CN111162300B - 高离子交换容量的阳离子交换膜及其制备方法和应用 - Google Patents

高离子交换容量的阳离子交换膜及其制备方法和应用 Download PDF

Info

Publication number
CN111162300B
CN111162300B CN201911226764.1A CN201911226764A CN111162300B CN 111162300 B CN111162300 B CN 111162300B CN 201911226764 A CN201911226764 A CN 201911226764A CN 111162300 B CN111162300 B CN 111162300B
Authority
CN
China
Prior art keywords
ion exchange
exchange membrane
cation exchange
exchange capacity
membrane
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911226764.1A
Other languages
English (en)
Other versions
CN111162300A (zh
Inventor
李全龙
王紫雪
王杰
宋清爽
马相坤
张华民
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Rongke Power Co Ltd
Original Assignee
Dalian Rongke Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Rongke Power Co Ltd filed Critical Dalian Rongke Power Co Ltd
Priority to CN201911226764.1A priority Critical patent/CN111162300B/zh
Publication of CN111162300A publication Critical patent/CN111162300A/zh
Application granted granted Critical
Publication of CN111162300B publication Critical patent/CN111162300B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/102Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer
    • H01M8/1037Polymeric electrolyte materials characterised by the chemical structure of the main chain of the ion-conducting polymer having silicon, e.g. sulfonated crosslinked polydimethylsiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1072Polymeric electrolyte materials characterised by the manufacturing processes by chemical reactions, e.g. insitu polymerisation or insitu crosslinking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials
    • H01M8/1069Polymeric electrolyte materials characterised by the manufacturing processes
    • H01M8/1086After-treatment of the membrane other than by polymerisation
    • H01M8/1088Chemical modification, e.g. sulfonation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/188Regeneration by electrochemical means by recharging of redox couples containing fluids; Redox flow type batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

高离子交换容量的阳离子交换膜及其制备方法和应用,属于离子交换膜领域,离子交换膜具有如式Ⅰ所示的分子结构:

Description

高离子交换容量的阳离子交换膜及其制备方法和应用
技术领域
本发明属于离子交换膜领域,特别是一种高离子交换容量阳离子交换膜及其制备方法,适合于钒电池用离子交换膜。
背景技术
全钒液流储能电池具有安全稳定性好、寿命长、成本低、储能效率高等优点,逐渐成为大规模储能装置的首选之一,不但可以解决风能太阳能潮汐能等可再生能源发电的不连续不稳定的缺点,平滑发电的峰谷输出,平衡电网负荷,而且还可以增加智能电网对可再生能源发电的兼容量从而提高电能利用率。
全钒液流储能电池用阳离子交换膜主要是用于分隔电池的正极电解液和负极电解液,避免正负极电解液发生反应,造成能量损失,而最重要的作用是给正负极电解液中的氢离子提供良好的传递媒介和通道,给整个电池系统提供一个完整闭合的回路。由于阳离子交换膜在正负极电解液之间属于“异相”,即非水溶液形态,因此,氢离子从一侧电解液经过膜进到另一侧电解液过程中,会受到较大的阻力,其运动速率和方向会受到很大程度的影响,也就是说,氢离子通过膜的效率会下降,研究表明,氢离子通过膜的效率与阳离子交换膜上可供离子交换的有效基团的数量直接相关。也就是说,单位质量的阳离子交换膜上可交换阳离子基团越多,氢离子通过膜的效率越高,这样会降低膜电阻导致的电池内部电压损失,提高电池的库伦效率。
目前,全钒液流电池系统主要是用的还是杜邦公司的Nafion系列的全氟磺酸离子交换膜,其离子交换容量(IEC)一般在0.90-1.10mmol/g之间;中国专利CN 103304945A提出了一种全氟磺酸离子交换膜及其制备方法,得到的离子交换膜可以提高离子交换容量至1.9mmol/g,但是这种离子交换膜仍是以全氟磺酸基团为基础的,其成本昂贵,生产过程严格苛刻复杂。目前降低离子交换膜成本的就方向是研究非氟类型的离子交换膜,比如聚芳醚酮、聚芳醚砜、聚醚醚酮类以及聚酰亚胺类等类型的非氟离子交换膜,但是其离子交换容量仍然较低(通常低于1.5mmol/g),因此开发一种非氟的具有高离子交换容量的阳离子交换膜具有良好的发展前景。
发明内容
本发明针对现有技术不足,提供了一种基于四苯基乙烯基团和(或)六苯基噻咯基团的阳离子交换膜及其制备方法,这种方法制备的离子交换膜具有较高的离子交换容量,同时又可以保证离子交换膜的较高机械强度和优异的钒电池效率。
为了实现上述目的,本发明提出了如下技术方案:一种高离子交换容量的阳离子交换膜,所述阳离子交换膜的分子具有以下分子结构:
Figure GDA0002769251310000021
其中,m为聚合物链上含有磺化四苯基乙烯结构的结构单元占总聚合度的比例,n为聚合物链上含有磺化六苯基噻咯结构的结构单元占总聚合度的比例,且0≤m<1,0≤n<1,m+n<1。
进一步的,所述阳离子交换膜的制备方法由含有四苯乙烯基基团的单体和(或)含有六苯基噻咯结构的单体以及2-丙烯酰胺-2-甲基丙磺酸单体通过溶液聚合反应共聚而成,然后分离所得固体聚合物产物,再用过量磺化剂(浓硫酸、发烟硫酸或氯磺酸)将苯环磺化,将最终得到的聚合物溶解于高沸点溶剂中,通过溶液流延浇铸法制备离子交换膜。
进一步的,所述高沸点溶剂为二甲基亚砜、N,N’-二甲基甲酰胺、间甲酚、1,3-二甲基-2-咪唑啉酮、N-甲基吡咯烷酮中的一种或者几种混合使用。
本发明的有益效果是:提供了一种全新的非氟阳离子交换膜及其制备方法,这种阳离子交换膜具有较高的离子交换容量,与此同时良好机械性能和优异的钒电池性能,可以替代现有的离子交换膜应用于钒电池储能领域。
具体实施方式
为了更好的理解本发明,下面结合实施例进一步阐明本发明的内容,但本发明的内容不仅仅局限于以下几个实施例。
以下实施例更加详细地描述了本发明中一种高离子交换容量阳离子交换膜的及其制备方法,并且这些实施例以说明的方式给出,但这些实施例不限制本发明的范围。
双键氢残余量的检测方法:准确称取一定质量的1,3,5-三噁烷固体(作为内标,不参与聚合反应),其质量约为反应前单体质量的十分之一,加入所述反应前的溶液中,搅拌均匀,充分溶解后,取一滴反应液滴加到0.6mLd-DMSO中做1H NMR核磁测试;反应结束后,再取一滴反应液,同样方法进行1H NMR核磁测试。由于反应前后内标1,3,5-三噁烷摩尔量保持不变,而双键氢含量在降低,通过比较反应前和反应后的双键质子吸收峰的积分面积,计算双键氢残余量。
离子膜的厚度由Fisher厚度测试仪进行测试,每个样品在不同位置测50个值求平均值;
离子膜的拉伸强度、断裂伸长率的测试参照标准GB/T 1040.3-2006《塑料拉伸性能的测定第3部分:薄膜和薄片的试验条件》,将膜裁成宽度为10mm,夹具初始间距为50mm的条状,以200mm/min的拉伸速率进行实验;
离子膜的离子交换容量的测试方法参照标准NB/T 42080-2016《全钒液流电池用离子传导膜测试方法》进行测试;
离子膜的全钒液流储能电池性能测试条件:在电流密度为80mA/cm2条件下进行充放电实验,充电至1.55V,放电至1.00V,使用北京晶龙特碳科技有限公司生产的石墨碳毡作为反应电极,电极有效工作面积为48cm2,正负极电解液分别为VO2+/VO2 +和V2+/V3+的硫酸溶液,电池工作温度为37℃。
实施例1
参照文献(Chem.Commun.,2009,4974-4976)制备如附图1(a)所示的单体A,将43.9g(0.1mol)单体A与2.07g(0.01mol)2-丙烯酰胺-2-甲基丙磺酸溶解在300mLN,N’-二甲基甲酰胺(DMF)中,充分搅拌溶解,加入0.165g引发剂偶氮二异丁腈,在70℃下加热反应,至反应体系的双键氢残余量小于0.5%,停止反应,将得到的溶液逐渐地加入过量的甲醇中沉淀,过滤干燥,得到胶状固体;
将得到的固体加入到自身质量三倍的浓硫酸中,三倍质量是个优选数值,固体自身质量的2~4倍也是被允许的过量范围,在0-5℃下搅拌磺化5h,当然,5h是个优选的搅拌时间,4~6小时也是被允许的搅拌时间,再将得到的固体用去离子水洗涤后,重新溶解到DMF中,制得质量分数为10wt%的溶液,使用流延浇铸法制得厚度为50±2μm的阳离子交换膜。
实施例2
将2-丙烯酰胺-2-甲基丙磺酸的质量变为3.105g(0.015mol),其他同实施例1保持一致,制得厚度为50±2μm的阳离子交换膜。
实施例3
将2-丙烯酰胺-2-甲基丙磺酸的质量变为4.14g(0.02mol),其他同实施例1保持一致,制得厚度为50±2μm的阳离子交换膜。
实施例4
制备六苯基噻咯基异丙烯基酮(单体B,其结构如附图1(b)所示):将53.8g(0.1mol)六苯基噻咯溶解于无水四氢呋喃中,并加入催化量的无水氯化铝粉末,搅拌均匀后,逐渐滴加入12.54g(0.12mol)甲基丙烯酰氯,在60℃下搅拌反应10h,减压蒸馏反应体系中残余的甲基丙烯酰氯和溶剂,得到单体B,产率98.2%
将30.3g(0.05mol)单体B与0.517g(0.0025mol)2-丙烯酰胺-2-甲基丙磺酸溶解在300mL二甲基亚砜(DMSO)中,充分搅拌溶解,加入0.08g引发剂偶氮二异丁腈,在70℃下加热反应,至反应体系的双键氢残余量小于0.5%,停止反应,将得到的溶液逐渐地加入过量的甲醇中沉淀,过滤干燥,得到胶状固体;
将得到的固体加入到自身质量三倍的氯磺酸中,在0-5℃下搅拌磺化5h,再将得到的固体用去离子水洗涤后,重新溶解到DMSO中,制得质量分数为10wt%的溶液,使用流延浇铸法制得厚度为50±2μm的阳离子交换膜。
实施例5
将35.12g(0.08mol)单体A、9.09g(0.015mol)单体B和1.035g(0.005mol)2-丙烯酰胺-2-甲基丙磺酸溶解在500mL DMF中,充分搅拌溶解,加入1.65g引发剂偶氮二异丁腈,在75℃下反应,至反应体系的双键氢残余量小于0.5%,停止反应,将得到的溶液逐渐地加入过量的甲醇中沉淀,过滤干燥,得到胶状固体;
将得到的固体加入到自身质量三倍的浓硫酸中,在0-5℃下搅拌磺化5h,再将得到的固体用去离子水洗涤后,重新溶解到DMSO中,制得质量分数为10wt%的溶液,使用流延浇铸法制得厚度为50±2μm的阳离子交换膜。
实施例6
将实施例5中单体A和单体B的摩尔量分别改为0.05mol和0.045mol,其他同实施例5保持一致,制得厚度为50±2μm的阳离子交换膜。
实施例7
将实施例5中单体A和单体B的摩尔量分别改为0.015mol和0.08mol,其他同实施例5保持一致,制得厚度为50±2μm的阳离子交换膜。
表1实施例1-7得到的阳离子交换膜实验数据
Figure GDA0002769251310000041
从上表中实施例1-7可以看出,本发明所制备的离子交换膜相比于近似同等厚度的
Figure GDA0002769251310000042
212全氟磺酸离子交换膜具有较高的离子交换容量、机械性能和钒电池的库伦效率,通过实施例1-3可以看出,聚合物中2-丙烯酰胺-2-甲基丙磺酸的比例降低会提高离子交换膜的离子交换容量,但是并非2-丙烯酰胺-2-甲基丙磺酸的比例越低越好,这是因为如果没有2-丙烯酰胺-2-甲基丙磺酸,单纯四苯乙烯大单体或(和)六苯基噻咯大单体的位阻都比较大,互相之间聚合的难度会提高,因此,本发明中的位阻小的2-丙烯酰胺-2-甲基丙磺酸可以起到位阻调节的作用,有利于大单体的聚合。对于实施例4中六苯基噻咯大单体与2-丙烯酰胺-2-甲基丙磺酸单体共聚也是基于此原因。从实施例5-7可以看出,在2-丙烯酰胺-2-甲基丙磺酸组分不变的情况下,提高六苯基噻咯大单体的比例会在一定程度上提高制得的离子交换膜的离子交换容量,但是过高的六苯基噻咯大单体的比例会导致机械性能的降低,这可能是因为六苯基噻咯大单体的比例的提高使得分子链的柔顺性大幅度下降,聚合物结晶性能变差,导致机械性能的降低。
本发明中通过将含有大量可磺化的苯环的单体引入到聚合物的主链,提高可用于离子交换基团的密度来大幅度提高离子交换容量,并且通过刚性的苯环结构来保证膜的机械性能。
各实施例中涉及的单体A和B的结构式如下:
Figure GDA0002769251310000051
本发明中实施例仅提及了基于四苯基乙烯基和六苯基噻咯基的两种单体,这仅为本发明的举例说明,并非局限于这两种单体,以上结合具体实施方式和具体实施例对本发明的构思做了阐述。本领域人员在得到本发明的教导之后,很容易想到对上述的技术细节进行变化或改进,这些均应包含在权利要求书所限定的范围之内。

Claims (6)

1.一种高离子交换容量的阳离子交换膜,其特征在于,所述阳离子交换膜的分子具有如式I所示的分子结构:
Figure DEST_PATH_IMAGE002A
其中m为聚合物链上含有磺化四苯基乙烯结构的结构单元占总聚合度的比例,n为聚合物链上含有磺化六苯基噻咯结构的结构单元占总聚合度的比例,且0≤m<1,0≤n<1,0<m+n<1。
2.一种高离子交换容量的阳离子交换膜的制备方法,其特征在于,由含有四苯乙烯基基团的单体和含有六苯基噻咯结构的单体中的其一或二者的组合与2-丙烯酰胺-2-甲基丙磺酸单体通过溶液聚合反应共聚,分离所得固体聚合物产物,用过量磺化剂将苯环磺化,将得到的聚合物溶解于高沸点溶剂中,通过溶液流延浇铸法制得离子交换膜。
3.如权利要求2所述的高离子交换容量的阳离子交换膜的制备方法,其特征在于,若含有四苯乙烯基基团的单体与2-丙烯酰胺-2-甲基丙磺酸单体通过溶液聚合反应共聚,其摩尔比是10:1。
4.如权利要求2所述的高离子交换容量的阳离子交换膜的制备方法,其特征在于,过量磺化剂是分离所得固体聚合物产物三倍质量的磺化剂。
5.如权利要求2所述高离子交换容量的阳离子交换膜的制备方法,所述高沸点溶剂为二甲基亚砜、N,N’-二甲基甲酰胺、间甲酚、1,3-二甲基-2-咪唑啉酮、N-甲基吡咯烷酮中的一种或者几种混合使用。
6.权利要求1所述的高离子交换容量的阳离子交换膜在钒电池储能中提高离子交换容量或机械性能或钒电池的库伦效率的应用。
CN201911226764.1A 2019-12-04 2019-12-04 高离子交换容量的阳离子交换膜及其制备方法和应用 Active CN111162300B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911226764.1A CN111162300B (zh) 2019-12-04 2019-12-04 高离子交换容量的阳离子交换膜及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911226764.1A CN111162300B (zh) 2019-12-04 2019-12-04 高离子交换容量的阳离子交换膜及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111162300A CN111162300A (zh) 2020-05-15
CN111162300B true CN111162300B (zh) 2021-05-14

Family

ID=70556371

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911226764.1A Active CN111162300B (zh) 2019-12-04 2019-12-04 高离子交换容量的阳离子交换膜及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111162300B (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120134048A (ko) * 2011-05-30 2012-12-11 주식회사 동진쎄미켐 폴리아릴렌계 중합체, 이의 제조방법 및 이를 이용한 연료전지용 고분자 전해질 막
CN108929407A (zh) * 2018-08-02 2018-12-04 大连融科储能技术发展有限公司 一种基于环糊精交联聚合物的阳离子交换膜及其制备方法和应用
CN109390601A (zh) * 2017-08-08 2019-02-26 大连融科储能技术发展有限公司 一种离子交换膜的制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20140255696A1 (en) * 2011-12-28 2014-09-11 The Hong Kong University Of Science And Technology Biotin-Decorated Fluorescent Silica Nanoparticles With Aggregation-Induced Emission for Tumor Cell Targeting and Long-Term Tumor Cell Tracking
US9825239B2 (en) * 2012-10-18 2017-11-21 Toray Industries, Inc. Benzindolocarbazole derivative, light-emitting element material produced using same, and light-emitting element

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120134048A (ko) * 2011-05-30 2012-12-11 주식회사 동진쎄미켐 폴리아릴렌계 중합체, 이의 제조방법 및 이를 이용한 연료전지용 고분자 전해질 막
CN109390601A (zh) * 2017-08-08 2019-02-26 大连融科储能技术发展有限公司 一种离子交换膜的制备方法
CN108929407A (zh) * 2018-08-02 2018-12-04 大连融科储能技术发展有限公司 一种基于环糊精交联聚合物的阳离子交换膜及其制备方法和应用

Also Published As

Publication number Publication date
CN111162300A (zh) 2020-05-15

Similar Documents

Publication Publication Date Title
Shi et al. Polymer electrolyte membranes for vanadium redox flow batteries: fundamentals and applications
Chen et al. Low vanadium ion permeabilities of sulfonated poly (phthalazinone ether ketone) s provide high efficiency and stability for vanadium redox flow batteries
Liao et al. Fluoro-methyl sulfonated poly (arylene ether ketone-co-benzimidazole) amphoteric ion-exchange membranes for vanadiumáredox flow battery
CN106784946B (zh) 燃料电池用阳离子基团功能化的聚芴醚腈交联型阴离子交换膜材料及其制备方法
CN105131289B (zh) 一种新型磺化聚苯并咪唑共聚物、交联膜、制备方法及其应用
Lu et al. Synthesis and investigation of imidazolium functionalized poly (arylene ether sulfone) s as anion exchange membranes for all-vanadium redox flow batteries
CN108428837B (zh) 一种侧链型磺化聚酰亚胺/全氟磺酸复合膜及其制备方法和应用
CN114213688B (zh) 聚苯并咪唑型两性离子交换膜材料及其制备方法和应用
CN117199465B (zh) 一种钒液流电池用高离子选择性离子膜及其制备方法
CN111423607B (zh) 一种双支化节磺化聚酰亚胺膜的制备方法
CN110564150A (zh) 一种长侧链型季铵化聚苯并咪唑交联膜及其制备方法
CN111162300B (zh) 高离子交换容量的阳离子交换膜及其制备方法和应用
CN115160476B (zh) 一种交联型两性离子交换膜及其制备方法和应用
Dai et al. Amphoteric Nafion membrane with tunable cationic and anionic ratios for vanadium redox flow battery prepared via atom transfer radical polymerization
CN108929407B (zh) 一种基于环糊精交联聚合物的阳离子交换膜及其制备方法和应用
Gao et al. Preparation and application of aromatic polymer proton exchange membrane with low-sulfonation degree
Cai et al. Preparation and properties of sulfonated poly (aryl ether sulfone) s proton exchange membranes based on amino graft for vanadium flow battery
CN111393695B (zh) 一种自交联磺化聚酰亚胺膜的制备方法
CN113278151B (zh) 一类含密集型烷基硫柔性侧链结构聚芳醚砜聚合物及其制备方法和应用
CN113185695A (zh) 一种聚醚砜单离子聚合物和单离子凝胶聚合物电解质
CN112909277B (zh) 一种离子交换膜及其制备方法和应用
CN111013669B (zh) 阳离子交换膜及其制备方法和应用
CN117065574A (zh) 一种交联型含氟离子交换膜及其制备方法和应用
CN115627072B (zh) 一种聚苯并咪唑/磺化聚亚芳基靛红复合质子交换膜的制备和应用
CN109411796A (zh) 一种用于钒电池的交联型质子交换膜及制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant