CN111180518A - 一种具有两种导电模式的超结mosfet - Google Patents
一种具有两种导电模式的超结mosfet Download PDFInfo
- Publication number
- CN111180518A CN111180518A CN202010005381.8A CN202010005381A CN111180518A CN 111180518 A CN111180518 A CN 111180518A CN 202010005381 A CN202010005381 A CN 202010005381A CN 111180518 A CN111180518 A CN 111180518A
- Authority
- CN
- China
- Prior art keywords
- region
- anode
- type
- drift region
- type drift
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000004020 conductor Substances 0.000 claims description 4
- 238000011084 recovery Methods 0.000 abstract description 6
- 238000002955 isolation Methods 0.000 abstract description 3
- 239000004065 semiconductor Substances 0.000 abstract description 3
- 230000009286 beneficial effect Effects 0.000 abstract 1
- 230000007423 decrease Effects 0.000 abstract 1
- 238000005516 engineering process Methods 0.000 abstract 1
- 230000003071 parasitic effect Effects 0.000 description 10
- 238000010586 diagram Methods 0.000 description 7
- 230000003321 amplification Effects 0.000 description 4
- 238000003199 nucleic acid amplification method Methods 0.000 description 4
- 230000001960 triggered effect Effects 0.000 description 4
- 102000004213 Neuropilin-2 Human genes 0.000 description 3
- 108090000770 Neuropilin-2 Proteins 0.000 description 3
- 101150003852 pnp2 gene Proteins 0.000 description 3
- 230000004888 barrier function Effects 0.000 description 2
- 230000000903 blocking effect Effects 0.000 description 2
- 239000000969 carrier Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000002347 injection Methods 0.000 description 2
- 239000007924 injection Substances 0.000 description 2
- 230000002457 bidirectional effect Effects 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
- H01L29/7827—Vertical transistors
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0611—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
- H01L29/0615—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
- H01L29/063—Reduced surface field [RESURF] pn-junction structures
- H01L29/0634—Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0642—Isolation within the component, i.e. internal isolation
- H01L29/0649—Dielectric regions, e.g. SiO2 regions, air gaps
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0684—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/08—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
- H01L29/0843—Source or drain regions of field-effect devices
- H01L29/0847—Source or drain regions of field-effect devices of field-effect transistors with insulated gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42356—Disposition, e.g. buried gate electrode
- H01L29/4236—Disposition, e.g. buried gate electrode within a trench, e.g. trench gate electrode, groove gate electrode
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Ceramic Engineering (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Chemical & Material Sciences (AREA)
- Composite Materials (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
本发明涉及功率半导体技术,特别涉及一种具有两种导电模式的超结MOSFET。与传统超结MOSFET相比,本发明器件采用介质隔离层将器件沿超结的纵向分界线分为两部分,N型漂移区一侧为普通超结MOSFET的导电模式,为单极性导电,没有开启电压,但是在大电流下导通电阻高,而P型漂移区一侧为一个栅控肖克来二极管导电模式,为双极型导电,有0.7V的开启电压,但大电流下导通电阻低。因此与普通超结MOSFET相比较,导通电阻在大电流时下降。器件反向导通时,由于P型漂移区未参与导通,并且P型漂移区一侧的器件P+短路区未参与导电,因此降低了器件的反向恢复电荷。本发明的有益成果:大电流下导通电阻降低,反向恢复电荷减小。
Description
技术领域
本发明属于功率半导体技术领域,特别涉及一种具有两种导通模式的超结MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor,绝缘栅金属场效应晶体管)。
背景技术
在一些应用情况下,需要功率器件具有单向耐压、双向导电的能力。超结MOSFET满足这一要求,其逆向导通时利用体二极管导通。但超结MOSFET体二极管导通时,由于PN结面积大,因此导通时注入载流子多,导致超结MOSFET的反向恢复电荷大。并且由于超结MOSFET是单极型器件,其导通电阻随电压等级增加而急剧增大。双极型器件如绝缘栅双极型晶体管由于正向导通时体内发生电导调制效应,因此其正向导通压降较低,但是由于存在正向导通开启电压,因此在较小正向导通电流下,其导通优势并不明显,并且其一般不具备逆向导通能力。
发明内容
本发明的目的,就是针对超结MOSFET反向恢复电荷大,以及大电流下导通电阻大的问题,提出一种具有两种导通模式的超结MOSFET。
本发明的技术方案:一种具有两种导电模式的超结MOSFET,其元胞包括阳极结构、耐压层结构、阴极结构和栅极结构以及绝缘介质结构,其中漂移区位于阳极结构之上,阴极结构和栅极结构位于耐压层结构之上,绝缘介质结构垂直插入阳极结构、耐压层结构以及阴极结构的中间。所述阴极结构包括位于耐压层结构上表面的N型载流子存储层6,所述N型载流子存储层6上表面具有P型阱区8,所述P型阱区8上表面具有N+阴极区10和P+体接触区9,且N+阴极区10与绝缘层11接触,N+阴极区10位于P+体接触区9两侧,N+阴极区10 和P+体接触区9的共同引出端为阴极E;所述栅极结构为沟槽栅,所述沟槽栅由绝缘介质11 和位于绝缘介质11之中的导电材料12构成;所述导电材料12的引出端为器件的栅极G;所述沟槽栅从表面垂直穿过P型阱区8和N型载流子存储层6,沟槽栅的侧面与N型载流子存储层6、P型阱区8以及N+型阴极区10的侧面接触。所述耐压层结构包括N型漂移区4以及P型漂移区5,所述P型漂移区5与N型漂移区4间隔分布,所述P型漂移区5以及N型漂移区4的上表面与与沟槽栅的下表面及侧面以及N型载流子存储层6下表面接触,所述P 型漂移区5与N型漂移区4组成超结结构。所述阳极结构包括P+阳极区2、N+阳极区1和N 型缓冲层3,所述N型缓冲层3的上表面与耐压层相连接,所述P+阳极区2以及N+阳极区1 的上表面与N型缓冲层3相连接,所述P+阳极区2位于P型漂移区5一侧,且横向宽度大于等于P型漂移区5的横向宽度,所述N+集电极区1位于N型漂移区4一侧,且横向宽度小于等于P型漂移区5的横向宽度。所述P+集电极区2以及N+阳极区1的共同引出端为阳极 C。所述绝缘介质结构包括绝缘介质7。绝缘介质7位于N型漂移区4以及P型漂移区5垂直分界线处,并沿着的垂直分界线处向上依次穿过N型载流子存储层6、P型阱区8以及P+ 体接触区9,同时沿着的垂直分界线处向下穿过N型缓冲层3,其下表面与P+阳极区2接触。
在正向导通时,当阳极电压较低时,器件工作在单极型导电模式,随着阳极电压升高,器件工作在单极型及双极型共存的导电模式,从而具有两种导电模式。
本发明的有益效果为,本发明的具有两种导通模式的超结MOSFET降低了反向恢复电荷,并且降低了正向导通电阻。
附图说明
图1是本发明的具有两种导通模式的超结MOSFET示意图;
图2是本发明器件的等效电路图;
图3是常规超结MOSFET示意图;
图4是常规超结MOSFET的等效电路图;
具体实施方式
下面结合附图对本发明进行详细的描述
如图1所示,为本发明的两种导通模式的超结MOSFET。绝缘介质层7将器件分为左右两侧。从图中可以看出器件右侧为与普通超结MOSFET类似,存在体二极管,因此器件可以逆向导通。图2为本发明器件的等效电路图,器件右侧等效电路图为与普通超结MOSFET类似,由一个二极管与MOSFET反并联而成。而左侧等效电路图显示器件体内存在一个寄生肖克来二极管(Shockley diode),此肖克来二极管由寄生的PNP2晶体管(集电极:P型漂移区5;基区:N型缓冲层3;发射极:P+阳极区2)和NPN2晶体管(集电极:N型缓冲层3;基区:P型漂移区5;发射极:N型载流子存储层6)组成,由于寄生的PNP2的发射区浓度高导致注入效率高,且基区窄并且浓度低,因此PNP2的共基极电流放大系数大,因此只需较小的漏电流既可触发此寄生肖克来二极管。肖克来二极管触发后P型漂移区内发生强烈电导调制效应,因此其导通电阻降低。由于栅极沟道电阻的限制,因此左侧区域最终电流会发生饱和。
结合图1来分析其工作原理:
正向导通时,栅极接正压,阳极接正压,阴极接地,栅极上的电压使沟道开启。当栅极未加电压时,未有电子注入到N型载流子存储层6中,此时N型载流子存储层6浮空,即寄生的NPN2晶体管的发射极浮空,此时NPN2晶体管的共基极电流放大系数为0,寄生的肖克来二极管因此不会开启,当栅极加电压,沟道形成后,电子注入到N型载流子存储层6中,此时N型载流子存储层6不再浮空,由于其基区浓度较低,发射极浓度高,因此其共基极电流放大系数不会太低,NPN晶体管与PNP晶体管的共基极电流放大系数接近为1,随着阳极电压增大,器件漏电流逐渐增加,因此寄生的肖克来二极管被增加的漏电流所触发导通。由于绝缘介质隔离层的阻挡作用,器件右侧栅极沟道使电子注入到n型漂移区中,最终被集电区收集,因此右边为超结MOSFET的导通状态。而器件左侧栅极沟道使电子通过漂移区注入到左侧的N型载流子存储层,随着阳极电压的逐渐增大,通过寄生肖克来二极管体内的漏电流逐渐增加,因此寄生的肖克来二极管被增加的漏电流所触发导通。因此器件在阳极电压较低时,器件左侧未导通而右侧处于单极导通状态,随着阳极电压的增大,器件左侧阳极的寄生的肖克来二极管开启,阳极P+开始向漂移区注入空穴,器件左侧进入双极导通状态。由于介质隔离层的阻挡作用,因此器件正向导通曲线为左右两侧双极与单极导通状态的叠加,所以不存在因从单极导通向双极导通导致漂移区电阻突变形成的snapback现象。
逆向导通时,栅极接地,阳极接地,阴极接正压。器件右侧的P型阱区、N型载流子存储层、N型漂移区以及阳极N+形成体二极管,与图三的普通超结器件相比,本发明器件的P型漂移区不参与反向导通,并且由于体二极管阳极有效注入区域变小,因此反向导通时注入的载流子急剧减小,从而降低了本发明器件的反向恢复电荷。
Claims (1)
1.一种具有两种导电模式的超结MOSFET,其元胞包括阳极结构、耐压层结构、阴极结构、栅极结构以及绝缘介质结构,其中耐压层结构位于阳极结构之上,阴极结构和栅极结构位于耐压层结构之上,绝缘介质结构垂直插入阳极结构、耐压层结构以及阴极结构的中间;
所述阴极结构包括位于耐压层结构上表面的N型载流子存储层(6),所述N型载流子存储层(6)上表面具有P型阱区(8),所述P型阱区(8)上表面具有N+阴极区(10)和P+体接触区(9),且N+阴极区(10)位于P+体接触区(9)两侧,N+阴极区(10)和P+体接触区(9)的共同引出端为阴极(E);
所述栅极结构为沟槽栅,所述沟槽栅由绝缘介质(11)和位于绝缘介质(11)之中的导电材料(12)构成;所述导电材料(12)的引出端为器件的栅极(G);所述沟槽栅从器件表面垂直穿过P型阱区(8)和N型载流子存储层(6)后延伸入耐压层结构中,沟槽栅的侧面与N型载流子存储层(6)、P型阱区(8)以及N+型阴极区(10)的侧面接触;
所述耐压层结构包括N型漂移区(4)以及P型漂移区(5),所述P型漂移区(5)与N型漂移区(4)以绝缘介质结构为分界线呈间隔分布,所述P型漂移区(5)以及N型漂移区(4)的上表面与沟槽栅的下表面及侧面以及N型载流子存储层(6)下表面接触,所述P型漂移区(5)与N型漂移区(4)形成超结结构;
所述阳极结构包括P+阳极区(2)、N+阳极区(1)和N型缓冲层(3),所述N型缓冲层(3)的上表面与耐压层相连接,所述P+阳极区(2)以及N+阳极区(1)的上表面与N型缓冲层(3)相连接,所述P+阳极区(2)位于P型漂移区(5)一侧,且横向宽度大于等于P型漂移区(5)的横向宽度,所述N+阳极区(1)位于N型漂移区(4)一侧,且横向宽度小于等于P型漂移区(5)的横向宽度,所述P+阳极区(2)以及N+阳极区(1)的共同引出端为阳极(C);
所述绝缘介质结构包括绝缘介质(7),绝缘介质(7)位于N型漂移区(4)以及P型漂移区(5)的垂直分界线处,并沿着垂直分界线处向上依次穿过N型载流子存储层(6)、P型阱区(8)以及P+体接触区(9),同时沿着的垂直分界线处向下穿过N型缓冲层(3),其下表面与P+阳极区(2)接触;
在正向导通时,当阳极电压较低时,器件工作在单极型导电模式,随着阳极电压升高,器件工作在单极型及双极型共存的导电模式,从而具有两种导电模式。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010005381.8A CN111180518B (zh) | 2020-01-03 | 2020-01-03 | 一种具有两种导电模式的超结mosfet |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202010005381.8A CN111180518B (zh) | 2020-01-03 | 2020-01-03 | 一种具有两种导电模式的超结mosfet |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111180518A true CN111180518A (zh) | 2020-05-19 |
CN111180518B CN111180518B (zh) | 2021-03-16 |
Family
ID=70649289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202010005381.8A Active CN111180518B (zh) | 2020-01-03 | 2020-01-03 | 一种具有两种导电模式的超结mosfet |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111180518B (zh) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111969062A (zh) * | 2020-09-21 | 2020-11-20 | 电子科技大学 | 一种改善反向恢复特性的超结mosfet |
CN114883395A (zh) * | 2022-05-05 | 2022-08-09 | 电子科技大学 | 一种具有部分p型漂移区的igbt |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104201194A (zh) * | 2014-08-26 | 2014-12-10 | 电子科技大学 | 一种具有超低比导通电阻特性的高压功率器件 |
CN105895690A (zh) * | 2015-02-16 | 2016-08-24 | 肖胜安 | 一种超级结器件结构及其制造方法 |
US20160268367A1 (en) * | 2014-06-26 | 2016-09-15 | Icemos Technology Ltd. | Method of forming superjunction high voltage devices using wafer bonding |
US9536997B1 (en) * | 2015-09-10 | 2017-01-03 | Kabushiki Kaisha Toshiba | Semiconductor device |
US20170084728A1 (en) * | 2014-12-23 | 2017-03-23 | University Of Electronic Science And Technology Of China | Bidirectional mos device and method for preparing the same |
US20170141224A1 (en) * | 2015-11-16 | 2017-05-18 | Kabushiki Kaisha Toshiba | Semiconductor device |
CN208028068U (zh) * | 2017-01-26 | 2018-10-30 | 半导体元件工业有限责任公司 | 半导体器件 |
-
2020
- 2020-01-03 CN CN202010005381.8A patent/CN111180518B/zh active Active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20160268367A1 (en) * | 2014-06-26 | 2016-09-15 | Icemos Technology Ltd. | Method of forming superjunction high voltage devices using wafer bonding |
CN104201194A (zh) * | 2014-08-26 | 2014-12-10 | 电子科技大学 | 一种具有超低比导通电阻特性的高压功率器件 |
US20170084728A1 (en) * | 2014-12-23 | 2017-03-23 | University Of Electronic Science And Technology Of China | Bidirectional mos device and method for preparing the same |
CN105895690A (zh) * | 2015-02-16 | 2016-08-24 | 肖胜安 | 一种超级结器件结构及其制造方法 |
US9536997B1 (en) * | 2015-09-10 | 2017-01-03 | Kabushiki Kaisha Toshiba | Semiconductor device |
US20170141224A1 (en) * | 2015-11-16 | 2017-05-18 | Kabushiki Kaisha Toshiba | Semiconductor device |
CN208028068U (zh) * | 2017-01-26 | 2018-10-30 | 半导体元件工业有限责任公司 | 半导体器件 |
Non-Patent Citations (2)
Title |
---|
HOLGER BARTOLF ET AL: ""Development of a 60μm Deep Trench and Refill Process for Manufacturing Si-Based High-Voltage Super-Junction Structures"", 《IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING》 * |
QI WANG ET AL: ""A New SJ VDMOS with an Extended HK Dielectric-Filling Trench"", 《IEEE》 * |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111969062A (zh) * | 2020-09-21 | 2020-11-20 | 电子科技大学 | 一种改善反向恢复特性的超结mosfet |
CN111969062B (zh) * | 2020-09-21 | 2021-06-04 | 电子科技大学 | 一种改善反向恢复特性的超结mosfet |
CN114883395A (zh) * | 2022-05-05 | 2022-08-09 | 电子科技大学 | 一种具有部分p型漂移区的igbt |
CN114883395B (zh) * | 2022-05-05 | 2023-04-25 | 电子科技大学 | 一种具有部分p型漂移区的igbt |
Also Published As
Publication number | Publication date |
---|---|
CN111180518B (zh) | 2021-03-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN108389901B (zh) | 一种载流子存储增强型超结igbt | |
CN110767753B (zh) | 一种SiC功率器件 | |
US11211485B2 (en) | Trench power transistor | |
CN109244136B (zh) | 槽底肖特基接触SiC MOSFET器件 | |
CN111048594B (zh) | 一种集成快恢复二极管的SiC功率器件 | |
CN109830524B (zh) | 一种极低反向恢复电荷超结功率vdmos | |
US10340373B2 (en) | Reverse conducting IGBT | |
CN110993687B (zh) | 一种超结逆导型栅控双极型器件 | |
CN110416294B (zh) | 一种高耐压低损耗超结功率器件 | |
US20150187877A1 (en) | Power semiconductor device | |
CN112928156B (zh) | 一种浮空p柱的逆导型槽栅超结IGBT | |
CN111799334B (zh) | 一种含有反向导电槽栅结构的超结mosfet | |
CN109166923B (zh) | 一种屏蔽栅mosfet | |
CN111180518B (zh) | 一种具有两种导电模式的超结mosfet | |
CN109449202A (zh) | 一种逆导双极型晶体管 | |
CN109686787B (zh) | 一种利用二极管钳位的具有载流子存储层的igbt器件 | |
CN109686788B (zh) | 一种具有载流子存储层的槽栅igbt器件 | |
CN117790553A (zh) | 一种具有低功耗高短路安全工作区的槽栅双极型晶体管 | |
CN110504305B (zh) | 一种具有自偏置pmos钳位载流子存储层的SOI-LIGBT器件 | |
US20150187922A1 (en) | Power semiconductor device | |
CN113193043B (zh) | 一种具有二极管钳位载流子存储层的槽栅igbt器件 | |
CN112928155B (zh) | 一种浮空p柱的槽栅超结IGBT | |
CN111933687B (zh) | 具有高安全工作区的横向功率器件 | |
US9209287B2 (en) | Power semiconductor device | |
CN109888006B (zh) | 一种低功耗绝缘体上硅横向绝缘栅双极型晶体管 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |