CN111162300B - 高离子交换容量的阳离子交换膜及其制备方法和应用 - Google Patents
高离子交换容量的阳离子交换膜及其制备方法和应用 Download PDFInfo
- Publication number
- CN111162300B CN111162300B CN201911226764.1A CN201911226764A CN111162300B CN 111162300 B CN111162300 B CN 111162300B CN 201911226764 A CN201911226764 A CN 201911226764A CN 111162300 B CN111162300 B CN 111162300B
- Authority
- CN
- China
- Prior art keywords
- ion exchange
- exchange membrane
- cation exchange
- exchange capacity
- membrane
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000012528 membrane Substances 0.000 title claims abstract description 36
- 238000005341 cation exchange Methods 0.000 title claims abstract description 26
- 238000005342 ion exchange Methods 0.000 title claims abstract description 23
- 238000002360 preparation method Methods 0.000 title claims abstract description 8
- 239000003014 ion exchange membrane Substances 0.000 claims abstract description 21
- 229910052720 vanadium Inorganic materials 0.000 claims abstract description 12
- LEONUFNNVUYDNQ-UHFFFAOYSA-N vanadium atom Chemical compound [V] LEONUFNNVUYDNQ-UHFFFAOYSA-N 0.000 claims abstract description 6
- 239000000178 monomer Substances 0.000 claims description 26
- 239000007787 solid Substances 0.000 claims description 20
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N dimethyl sulfoxide Natural products CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 claims description 12
- 229920000642 polymer Polymers 0.000 claims description 12
- DZSVIVLGBJKQAP-UHFFFAOYSA-N 1-(2-methyl-5-propan-2-ylcyclohex-2-en-1-yl)propan-1-one Chemical compound CCC(=O)C1CC(C(C)C)CC=C1C DZSVIVLGBJKQAP-UHFFFAOYSA-N 0.000 claims description 10
- ZMXDDKWLCZADIW-UHFFFAOYSA-N dimethylformamide Substances CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 claims description 10
- 238000000034 method Methods 0.000 claims description 10
- QAKMXYFDVPDIPT-UHFFFAOYSA-N 1,1,2,3,4,5-hexakis-phenylsilole Chemical group C1=CC=CC=C1C(C(=C([Si]1(C=2C=CC=CC=2)C=2C=CC=CC=2)C=2C=CC=CC=2)C=2C=CC=CC=2)=C1C1=CC=CC=C1 QAKMXYFDVPDIPT-UHFFFAOYSA-N 0.000 claims description 8
- 238000004146 energy storage Methods 0.000 claims description 7
- 238000006116 polymerization reaction Methods 0.000 claims description 7
- 239000002904 solvent Substances 0.000 claims description 5
- 238000010345 tape casting Methods 0.000 claims description 5
- 229920000536 2-Acrylamido-2-methylpropane sulfonic acid Polymers 0.000 claims description 4
- XHZPRMZZQOIPDS-UHFFFAOYSA-N 2-Methyl-2-[(1-oxo-2-propenyl)amino]-1-propanesulfonic acid Chemical compound OS(=O)(=O)CC(C)(C)NC(=O)C=C XHZPRMZZQOIPDS-UHFFFAOYSA-N 0.000 claims description 4
- RLSSMJSEOOYNOY-UHFFFAOYSA-N m-cresol Chemical compound CC1=CC=CC(O)=C1 RLSSMJSEOOYNOY-UHFFFAOYSA-N 0.000 claims description 4
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 claims description 4
- JLZUZNKTTIRERF-UHFFFAOYSA-N tetraphenylethylene Chemical group C1=CC=CC=C1C(C=1C=CC=CC=1)=C(C=1C=CC=CC=1)C1=CC=CC=C1 JLZUZNKTTIRERF-UHFFFAOYSA-N 0.000 claims description 4
- WGVOEQSVPSMJFM-UHFFFAOYSA-N 1,1,2,2,3,3-hexakis-phenylsilole Chemical group C1(=CC=CC=C1)C1(C([Si](C=C1)(C1=CC=CC=C1)C1=CC=CC=C1)(C1=CC=CC=C1)C1=CC=CC=C1)C1=CC=CC=C1 WGVOEQSVPSMJFM-UHFFFAOYSA-N 0.000 claims description 3
- 239000003795 chemical substances by application Substances 0.000 claims description 3
- 238000010528 free radical solution polymerization reaction Methods 0.000 claims description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 claims description 3
- CYSGHNMQYZDMIA-UHFFFAOYSA-N 1,3-Dimethyl-2-imidazolidinon Chemical compound CN1CCN(C)C1=O CYSGHNMQYZDMIA-UHFFFAOYSA-N 0.000 claims description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 claims description 2
- 238000009835 boiling Methods 0.000 claims description 2
- 238000006243 chemical reaction Methods 0.000 description 17
- 239000003792 electrolyte Substances 0.000 description 11
- 229910052739 hydrogen Inorganic materials 0.000 description 11
- 239000001257 hydrogen Substances 0.000 description 11
- 239000000243 solution Substances 0.000 description 10
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 9
- 238000003756 stirring Methods 0.000 description 9
- -1 hydrogen ions Chemical class 0.000 description 7
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 6
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 4
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 3
- 239000008367 deionised water Substances 0.000 description 3
- 229910021641 deionized water Inorganic materials 0.000 description 3
- UQSQSQZYBQSBJZ-UHFFFAOYSA-N fluorosulfonic acid Chemical compound OS(F)(=O)=O UQSQSQZYBQSBJZ-UHFFFAOYSA-N 0.000 description 3
- 239000003999 initiator Substances 0.000 description 3
- 239000000203 mixture Substances 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- BGJSXRVXTHVRSN-UHFFFAOYSA-N 1,3,5-trioxane Chemical compound C1OCOCO1 BGJSXRVXTHVRSN-UHFFFAOYSA-N 0.000 description 2
- KEQGZUUPPQEDPF-UHFFFAOYSA-N 1,3-dichloro-5,5-dimethylimidazolidine-2,4-dione Chemical compound CC1(C)N(Cl)C(=O)N(Cl)C1=O KEQGZUUPPQEDPF-UHFFFAOYSA-N 0.000 description 2
- 238000005160 1H NMR spectroscopy Methods 0.000 description 2
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- VSCWAEJMTAWNJL-UHFFFAOYSA-K aluminium trichloride Chemical compound Cl[Al](Cl)Cl VSCWAEJMTAWNJL-UHFFFAOYSA-K 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- XTHPWXDJESJLNJ-UHFFFAOYSA-N chlorosulfonic acid Substances OS(Cl)(=O)=O XTHPWXDJESJLNJ-UHFFFAOYSA-N 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000011161 development Methods 0.000 description 2
- 238000001035 drying Methods 0.000 description 2
- 238000001914 filtration Methods 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 238000004519 manufacturing process Methods 0.000 description 2
- VHRYZQNGTZXDNX-UHFFFAOYSA-N methacryloyl chloride Chemical compound CC(=C)C(Cl)=O VHRYZQNGTZXDNX-UHFFFAOYSA-N 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- LSNNMFCWUKXFEE-UHFFFAOYSA-M Bisulfite Chemical compound OS([O-])=O LSNNMFCWUKXFEE-UHFFFAOYSA-M 0.000 description 1
- KRHYYFGTRYWZRS-UHFFFAOYSA-M Fluoride anion Chemical group [F-] KRHYYFGTRYWZRS-UHFFFAOYSA-M 0.000 description 1
- 229920000557 Nafion® Polymers 0.000 description 1
- 239000004696 Poly ether ether ketone Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 238000010521 absorption reaction Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000003197 catalytic effect Effects 0.000 description 1
- 125000002091 cationic group Chemical group 0.000 description 1
- 239000012295 chemical reaction liquid Substances 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000002425 crystallisation Methods 0.000 description 1
- 230000008025 crystallization Effects 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- LMHDQOWNISVSPD-UHFFFAOYSA-N fluorine(1+) Chemical group [F+] LMHDQOWNISVSPD-UHFFFAOYSA-N 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000011056 performance test Methods 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 229920000110 poly(aryl ether sulfone) Polymers 0.000 description 1
- 229920006260 polyaryletherketone Polymers 0.000 description 1
- 229920002530 polyetherether ketone Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- HIFJUMGIHIZEPX-UHFFFAOYSA-N sulfuric acid;sulfur trioxide Chemical compound O=S(=O)=O.OS(O)(=O)=O HIFJUMGIHIZEPX-UHFFFAOYSA-N 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 238000005303 weighing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/102—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
- H01M8/1037—Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having silicon, e.g. sulfonated crosslinked polydimethylsiloxanes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1069—Polymeric electrolyte materials characterised by the manufacturing processes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1069—Polymeric electrolyte materials characterised by the manufacturing processes
- H01M8/1072—Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. in situ polymerisation or in situ crosslinking
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1016—Fuel cells with solid electrolytes characterised by the electrolyte material
- H01M8/1018—Polymeric electrolyte materials
- H01M8/1069—Polymeric electrolyte materials characterised by the manufacturing processes
- H01M8/1086—After-treatment of the membrane other than by polymerisation
- H01M8/1088—Chemical modification, e.g. sulfonation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/18—Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
- H01M8/184—Regeneration by electrochemical means
- H01M8/188—Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- General Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Sustainable Development (AREA)
- Sustainable Energy (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Fuel Cell (AREA)
Abstract
高离子交换容量的阳离子交换膜及其制备方法和应用,属于离子交换膜领域,离子交换膜具有如式Ⅰ所示的分子结构:
Description
技术领域
本发明属于离子交换膜领域,特别是一种高离子交换容量阳离子交换膜及其制备方法,适合于钒电池用离子交换膜。
背景技术
全钒液流储能电池具有安全稳定性好、寿命长、成本低、储能效率高等优点,逐渐成为大规模储能装置的首选之一,不但可以解决风能太阳能潮汐能等可再生能源发电的不连续不稳定的缺点,平滑发电的峰谷输出,平衡电网负荷,而且还可以增加智能电网对可再生能源发电的兼容量从而提高电能利用率。
全钒液流储能电池用阳离子交换膜主要是用于分隔电池的正极电解液和负极电解液,避免正负极电解液发生反应,造成能量损失,而最重要的作用是给正负极电解液中的氢离子提供良好的传递媒介和通道,给整个电池系统提供一个完整闭合的回路。由于阳离子交换膜在正负极电解液之间属于“异相”,即非水溶液形态,因此,氢离子从一侧电解液经过膜进到另一侧电解液过程中,会受到较大的阻力,其运动速率和方向会受到很大程度的影响,也就是说,氢离子通过膜的效率会下降,研究表明,氢离子通过膜的效率与阳离子交换膜上可供离子交换的有效基团的数量直接相关。也就是说,单位质量的阳离子交换膜上可交换阳离子基团越多,氢离子通过膜的效率越高,这样会降低膜电阻导致的电池内部电压损失,提高电池的库伦效率。
目前,全钒液流电池系统主要是用的还是杜邦公司的Nafion系列的全氟磺酸离子交换膜,其离子交换容量(IEC)一般在0.90-1.10mmol/g之间;中国专利CN 103304945A提出了一种全氟磺酸离子交换膜及其制备方法,得到的离子交换膜可以提高离子交换容量至1.9mmol/g,但是这种离子交换膜仍是以全氟磺酸基团为基础的,其成本昂贵,生产过程严格苛刻复杂。目前降低离子交换膜成本的就方向是研究非氟类型的离子交换膜,比如聚芳醚酮、聚芳醚砜、聚醚醚酮类以及聚酰亚胺类等类型的非氟离子交换膜,但是其离子交换容量仍然较低(通常低于1.5mmol/g),因此开发一种非氟的具有高离子交换容量的阳离子交换膜具有良好的发展前景。
发明内容
本发明针对现有技术不足,提供了一种基于四苯基乙烯基团和(或)六苯基噻咯基团的阳离子交换膜及其制备方法,这种方法制备的离子交换膜具有较高的离子交换容量,同时又可以保证离子交换膜的较高机械强度和优异的钒电池效率。
为了实现上述目的,本发明提出了如下技术方案:一种高离子交换容量的阳离子交换膜,所述阳离子交换膜的分子具有以下分子结构:
其中,m为聚合物链上含有磺化四苯基乙烯结构的结构单元占总聚合度的比例,n为聚合物链上含有磺化六苯基噻咯结构的结构单元占总聚合度的比例,且0≤m<1,0≤n<1,m+n<1。
进一步的,所述阳离子交换膜的制备方法由含有四苯乙烯基基团的单体和(或)含有六苯基噻咯结构的单体以及2-丙烯酰胺-2-甲基丙磺酸单体通过溶液聚合反应共聚而成,然后分离所得固体聚合物产物,再用过量磺化剂(浓硫酸、发烟硫酸或氯磺酸)将苯环磺化,将最终得到的聚合物溶解于高沸点溶剂中,通过溶液流延浇铸法制备离子交换膜。
进一步的,所述高沸点溶剂为二甲基亚砜、N,N’-二甲基甲酰胺、间甲酚、1,3-二甲基-2-咪唑啉酮、N-甲基吡咯烷酮中的一种或者几种混合使用。
本发明的有益效果是:提供了一种全新的非氟阳离子交换膜及其制备方法,这种阳离子交换膜具有较高的离子交换容量,与此同时良好机械性能和优异的钒电池性能,可以替代现有的离子交换膜应用于钒电池储能领域。
具体实施方式
为了更好的理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于以下几个实施例。
以下实施例更加详细地描述了本发明中一种高离子交换容量阳离子交换膜的及其制备方法,并且这些实施例以说明的方式给出,但这些实施例不限制本发明的范围。
双键氢残余量的检测方法:准确称取一定质量的1,3,5-三噁烷固体(作为内标,不参与聚合反应),其质量约为反应前单体质量的十分之一,加入所述反应前的溶液中,搅拌均匀,充分溶解后,取一滴反应液滴加到0.6mLd-DMSO中做1H NMR核磁测试;反应结束后,再取一滴反应液,同样方法进行1H NMR核磁测试。由于反应前后内标1,3,5-三噁烷摩尔量保持不变,而双键氢含量在降低,通过比较反应前和反应后的双键质子吸收峰的积分面积,计算双键氢残余量。
离子膜的厚度由Fisher厚度测试仪进行测试,每个样品在不同位置测50个值求平均值;
离子膜的拉伸强度、断裂伸长率的测试参照标准GB/T 1040.3-2006《塑料拉伸性能的测定第3部分:薄膜和薄片的试验条件》,将膜裁成宽度为10mm,夹具初始间距为50mm的条状,以200mm/min的拉伸速率进行实验;
离子膜的离子交换容量的测试方法参照标准NB/T 42080-2016《全钒液流电池用离子传导膜测试方法》进行测试;
离子膜的全钒液流储能电池性能测试条件:在电流密度为80mA/cm2条件下进行充放电实验,充电至1.55V,放电至1.00V,使用北京晶龙特碳科技有限公司生产的石墨碳毡作为反应电极,电极有效工作面积为48cm2,正负极电解液分别为VO2+/VO2 +和V2+/V3+的硫酸溶液,电池工作温度为37℃。
实施例1
参照文献(Chem.Commun.,2009,4974-4976)制备如附图1(a)所示的单体A,将43.9g(0.1mol)单体A与2.07g(0.01mol)2-丙烯酰胺-2-甲基丙磺酸溶解在300mLN,N’-二甲基甲酰胺(DMF)中,充分搅拌溶解,加入0.165g引发剂偶氮二异丁腈,在70℃下加热反应,至反应体系的双键氢残余量小于0.5%,停止反应,将得到的溶液逐渐地加入过量的甲醇中沉淀,过滤干燥,得到胶状固体;
将得到的固体加入到自身质量三倍的浓硫酸中,三倍质量是个优选数值,固体自身质量的2~4倍也是被允许的过量范围,在0-5℃下搅拌磺化5h,当然,5h是个优选的搅拌时间,4~6小时也是被允许的搅拌时间,再将得到的固体用去离子水洗涤后,重新溶解到DMF中,制得质量分数为10wt%的溶液,使用流延浇铸法制得厚度为50±2μm的阳离子交换膜。
实施例2
将2-丙烯酰胺-2-甲基丙磺酸的质量变为3.105g(0.015mol),其他同实施例1保持一致,制得厚度为50±2μm的阳离子交换膜。
实施例3
将2-丙烯酰胺-2-甲基丙磺酸的质量变为4.14g(0.02mol),其他同实施例1保持一致,制得厚度为50±2μm的阳离子交换膜。
实施例4
制备六苯基噻咯基异丙烯基酮(单体B,其结构如附图1(b)所示):将53.8g(0.1mol)六苯基噻咯溶解于无水四氢呋喃中,并加入催化量的无水氯化铝粉末,搅拌均匀后,逐渐滴加入12.54g(0.12mol)甲基丙烯酰氯,在60℃下搅拌反应10h,减压蒸馏反应体系中残余的甲基丙烯酰氯和溶剂,得到单体B,产率98.2%
将30.3g(0.05mol)单体B与0.517g(0.0025mol)2-丙烯酰胺-2-甲基丙磺酸溶解在300mL二甲基亚砜(DMSO)中,充分搅拌溶解,加入0.08g引发剂偶氮二异丁腈,在70℃下加热反应,至反应体系的双键氢残余量小于0.5%,停止反应,将得到的溶液逐渐地加入过量的甲醇中沉淀,过滤干燥,得到胶状固体;
将得到的固体加入到自身质量三倍的氯磺酸中,在0-5℃下搅拌磺化5h,再将得到的固体用去离子水洗涤后,重新溶解到DMSO中,制得质量分数为10wt%的溶液,使用流延浇铸法制得厚度为50±2μm的阳离子交换膜。
实施例5
将35.12g(0.08mol)单体A、9.09g(0.015mol)单体B和1.035g(0.005mol)2-丙烯酰胺-2-甲基丙磺酸溶解在500mL DMF中,充分搅拌溶解,加入1.65g引发剂偶氮二异丁腈,在75℃下反应,至反应体系的双键氢残余量小于0.5%,停止反应,将得到的溶液逐渐地加入过量的甲醇中沉淀,过滤干燥,得到胶状固体;
将得到的固体加入到自身质量三倍的浓硫酸中,在0-5℃下搅拌磺化5h,再将得到的固体用去离子水洗涤后,重新溶解到DMSO中,制得质量分数为10wt%的溶液,使用流延浇铸法制得厚度为50±2μm的阳离子交换膜。
实施例6
将实施例5中单体A和单体B的摩尔量分别改为0.05mol和0.045mol,其他同实施例5保持一致,制得厚度为50±2μm的阳离子交换膜。
实施例7
将实施例5中单体A和单体B的摩尔量分别改为0.015mol和0.08mol,其他同实施例5保持一致,制得厚度为50±2μm的阳离子交换膜。
表1实施例1-7得到的阳离子交换膜实验数据
从上表中实施例1-7可以看出,本发明所制备的离子交换膜相比于近似同等厚度的212全氟磺酸离子交换膜具有较高的离子交换容量、机械性能和钒电池的库伦效率,通过实施例1-3可以看出,聚合物中2-丙烯酰胺-2-甲基丙磺酸的比例降低会提高离子交换膜的离子交换容量,但是并非2-丙烯酰胺-2-甲基丙磺酸的比例越低越好,这是因为如果没有2-丙烯酰胺-2-甲基丙磺酸,单纯四苯乙烯大单体或(和)六苯基噻咯大单体的位阻都比较大,互相之间聚合的难度会提高,因此,本发明中的位阻小的2-丙烯酰胺-2-甲基丙磺酸可以起到位阻调节的作用,有利于大单体的聚合。对于实施例4中六苯基噻咯大单体与2-丙烯酰胺-2-甲基丙磺酸单体共聚也是基于此原因。从实施例5-7可以看出,在2-丙烯酰胺-2-甲基丙磺酸组分不变的情况下,提高六苯基噻咯大单体的比例会在一定程度上提高制得的离子交换膜的离子交换容量,但是过高的六苯基噻咯大单体的比例会导致机械性能的降低,这可能是因为六苯基噻咯大单体的比例的提高使得分子链的柔顺性大幅度下降,聚合物结晶性能变差,导致机械性能的降低。
本发明中通过将含有大量可磺化的苯环的单体引入到聚合物的主链,提高可用于离子交换基团的密度来大幅度提高离子交换容量,并且通过刚性的苯环结构来保证膜的机械性能。
各实施例中涉及的单体A和B的结构式如下:
本发明中实施例仅提及了基于四苯基乙烯基和六苯基噻咯基的两种单体,这仅为本发明的举例说明,并非局限于这两种单体,以上结合具体实施方式和具体实施例对本发明的构思做了阐述。本领域人员在得到本发明的教导之后,很容易想到对上述的技术细节进行变化或改进,这些均应包含在权利要求书所限定的范围之内。
Claims (6)
2.一种高离子交换容量的阳离子交换膜的制备方法,其特征在于,由含有四苯乙烯基基团的单体和含有六苯基噻咯结构的单体中的其一或二者的组合与2-丙烯酰胺-2-甲基丙磺酸单体通过溶液聚合反应共聚,分离所得固体聚合物产物,用过量磺化剂将苯环磺化,将得到的聚合物溶解于高沸点溶剂中,通过溶液流延浇铸法制得离子交换膜。
3.如权利要求2所述的高离子交换容量的阳离子交换膜的制备方法,其特征在于,若含有四苯乙烯基基团的单体与2-丙烯酰胺-2-甲基丙磺酸单体通过溶液聚合反应共聚,其摩尔比是10:1。
4.如权利要求2所述的高离子交换容量的阳离子交换膜的制备方法,其特征在于,过量磺化剂是分离所得固体聚合物产物三倍质量的磺化剂。
5.如权利要求2所述高离子交换容量的阳离子交换膜的制备方法,所述高沸点溶剂为二甲基亚砜、N,N’-二甲基甲酰胺、间甲酚、1,3-二甲基-2-咪唑啉酮、N-甲基吡咯烷酮中的一种或者几种混合使用。
6.权利要求1所述的高离子交换容量的阳离子交换膜在钒电池储能中提高离子交换容量或机械性能或钒电池的库伦效率的应用。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911226764.1A CN111162300B (zh) | 2019-12-04 | 2019-12-04 | 高离子交换容量的阳离子交换膜及其制备方法和应用 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201911226764.1A CN111162300B (zh) | 2019-12-04 | 2019-12-04 | 高离子交换容量的阳离子交换膜及其制备方法和应用 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN111162300A CN111162300A (zh) | 2020-05-15 |
CN111162300B true CN111162300B (zh) | 2021-05-14 |
Family
ID=70556371
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201911226764.1A Active CN111162300B (zh) | 2019-12-04 | 2019-12-04 | 高离子交换容量的阳离子交换膜及其制备方法和应用 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN111162300B (zh) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120134048A (ko) * | 2011-05-30 | 2012-12-11 | 주식회사 동진쎄미켐 | 폴리아릴렌계 중합체, 이의 제조방법 및 이를 이용한 연료전지용 고분자 전해질 막 |
CN108929407A (zh) * | 2018-08-02 | 2018-12-04 | 大连融科储能技术发展有限公司 | 一种基于环糊精交联聚合物的阳离子交换膜及其制备方法和应用 |
CN109390601A (zh) * | 2017-08-08 | 2019-02-26 | 大连融科储能技术发展有限公司 | 一种离子交换膜的制备方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20140255696A1 (en) * | 2011-12-28 | 2014-09-11 | The Hong Kong University Of Science And Technology | Biotin-Decorated Fluorescent Silica Nanoparticles With Aggregation-Induced Emission for Tumor Cell Targeting and Long-Term Tumor Cell Tracking |
WO2014061546A1 (ja) * | 2012-10-18 | 2014-04-24 | 東レ株式会社 | ベンゾインドロカルバゾール誘導体、それを用いた発光素子材料および発光素子 |
-
2019
- 2019-12-04 CN CN201911226764.1A patent/CN111162300B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20120134048A (ko) * | 2011-05-30 | 2012-12-11 | 주식회사 동진쎄미켐 | 폴리아릴렌계 중합체, 이의 제조방법 및 이를 이용한 연료전지용 고분자 전해질 막 |
CN109390601A (zh) * | 2017-08-08 | 2019-02-26 | 大连融科储能技术发展有限公司 | 一种离子交换膜的制备方法 |
CN108929407A (zh) * | 2018-08-02 | 2018-12-04 | 大连融科储能技术发展有限公司 | 一种基于环糊精交联聚合物的阳离子交换膜及其制备方法和应用 |
Also Published As
Publication number | Publication date |
---|---|
CN111162300A (zh) | 2020-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Shi et al. | Polymer electrolyte membranes for vanadium redox flow batteries: fundamentals and applications | |
Zhang et al. | Preparation of chloromethylated/quaternized poly (phthalazinone ether ketone) anion exchange membrane materials for vanadium redox flow battery applications | |
Chen et al. | Low vanadium ion permeabilities of sulfonated poly (phthalazinone ether ketone) s provide high efficiency and stability for vanadium redox flow batteries | |
CN105131289B (zh) | 一种新型磺化聚苯并咪唑共聚物、交联膜、制备方法及其应用 | |
CN106784946B (zh) | 燃料电池用阳离子基团功能化的聚芴醚腈交联型阴离子交换膜材料及其制备方法 | |
Lu et al. | Synthesis and investigation of imidazolium functionalized poly (arylene ether sulfone) s as anion exchange membranes for all-vanadium redox flow batteries | |
CN108428837B (zh) | 一种侧链型磺化聚酰亚胺/全氟磺酸复合膜及其制备方法和应用 | |
CN114213688B (zh) | 聚苯并咪唑型两性离子交换膜材料及其制备方法和应用 | |
Cai et al. | Preparation and properties of sulfonated poly (aryl ether sulfone) s proton exchange membranes based on amino graft for vanadium flow battery | |
CN111423607B (zh) | 一种双支化节磺化聚酰亚胺膜的制备方法 | |
CN111162300B (zh) | 高离子交换容量的阳离子交换膜及其制备方法和应用 | |
CN110564150A (zh) | 一种长侧链型季铵化聚苯并咪唑交联膜及其制备方法 | |
CN117199465B (zh) | 一种钒液流电池用高离子选择性离子膜及其制备方法 | |
CN115160476B (zh) | 一种交联型两性离子交换膜及其制备方法和应用 | |
CN108929407B (zh) | 一种基于环糊精交联聚合物的阳离子交换膜及其制备方法和应用 | |
CN111393695B (zh) | 一种自交联磺化聚酰亚胺膜的制备方法 | |
CN113278151B (zh) | 一类含密集型烷基硫柔性侧链结构聚芳醚砜聚合物及其制备方法和应用 | |
CN111106372A (zh) | 具有刚性链段的阳离子膜在碱性锌基液流电池中的应用 | |
CN112909277B (zh) | 一种离子交换膜及其制备方法和应用 | |
CN113185695A (zh) | 一种聚醚砜单离子聚合物和单离子凝胶聚合物电解质 | |
CN111013669B (zh) | 阳离子交换膜及其制备方法和应用 | |
CN117065574A (zh) | 一种交联型含氟离子交换膜及其制备方法和应用 | |
CN115627072B (zh) | 一种聚苯并咪唑/磺化聚亚芳基靛红复合质子交换膜的制备和应用 | |
Wang et al. | Stable sulfonated poly (oxindole biphenylene) as ion-solvating membranes toward durable alkaline zinc-iron redox flow battery | |
CN114276572B (zh) | 全钒液流电池用聚醚醚酮基双官能团离子交换膜及其制备方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |