1和实施例2)具有较高的CO2吸附容量和吸附速率。本发明是一种中温CO2吸附容量和吸附速率较高,吸附-再生循环稳定性良好的吸附剂。

Claims (2)

1.一种复合MgO-CdO中温CO2吸附剂,其特征在于,所述的吸附剂由五种碱金属盐和具有片状结构MgO-CdO组成,表示如下:
[MgxCdy]-[(LiaNabKc)-(NadKe)]m
[MgxCdy]代表MgO与CdO;(Li,Na,K)代表LiNO3,NaNO3和KNO3;(Na,K)代表Na2CO3和K2CO3
x与y分别代表MgO和CdO在MgO-CdO复合氧化物中所占的摩尔百分比,x介于50~90之间,y介于10~50之间;
a,b,c,d,e分别代表LiNO3,NaNO3,KNO3,Na2CO3和K2CO3在所有碱金属碳酸盐和硝酸盐中所占的摩尔百分比,a介于20~35之间,b介于5~15之间,c介于20~35之间,d介于5~15之间,e介于5~15之间;
m代表所有碱金属碳酸盐和硝酸盐与MgO-CdO复合氧化物的摩尔百分比,m介于15~25之间。
2.如权利要求1所述的复合MgO-CdO中温CO2吸附剂的制备方法,其特征在于,所述方法包括如下步骤:
(1)分别称量镁盐和镉盐,溶于100mL去离子水中,磁力搅拌20min至溶液透明澄清,
其中:所述镁盐为乙酸镁和硝酸镁的一种,镉盐为乙酸镉和硝酸镉的一种,镁盐的摩尔数介于0.01~0.02之间;
(2)分别称量碳酸钠和氢氧化钠,量取100mL去离子水与平均分子量为400的聚乙二醇即PEG400于500mL三口烧瓶内,在50 °C水浴下搅拌10min至溶液透明澄清;
其中:所述碳酸钠的摩尔数介于0.02~0.025之间,碳酸钠和氢氧化钠的摩尔比介于1.5~2之间,PEG400的体积介于5~15mL之间;
(3)将步骤(1)所得的澄清液逐滴加入到步骤(2)的500mL三口烧瓶内的混合溶液内,水浴恒温50 °C保持4h后,取出在室温下老化4h;
(4)将步骤(3)所得的液固混合物进行抽滤分离,并分别用水和乙醇洗涤白色沉淀物两次;
(5)将步骤(4)所得的白色沉淀物进行放入真空烘箱中,恒温60 °C保持12h后取出研磨,得到的干燥白色固体粉末;
(6)将步骤(5)所得的白色固体粉末进行放入马弗炉中进行煅烧,以5 °C /min的升温速率升到500 °C,恒温4h,煅烧后便得到片状结构MgO-CdO;
(7)按比例分别称量硝酸锂,硝酸钠,硝酸钾,碳酸钠与碳酸钾,放入150 mL单口烧瓶中,加入60~100mL无水甲醇,超声使碱金属盐完全溶解;
(8)按比例称量步骤(6)所得的MgO-CdO,加入步骤(7)的溶液中,磁力搅拌12h;
(9)将步骤(8)所得含MgO-CdO的悬浮液在60 °C下进行旋转蒸发,除去甲醇溶剂后制得所述的吸附剂。
CN202010034464.XA 2020-01-14 2020-01-14 一种复合MgO-CdO中温CO2吸附剂及其制备方法 Active CN111185134B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010034464.XA CN111185134B (zh) 2020-01-14 2020-01-14 一种复合MgO-CdO中温CO2吸附剂及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010034464.XA CN111185134B (zh) 2020-01-14 2020-01-14 一种复合MgO-CdO中温CO2吸附剂及其制备方法

Publications (2)

Publication Number Publication Date
CN111185134A CN111185134A (zh) 2020-05-22
CN111185134B true CN111185134B (zh) 2022-09-09

Family

ID=70685001

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010034464.XA Active CN111185134B (zh) 2020-01-14 2020-01-14 一种复合MgO-CdO中温CO2吸附剂及其制备方法

Country Status (1)

Country Link
CN (1) CN111185134B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112354512B (zh) * 2020-10-26 2022-09-09 华东理工大学 双功能碱金属硝酸盐修饰CdO-MgCO3材料及制备方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107321296A (zh) * 2017-07-18 2017-11-07 华东理工大学 一种高性能复合MgO基CO2中温吸附剂及其制备方法
WO2018026246A1 (ko) * 2016-08-05 2018-02-08 한국과학기술원 금속산화물 지지체를 이용한 건식개질 촉매 및 이를 이용한 합성가스의 제조방법

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130287663A1 (en) * 2012-04-26 2013-10-31 University Of Connecticut System, sorbents, and processes for capture and release of co2
KR101925055B1 (ko) * 2016-06-13 2018-12-04 명지대학교 산학협력단 산화마그네슘/산화타이타늄 복합체를 포함하는 이산화탄소 포집용 흡착제 및 이의 제조방법

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018026246A1 (ko) * 2016-08-05 2018-02-08 한국과학기술원 금속산화물 지지체를 이용한 건식개질 촉매 및 이를 이용한 합성가스의 제조방법
CN107321296A (zh) * 2017-07-18 2017-11-07 华东理工大学 一种高性能复合MgO基CO2中温吸附剂及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"Characteristics of NaNO3-Promoted CdO as a Midtemperature CO2 Absorbent;Kang-Yeong Kim et al.,;《ACS Applied Materials & Interfaces》;20170605;第9卷(第25期);第21563-21572页 *
Effect of Syngas Constituents on CdO- and MgO-Based Sorbents for Pre-combustion CO2 Capture;Christian Vogt et al.,;《Energy & Fuels》;20150917;第29卷(第9期);第5909-5918页 *
Facile synthesis of hierarchically porous MgO sorbent doped with CaCO3 for fast CO2 capture in rapid intermediate temperature swing sorption;Seongmin Jin et al.,;《Chemical Engineering Journal》;20171121;第334卷;第1605-1613页 *

Also Published As

Publication number Publication date
CN111185134A (zh) 2020-05-22

Similar Documents

Publication Publication Date Title
Hu et al. CO2 capture by Li4SiO4 sorbents and their applications: Current developments and new trends
CN107321296B (zh) 一种复合MgO基CO2中温吸附剂及其制备方法
Han et al. Progress in reducing calcination reaction temperature of Calcium-Looping CO2 capture technology: A critical review
ES2719780T3 (es) Sorbente regenerable para la eliminación de dióxido de carbono
KR101770701B1 (ko) 티탄산 바륨을 포함한 이산화탄소 흡착제, 이를 포함한 이산화탄소 포집 모듈, 및 이를 이용한 이산화탄소 분리 방법
CN111569865A (zh) 一种生物基低温脱硝催化剂及其制备方法
CN111185134B (zh) 一种复合MgO-CdO中温CO2吸附剂及其制备方法
CN111632476A (zh) 一种二氧化碳吸附剂及其制备方法
CN111603907A (zh) 一种改性镁基吸收剂及其制备方法
Li et al. Synthesis of waste bagasse-derived Li4SiO4-based ceramics for cyclic CO2 capture: Investigation on the effects of different pretreatment approaches
CN102815926A (zh) 一种co2高温钙基粉煤灰吸收剂及其制备方法
CN107601570B (zh) 一种可再生循环利用的汞吸附剂及其制备与再生方法
Atimtay Cleaner energy production with integrated gasification combined cycle systems and use of metal oxide sorbents for H2S cleanup from coal gas
CN113967482A (zh) 一种介尺度调控制备双金属六面体纳米片Ti-Ni-MOF催化剂的方法及应用
CN112316902A (zh) 一种复合MgO吸附剂及其制备方法与应用
CN111282540B (zh) 用于烟气脱汞的可再生抗硫型Fe-Mn-Ce磁性吸附剂的制备工艺
CN108435124A (zh) 以煤系高岭土加工后产生的二氧化硅废渣为原料制备高温二氧化碳吸附剂的方法
CN112354512B (zh) 双功能碱金属硝酸盐修饰CdO-MgCO3材料及制备方法
Varel et al. Calcium looping process: experimental investigation of limestone performance regenerated under high CO2 partial pressure and validation of a carbonator model
CN111250035A (zh) 一种脱汞用花球状钼基复合四氧化三铁吸附剂材料及制备方法
CN110040714A (zh) 一种吸附二氧化碳用氮磷掺杂多孔碳材料及其制备方法
CN113304722B (zh) 一种Ce-K共掺杂MgO基中温CO2吸附材料及其制备方法
CN111603906A (zh) 一种二氧化碳镁基吸附剂及其制备方法
Liu et al. Synthesis of mesoporous cerium compound for CO2 capture
CN108067180B (zh) 一种钇镁-钙基co2吸附剂及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant