CN111132987B - 具有优异的热稳定性和反应性的气相沉积前驱物及其制备方法 - Google Patents

具有优异的热稳定性和反应性的气相沉积前驱物及其制备方法 Download PDF

Info

Publication number
CN111132987B
CN111132987B CN201880062172.8A CN201880062172A CN111132987B CN 111132987 B CN111132987 B CN 111132987B CN 201880062172 A CN201880062172 A CN 201880062172A CN 111132987 B CN111132987 B CN 111132987B
Authority
CN
China
Prior art keywords
vapor deposition
precursor
chemical formula
chemical
deposition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201880062172.8A
Other languages
English (en)
Other versions
CN111132987A (zh
Inventor
朴正佑
昔壮衒
金孝淑
朴珉星
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hansong Chemical Co ltd
Original Assignee
Hansong Chemical Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hansong Chemical Co ltd filed Critical Hansong Chemical Co ltd
Publication of CN111132987A publication Critical patent/CN111132987A/zh
Application granted granted Critical
Publication of CN111132987B publication Critical patent/CN111132987B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02205Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates the layer being characterised by the precursor material for deposition
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/06Cobalt compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F15/00Compounds containing elements of Groups 8, 9, 10 or 18 of the Periodic Table
    • C07F15/04Nickel compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/06Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material
    • C23C16/18Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of metallic material from metallo-organic compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/455Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating characterised by the method used for introducing gases into reaction chamber or for modifying gas flows in reaction chamber
    • C23C16/45523Pulsed gas flow or change of composition over time
    • C23C16/45525Atomic layer deposition [ALD]
    • C23C16/45553Atomic layer deposition [ALD] characterized by the use of precursors specially adapted for ALD
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明涉及能够通过气相沉积的薄膜沉积的气相沉积化合物,尤其涉及能够应用于原子层沉积(ALD)或化学气相沉积(CVD)并且具有优越的热稳定性和反应性的镍和钴前驱物,以及涉及制备其的方法。

Description

具有优异的热稳定性和反应性的气相沉积前驱物及其制备 方法
技术领域
本发明涉及通过气相沉积能够薄膜沉积的气相沉积化合物,尤其涉及能够应用于原子层沉积(ALD)或化学气相沉积(CVD)并且具有优越的热稳定性和反应性的镍和钴前驱物,以及制备其的方法。
背景技术
在晶片上使用前驱物通过表面反应形成绝缘膜或导电薄膜的原子层沉积(ALD)工艺或化学气相沉积(CVD)工艺中,合适的前驱物以及工艺设备的选择被认为是非常重要的。
然而,使用镍(Ni)或钴(Co)作为中心金属并且具有适合于气相沉积的熔点、沸点、挥发性、粘度和热稳定性的有机金属前驱物的开发目前是不足的。具体地,由于与氧化反应气体(H2O、O2、O3等)的低的反应性,通常使用的基于醇盐的配体展现出非常低的薄膜生长速率,并且由于中心金属与烷基基团的反应性,基于酰胺基的配体可在200℃或更高的温度引起热分解。此外,基于β-二酮的配体具有低的挥发性,因为由于螯合结构与反应气体相互作用,基于二氨基的配体展现出低的配体离解速率,并且基于氨基-醇的配体具有降低的挥发性和升高的熔点的缺点。基于烷基的配体和基于芳基的配体的热稳定性同样也是差的。当引入脒基或酰胺配体时,有机金属前驱物的挥发性是不足的,并且当引入环戊二烯基配体时,使用有机金属前驱物沉积的薄膜中的杂质的量是增加的。
因此,需要通过设计和引入新类型的配体,开发出能够在如燃料电池、传感器和蓄电池(secondary batteries)工业领域的各种工业领域中利用的新型有机金属前驱物。
同时,相关文献包括[Thomas Pugh、Samuel D.Cosham、Jeff A.Hamilton、AndrewJ.Kingsley和Andrew L.Johnson,“Cobalt(III)Diazabutadiene Precursors for MetalDeposition:Nanoparticle and Thin Film Growth”,Inorganic Chemistry,2013],其公开了在气相沉积工艺中使用的包括钴金属和二氮丁二烯配体的前驱物,但是其结构与本发明的化合物的结构不同。
发明内容
技术问题
因此,本发明意在提供能够应用于原子层沉积(ALD)或化学气相沉积(CVD)的新型气相沉积镍和钴化合物。
特别地,本发明的目的是提供这样的镍和钴化合物,其具有优越的热稳定性,由于较低的残渣发生率阻止加工期间发生的副反应,并且因为低的粘度和汽化速率有利于气相沉积;包括镍和钴化合物的前驱物;及其制备方法。
然而,本发明的目的不限于上述,并且本文未提到的其他目的可以由本领域技术人员通过以下描述清楚地理解。
技术方案
本发明的一方面提供由以下化学式1表示的化合物:
[化学式1]
Figure BDA0002424554960000021
在化学式1中,
M是选自Ni和Co中的任何一个,
R1和R2各自独立地是氢;取代的或未取代的C1-C6直链的或支链的、饱和的或不饱和的烷基基团或其异构体,
R3和R4是取代的或未取代的C1-C4直链的或支链的、饱和的或不饱和的烷基基团或其异构体,
L1和L2是取代的或未取代的C1-C6直链的或支链的、饱和的或不饱和的烷基基团、NR5R6二烷基酰胺、NHR7单烷基酰胺、OR8醇盐或其异构体,以及
R5至R8是取代的或未取代的C1-C6直链的或支链的、饱和的或不饱和的烷基基团或其异构体。
本发明的另一方面提供包括以上化合物的气相沉积前驱物。
本发明的还另一方面提供使用气相沉积前驱物沉积的薄膜。
本发明的仍另一方面提供制造薄膜的方法,其包括将气相沉积前驱物引入至腔室。
本发明的进一步方面提供包括至少一层上述薄膜的多层薄膜。
本发明的还进一步方面提供包括至少一层上述薄膜的存储设备。
有益效果
根据本发明,新型气相沉积镍化合物或钴化合物和包括该气相沉积化合物的前驱物鉴于热稳定性方面是优越的,因此在高温能够薄膜沉积并且由于归因于热损失的较低的残渣发生率阻止加工期间发生的副反应。
此外,本发明的气相沉积前驱物具有低的粘度和低的汽化速率,因此能够获得均匀的薄膜沉积,从而使其可以获得优越的薄膜性能、厚度和阶梯覆盖。
这些性能使其可以提供适合于原子层沉积和化学气相沉积的前驱物并且有助于优越的薄膜特性。
附图简述
图1示意性示出实施例1的配体的合成;以及
图2示意性示出实施例2的前驱物的合成。
最佳方式
在下文中,本发明的实施方式和实施例将参考附图详细地描述,使得本领域技术人员可以易于实现本发明。然而,本发明可以以各种不同形式被修改,并且不限于本文的实施方式和实施例。为了清楚地阐明本发明,与描述无关的部分从附图中省略。
如整个说明书中使用的,当任何部分被提及为“包括”(“comprise”)或“包含”(“include”)任何要素,这意味着其他要素不一定被排除,除非另有说明,否则可被进一步包括。
如整个说明书中使用的,术语“关于……的步骤(step to)”或“……的步骤(stepof)”并不意味着“用于……的步骤(step for)”。
还如整个说明书中使用的,Me意指甲基基团,Et意指乙基基团和iPr意指异丙基基团。
下面参考附图进行对本发明的实施方式和实施例的详细描述。然而,本发明不限于这些实施方式、实施例和附图。
本发明的一方面涉及由以下化学式1表示的化合物:
[化学式1]
Figure BDA0002424554960000041
在化学式1中,
M是选自Ni和Co中的任何一个,
R1和R2各自独立地是氢;取代的或未取代的C1-C6直链的或支链的、饱和的或不饱和的烷基基团或其异构体,
R3和R4是取代的或未取代的C1-C4直链的或支链的、饱和的或不饱和的烷基基团或其异构体,
L1和L2是取代的或未取代的C1-C6直链的或支链的、饱和的或不饱和的烷基基团、NR5R6二烷基酰胺、NHR7单烷基酰胺、OR8醇盐或其异构体,以及
R5至R8是取代的或未取代的C1-C6直链的或支链的、饱和的或不饱和的烷基基团或其异构体。
在本发明的实施方式中,由化学式1表示的化合物优选地通过以下化学式中的任何一个表示:
[化学式1-1]
Figure BDA0002424554960000051
[化学式1-2]
Figure BDA0002424554960000052
[化学式1-1]的化合物是Ni[iPr2-Et,MeDAD][Me]2,和
[化学式1-2]的化合物是Co[iPr2-Et,MeDAD][Me]2。这里,Me是甲基基团,Et是乙基基团和iPr是异丙基基团。
在本发明的实施方式中,化学式1的化合物在室温可以是挥发性的或液体。在原子层沉积(ALD)中,反应物必须是高挥发性、稳定性和高反应性的。在原子层沉积(ALD)中,单层或更少的薄膜以分别供应反应原料的方式在沉积周期期间通过表面反应生长,并且通过与随后供应的其他反应原料的化学反应除去吸附在基质上的反应原料的配体。当将作为反应物的前驱物化合物加热进行原子层沉积时,考虑到反应速率和加工,前驱物化合物在液相中而不是在固相中是有利的。
本发明的另一个方面涉及包括以上化合物的气相沉积前驱物。
在本发明的实施方式中,气相沉积可包括原子层沉积(ALD)或化学气相沉积(CVD),并且化学气相沉积可包括金属有机化学气相沉积(MOCVD)。
本发明的还另一个方面涉及使用气相沉积前驱物沉积的薄膜。
本发明的仍另一个方面涉及制造薄膜的方法,其包括将气相沉积前驱物引入至腔室。将气相沉积前驱物引入至腔室可以包括物理吸附、化学吸附或物理和化学吸附。
在本发明的实施方式中,为了供应气相沉积前驱物,方法可进一步包括在有机溶剂中溶解气相沉积前驱物。在气相沉积中,可以通过使用有机溶剂作为稀释剂的溶液输送设备以降低粘度的形式提供前驱物(即源气体),以有效地移动和注入到其中引入了基质的沉积腔室中。
在本发明的实施方式中,制造薄膜的方法可包括原子层沉积(ALD)或化学气相沉积(CVD),并且化学气相沉积可包括金属有机化学气相沉积(MOCVD)。
本发明的进一步方面涉及包括至少一层上述薄膜的多层薄膜。
本发明的还进一步方面涉及包括至少一层上述薄膜的存储设备。
通过以下实施例将给出对本发明的更好理解,以下实施例不应被解释为限制本发明。
发明的方式
[实施例1]
二氮杂二烯(diazadiene)(DAD)配体的制备
将25g(0.25mol)的2,3-戊二酮溶解在600mL的己烷中,然后冷却至约-20℃。冷却溶液被缓慢地添加429mL(5.0mol)的iPr-NH2,然后缓慢地添加33mL(0.30mol)的TiCl4,并且搅拌。在完成TiCl4的添加后,将所得溶液逐渐温热至室温并在室温进一步搅拌24小时。将反应溶液过滤,并对滤液减压以除去所有溶剂和挥发性杂质。将如此获得的液体在40℃、在0.4托纯化,从而产生为清澈液体的DAD配体(18g,40%)(图1)。
[实施例2]
Ni(DAD)Me2前驱物的制备
将15g(0.063mol)的NiCl2·6H2O溶解在594mL(7.4mol)的吡啶中,然后在120℃加热搅拌3小时。在反应终止后,在减压下进行过滤得到天蓝色固体,然后将其在室温干燥24小时。将26g(0.058mol)的NiCl2(py)4和2mL的吡啶溶解在100mL的Et2O中,然后冷却至-60℃。所得溶液被缓慢地逐滴添加73mL(0.12mol)的MeLi,逐渐温热至室温并搅拌约2小时。在溶液的反应终止后,在减压下除去挥发性溶剂。
在甲苯中稀释后,添加至挥发性溶剂被除去的上述溶液中,并通过过滤器除去副产物,将所得滤液浓缩至近似其一半的体积。此后,将如此浓缩的溶液冷却至-20℃,缓慢地添加DAD配体,逐渐温热至室温并搅拌约1小时。在减压下除去溶剂,从而产生为深红色液体化合物的Ni(DAD)Me2(3.7g,24%)(图2)。
1H-NMR(C6D6):δ3.35(m,1H),
δ2.92(m,1H),
δ1.90(m,6H),
δ0.99(m,2H),
δ-1.12(s,3H)
[实施例3]
钴化合物被添加以实施例1中制备的DAD配体,并且进行如实施例2中的反应和制备工艺,从而制备Co(DAD)Me2前驱物。
[制备实施例1]
使用原子层沉积(ALD)设备,沉积包括实施例2中制备的化学式1的有机金属化合物的有机金属前驱物Ni(DAD)Me2以形成薄膜。在本测试中使用的基底是p-型Si(100)晶片,并且其电阻是0.02Ω·cm。在沉积前,在丙酮、乙醇和去离子水(DI水)的每种中通过超声洗涤该p-型Si晶片10分钟。将Si晶片浸入10%HF的溶液(HF:H2O=1:9)中10秒,以从中去除天然氧化物薄膜。将用HF洗涤的Si晶片立即转移至原子层沉积(ALD)腔室。这里,测试中使用的有机金属前驱物是包括镍的前驱物,但是可以使用实施例3中制备的包括钴的前驱物。将温度维持在85℃。顺序地提供[Ni(DAD)Me2前驱物](15秒)、[Ar](30秒)、[O3](5秒/8秒/10秒)和[Ar](30秒),并且用于吹扫的氩气(Ar)的流速是100sccm。作为反应气体使用的臭氧(O3)被允许以30sccm的流速流动。每种反应气体通过气动阀的开/关控制进气,并且在260℃至340℃的沉积温度范围内,反应器压强是1托。
常规的环戊二烯(cp)和氧化物配体与氧化反应气体的反应性低,因此需要高温条件或高的反应性反应气体以形成镍氧化物膜(NiOx膜)或钴氧化物膜(CoOy膜)。而且,镍或钴烷基复合物和钴或镍二酰胺复合物难于作为前驱物使用,因为它们在室温是不稳定的。烷基或酰胺配体的引入可以改善与氧化反应气体的反应性。与如吡啶或膦的稳定配体不同,在本发明实施例1中制备的二氮杂二烯(DAD)配体由于其相对高的热稳定性和高的氧化反应气体反应性是有优势的。通过以上配体的引入,可以改善复合物的热稳定性。
此外,使用包括二氮杂二烯(DAD)配体的Ni(DAD)Me2前驱物使得均匀的薄膜沉积变得可能,从而获得优越的薄膜性能、厚度和阶梯覆盖。
本发明的范围由所附权利要求而不是前述的详述表示,并且能够来源于所附权利要求的含义、范围和等效概念中的所有改变的或修改的形式应解释为被包括在本发明的范围中。本实施例中使用的所有试剂是商业上可获得的,除非另有说明,否则在未特别纯化的情况下可以使用。
工业实用性
本发明涉及通过气相沉积能够薄膜沉积的气相沉积化合物,其特别地用作为能够应用于原子层沉积(ALD)或化学气相沉积(CVD)并且具有优越的热稳定性和反应性的镍和钴前驱物。

Claims (7)

1.一种由以下化学式1表示的化合物:
[化学式1]
Figure FDA0003888935660000011
在化学式1中,
M是选自Ni和Co中的任何一个,
R1和R2各自独立地是取代的或未取代的C1-C6直链的或支链的、饱和的或不饱和的烷基基团或其异构体,
R3和R4各自独立地是取代的或未取代的C1-C4直链的或支链的、饱和的或不饱和的烷基基团或其异构体,
L1和L2是取代的或未取代的C1-C6直链的或支链的、饱和的或不饱和的烷基基团、NR5R6二烷基酰胺、NHR7单烷基酰胺、OR8醇盐或其异构体,以及
R5至R8是取代的或未取代的C1-C6直链的或支链的、饱和的或不饱和的烷基基团或其异构体。
2.根据权利要求1所述的化合物,其中所述由化学式1表示的化合物通过以下化学式的任何一个表示:
[化学式1-1]
Figure FDA0003888935660000012
[化学式1-2]
Figure FDA0003888935660000021
其中Me是甲基基团。
3.一种气相沉积前驱物,其包括权利要求1或2所述的化合物。
4.根据权利要求3所述的气相沉积前驱物,其中气相沉积包括原子层沉积(ALD)或化学气相沉积(CVD)。
5.一种使用权利要求3所述的气相沉积前驱物沉积的薄膜。
6.一种制造薄膜的方法,其包括将基底上的权利要求3所述的气相沉积前驱物引入至腔室中。
7.根据权利要求6所述的方法,其中所述制造薄膜的方法包括原子层沉积(ALD)或化学气相沉积(CVD)。
CN201880062172.8A 2017-09-26 2018-04-27 具有优异的热稳定性和反应性的气相沉积前驱物及其制备方法 Active CN111132987B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020170123967A KR101962355B1 (ko) 2017-09-26 2017-09-26 열적 안정성 및 반응성이 우수한 기상 증착 전구체 및 이의 제조방법
KR10-2017-0123967 2017-09-26
PCT/KR2018/004929 WO2019066179A1 (ko) 2017-09-26 2018-04-27 열적 안정성 및 반응성이 우수한 기상 증착 전구체 및 이의 제조방법

Publications (2)

Publication Number Publication Date
CN111132987A CN111132987A (zh) 2020-05-08
CN111132987B true CN111132987B (zh) 2023-02-24

Family

ID=65903257

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201880062172.8A Active CN111132987B (zh) 2017-09-26 2018-04-27 具有优异的热稳定性和反应性的气相沉积前驱物及其制备方法

Country Status (4)

Country Link
US (1) US11495453B2 (zh)
KR (1) KR101962355B1 (zh)
CN (1) CN111132987B (zh)
WO (1) WO2019066179A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102487441B1 (ko) * 2014-09-14 2023-01-12 엔테그리스, 아이엔씨. 구리 및 유전체 상의 코발트 침착 선택성
KR102432833B1 (ko) * 2020-07-29 2022-08-18 주식회사 한솔케미칼 유기금속 화합물, 이를 포함하는 전구체 조성물, 및 이를 이용한 박막의 제조방법
KR102557282B1 (ko) 2020-12-21 2023-07-20 주식회사 한솔케미칼 신규 화합물, 이를 포함하는 전구체 조성물, 및 이를 이용한 박막의 제조방법

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6103459A (en) * 1999-03-09 2000-08-15 Midwest Research Institute Compounds for use as chemical vapor deposition precursors, thermochromic materials light-emitting diodes, and molecular charge-transfer salts and methods of making these compounds
CN103298971A (zh) * 2010-11-17 2013-09-11 Up化学株式会社 基于二氮杂二烯的金属化合物、其生产方法和使用其形成薄膜的方法
US20140242298A1 (en) * 2011-09-27 2014-08-28 American Air Liquide, Inc. Nickel bis diazabutadiene precursors, their synthesis, and their use for nickel containing films depositions

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2006012294A2 (en) * 2004-06-25 2006-02-02 Arkema Inc. Chemical vapor deposition with nucleophilic stable carbene-containing precursors
US7619093B2 (en) * 2004-10-15 2009-11-17 Praxair Technology, Inc. Organometallic compounds and mixtures thereof
US20080254218A1 (en) * 2007-04-16 2008-10-16 Air Products And Chemicals, Inc. Metal Precursor Solutions For Chemical Vapor Deposition
WO2012027357A2 (en) 2010-08-24 2012-03-01 Wayne State University Thermally stable volatile precursors
CN106232611A (zh) 2013-10-28 2016-12-14 赛孚思科技有限公司 包含酰胺基亚胺配位体的金属配合物
WO2017099718A1 (en) 2015-12-08 2017-06-15 Intel Corporation Atomic layer etching of transition metals by halogen surface oxidation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6103459A (en) * 1999-03-09 2000-08-15 Midwest Research Institute Compounds for use as chemical vapor deposition precursors, thermochromic materials light-emitting diodes, and molecular charge-transfer salts and methods of making these compounds
CN103298971A (zh) * 2010-11-17 2013-09-11 Up化学株式会社 基于二氮杂二烯的金属化合物、其生产方法和使用其形成薄膜的方法
US20140242298A1 (en) * 2011-09-27 2014-08-28 American Air Liquide, Inc. Nickel bis diazabutadiene precursors, their synthesis, and their use for nickel containing films depositions

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
The influence of electronic and steric factors on chain branching in ethylene polymerization by Brookhart-type Ni(II) diimine catalysts: a combined density functional theory and molecular;Tom K. Woo等;《Journal of Organometallic Chemistry》;20000214;第591卷;第204-213页 *

Also Published As

Publication number Publication date
WO2019066179A1 (ko) 2019-04-04
US11495453B2 (en) 2022-11-08
US20200266056A1 (en) 2020-08-20
KR101962355B1 (ko) 2019-03-26
CN111132987A (zh) 2020-05-08

Similar Documents

Publication Publication Date Title
TWI630200B (zh) 揮發性二氫吡嗪基及二氫吡嗪金屬錯合物
KR101532995B1 (ko) 몰리브덴 알릴 착체 및 박막 증착에서의 이의 용도
CN111132987B (zh) 具有优异的热稳定性和反应性的气相沉积前驱物及其制备方法
EP3348667A1 (en) Chemical vapor deposition feedstock comprising organic ruthenium compound and chemical vapor deposition method using said chemical vapor deposition feedstock
EP2734533B1 (en) Heteroleptic pyrrolecarbaldimine precursors
TW201317245A (zh) 具有優良階梯覆蓋性之釕化合物以及藉由沈積該具有優良階梯覆蓋性之釕化合物所形成之薄膜
KR101769338B1 (ko) 전이금속 함유 전구체, 이의 제조방법 및 이의 용도
US11208723B2 (en) Organometallic precursor compound for vapor deposition for forming oxide thin film and method for manufacturing same
JP7543539B2 (ja) 誘電体膜の形成方法、新規な前駆体、及び半導体製造におけるそれらの使用
JP6321252B1 (ja) イリジウム錯体からなる化学蒸着用原料及び該化学蒸着用原料を用いた化学蒸着法
JP7495086B2 (ja) 有機金属化合物の製造方法およびその方法で得られた有機金属化合物を用いた薄膜
KR102696542B1 (ko) 니켈 헤테로렙틱 화합물, 이의 제조방법 및 이를 포함하는 박막의 제조방법
KR20180115382A (ko) 신규한 텅스텐 전구체 화합물 및 이를 이용한 박막 형성 방법
KR101973700B1 (ko) 망간 아미노아미드 아미드 전구체, 이의 제조방법, 및 이를 이용하여 박막을 형성하는 방법
KR20240100397A (ko) 개선된 촉매 활성을 갖는 전기화학 촉매에 대한 사용을 위한 귀금속 아일렛 또는 박막의 증착
KR20230111911A (ko) 신규한 몰리브데넘 유기금속화합물, 이의 제조방법 및 이를 이용하여 박막을 제조하는 방법
JP2024117104A (ja) 薄膜形成用原料、薄膜及び薄膜の製造方法
KR101428443B1 (ko) 헤테로렙틱 피롤카르브알디민 전구체
KR20160122396A (ko) 니켈 함유 박막의 제조방법 및 이에 따라 제조된 니켈 함유 박막

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant