CN111111714A - 一种氟改性CoP纳米片全pH电解水催化剂的制备方法 - Google Patents

一种氟改性CoP纳米片全pH电解水催化剂的制备方法 Download PDF

Info

Publication number
CN111111714A
CN111111714A CN201911327094.2A CN201911327094A CN111111714A CN 111111714 A CN111111714 A CN 111111714A CN 201911327094 A CN201911327094 A CN 201911327094A CN 111111714 A CN111111714 A CN 111111714A
Authority
CN
China
Prior art keywords
carbon cloth
loaded
cop
catalyst
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911327094.2A
Other languages
English (en)
Inventor
赵子涵
李文娟
曹文文
史传鑫
孙一强
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Jinan
Original Assignee
University of Jinan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Jinan filed Critical University of Jinan
Priority to CN201911327094.2A priority Critical patent/CN111111714A/zh
Publication of CN111111714A publication Critical patent/CN111111714A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/14Phosphorus; Compounds thereof
    • B01J27/185Phosphorus; Compounds thereof with iron group metals or platinum group metals
    • B01J27/1853Phosphorus; Compounds thereof with iron group metals or platinum group metals with iron, cobalt or nickel
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/055Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material
    • C25B11/057Electrodes formed of electrocatalysts on a substrate or carrier characterised by the substrate or carrier material consisting of a single element or compound
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/04Electrodes; Manufacture thereof not otherwise provided for characterised by the material
    • C25B11/051Electrodes formed of electrocatalysts on a substrate or carrier
    • C25B11/073Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material
    • C25B11/091Electrodes formed of electrocatalysts on a substrate or carrier characterised by the electrocatalyst material consisting of at least one catalytic element and at least one catalytic compound; consisting of two or more catalytic elements or catalytic compounds
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Electrochemistry (AREA)
  • Metallurgy (AREA)
  • Inorganic Chemistry (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Catalysts (AREA)
  • Electrodes For Compound Or Non-Metal Manufacture (AREA)

Abstract

本发明涉及一种氟改性CoP纳米片全pH电解水催化剂及其制备方法,属于新型无机纳米功能材料制备技术领域。本发明以碳布负载的Co2(OH)2CO3纳米片阵列为前驱体在气体保护下通过低温磷化的方法制备F‑CoP/CFC复合催化剂。具体步骤如下:首先以硝酸钴和尿素为反应物通过水热法制得碳布负载的Co2(OH)2CO3为前驱体;进一步使用氟化铵对前驱体在气体保护下加热氟化制得碳布负载CoF2,再使用次磷酸钠对碳布负载的CoF2在气体保护下加热、磷化得到碳布负载的F‑CoP复合电解水催化剂。

Description

一种氟改性CoP纳米片全pH电解水催化剂的制备方法
技术领域
本发明涉及一种氟改性CoP纳米片全pH电解水催化剂及其制备方法,属于新型无机纳米功能材料技术领域。
背景技术
传统化石燃料的过度利用以及环境污染的日益加剧引起了世界范围内的广泛关注,新型清洁能源的开发越来越引起人们的重视。电解水作为一种获取清洁能源的技术,因其具有简便易行的特点吸引了科学家的兴趣。但是,因为水分解的过程从化学热力学角度属于非自发反应,且其反应速率缓慢, 因而开发高效的电解水催化剂迫在眉睫。早期研究发现,Pt 基贵金属及其衍生物是目前最好的析氢催化剂,但是其高昂的价格严重制约了其大规模应用。然而,大多数报道的析氢催化剂仅适用于碱性电解槽,适应于酸性或中性介质的催化剂较少,但其对工业应用更有吸引力。因此,开发高效、稳定的全pH析氢催化剂势在必行。
对于低廉的金属磷化物作为析氢反应的催化剂所表现出的良好的性能已经吸引了越来越多的关注。但是,磷-氢键(P-Hads)很容易在金属磷化物表面形成,这会严重阻碍氢气析出反应(HER)的效率。研究表明,通过元素掺杂,实现氢吸附自由能优化,是提高其HER活性的有效方法。F元素由于具有最高的电负性,与水分子易于形成氢键。通过F元素表面改性,可以有效提高CoP催化剂表面水吸附自由能,进而提高催化活性。此外,使用粘结剂制备的催化剂增大了电阻,直接将催化剂生长在基底上面可以提高导电性,制备直接生长金属化合物纳米催化剂可以极大的提高电解水的效率。因此,本发明发展了一种成本低廉、简便易行、低能耗的碳布负载F改性CoP全pH电解水催化剂(F-CoP/CFC)的制备方法,进而制备了具有优异性能的F-CoP/CFC电解水催化剂,其在酸性、碱性、中性环境中都具有良好的催化性能。
发明内容
本发明发展了一种成本低廉、简便易行、低能耗的F改性CoP全pH电解水催化剂的制备方法。本发明提供的这种制备方法,工艺简单,成本低廉,且制备的F-CoP/CFC电解水催化剂在酸性、碱性、中性环境中都具有良好的催化性能,具有较高的实际应用价值。
本发明的目的是通过以下技术方案实现的,一种氟改性CoP纳米片全pH电解水催化剂的制备方法,包括以下步骤:
1)称取1-3 mmol的Co(NO3)2 .6H2O和5-8 mmol的尿素至聚四氟乙烯反应釜中并加水溶解;
2)在步骤1所得反应釜中加入预先裁剪好的1×4 cm的碳布并密封后放置到烘箱中加热后得到碳布负载的Co2(OH)2CO3纳米片阵列;
3)将步骤2所得的碳布负载的Co2(OH)2CO3纳米片阵列进行干燥,并称取150-250 mg的NH4F,将碳布负载的Co2(OH)2CO3和称取的NH4F一起置于石英舟中,并在N2的保护下加热得到碳布负载的CoF2纳米片阵列;
4)称取150-300 mg的NaH2PO2,将步骤3所得的碳布负载的CoF2和称取的NaH2PO2一起置于石英舟中,并在N2的保护下加热得到碳布负载的F-CoP纳米片阵列;
5)作为对比,将步骤2所得的碳布负载的Co2(OH)2CO3进行干燥,并称取150-250 mg的NaH2PO2,将碳布负载的Co2(OH)2CO3和称取的NaH2PO2一起置于石英舟中,并在N2的保护下加热得到碳布负载的CoP纳米片阵列。
本发明的有益效果:
(1)本发明提供了一种在全pH下都具有优异性能的 F-CoP/CFC电解水催化剂的制备方法,即首先通过简单的水热法制备碳布负载的Co2(OH)2CO3纳米片阵列,再继续在N2的保护下加热磷化得到碳布负载的F-CoP纳米片阵列。制备方法简单易操作,不需要特殊的设备,成本低廉且适于大规模制备,可以满足实际应用的需求;
(2)本发明制备的产物为碳布负载F-CoP纳米片阵列,产物形貌尺寸均匀,活性组份由碳布负载易于利用;
(3)本发明制备的F-CoP/CFC复合电解水催化剂在全pH环境下具有优异的电解水产氢性能及良好的稳定性;
(4)本发明的制备仅需实验室常用的普通设备,不需专用设备,工艺过程简便易行。
附图说明
图1 (a)为本发明步骤2所制得的碳布负载的Co2(OH)2CO3纳米片阵列用扫描电子显微镜观察后拍摄的扫描电镜(SEM)照片;
(b)为步骤3制得的碳布负载的CoF2纳米片阵列用扫描电子显微镜观察后拍摄的扫描电镜(SEM)照片;
(c)为步骤4最终制备的碳布负载的F-CoP纳米片阵列用扫描电子显微镜观察后拍摄的扫描电镜(SEM)照片;
(d)为步骤5制备的碳布负载的CoP纳米片阵列用扫描电子显微镜观察后拍摄的扫描电镜(SEM)照片。
图2 (a)为本发明步骤2所制得的碳布负载的Co2(OH)2CO3纳米片阵列的X射线衍射(XRD)图;
(b)为步骤3制得的碳布负载的CoF2纳米片阵列的X射线衍射(XRD)图;
(c)为步骤4最终制备的碳布负载的F-CoP纳米片阵列的X射线衍射(XRD)图;
(d)为步骤5制备的碳布负载的CoP纳米片阵列的X射线衍射(XRD)图。
图3为采用能量色散光谱仪对本发明最终制得的碳布负载的F-CoP纳米片阵列进行元素分析从而得到的能谱图。
图4为制备的碳布负载的F-CoP纳米片阵列作为电解水制氢反应的工作电极在(a)酸性、(b)碱性、(c)中性环境下进行电解水制氢实验,从而得到的极化曲线图。
具体实施方式
下面通过具体实施实例并结合附图对本发明的内容作进一步详细说明,但这些实施例并不限制本发明的保护范围。
实施例1
首先将物质的量为0.001摩尔的硝酸钴,0.005摩尔的尿素水溶液混合,然后转移至聚四氟乙烯反应釜中并加入预先裁剪好的1×4 cm的条状碳布。将上述反应物在120摄氏度烘箱中反应6小时,自然降至室温后即得到碳布负载的Co2(OH)2CO3纳米片。称取250 mg的NH4F,将碳布负载的Co2(OH)2CO3和称取的NH4F一起置于石英舟中,并在N2的保护下加热至350摄氏度1小时得到碳布负载的CoF2纳米片,再称取150mg的NaH2PO2,将所得的碳布负载的CoF2和称取的NaH2PO2一起置于石英舟中,并在N2的保护下加热至320摄氏度1小时得到碳布负载的F-CoP纳米片,自然降至室温后即得到碳布负载的F-CoP复合电解水催化剂。
实施例2
首先将浓度为0.001摩尔每升的硝酸钴,0.005摩尔每升的尿素水溶液混合,然后转移至聚四氟乙烯反应釜中并加入预先裁剪好的1×4 cm的条状碳布。将上述反应物在120摄氏度烘箱中反应6小时,自然降至室温后即得到碳布负载的Co2(OH)2CO3纳米片。称取250mg的NaH2PO2,将所得的碳布负载的Co2(OH)2CO3纳米片和称取的NaH2PO2一起置于石英舟中,并在N2的保护下加热至350摄氏度1.5小时得到碳布负载的CoP,自然降至室温后即得到碳布负载的CoP电解水催化剂。
实施例3
使用辰华760D电化学工作站对F-CoP/CFC复合电解水催化剂电解水产氢活性及稳定性进行测试。以铂丝为对电极,银/氯化银为参比电极,碳布负载的F-CoP为工作电极,1.0摩尔每升KOH水溶液、0.5摩尔每升H2SO4水溶液、1摩尔每升PBS水溶液为电解质溶液。在-0.8至-1.5V电压范围内,以5毫安每秒的扫速进行线性伏安扫描,即可得到其催化电解水产氢的极化曲线。

Claims (3)

1.一种氟改性CoP纳米片全pH电解水催化剂的制备方法,其特征在于制备方法步骤如下:
1)采用水热法,以硝酸钴和尿素为反应物制得碳布负载的Co2(OH)2CO3纳米片阵列为前驱体;
2)将步骤1所得的碳布负载的Co2(OH)2CO3进行干燥,并称取一定量的NH4F,将碳布负载的Co2(OH)2CO3和称取的NH4F一起置于石英舟中,并在保护气体的保护下加热得到碳布负载的CoF2纳米片阵列;
3)将步骤2所得的碳布负载的CoF2纳米片阵列进行干燥,并称取一定量的NaH2PO2,将碳布负载的CoF2纳米片阵列和称取的NaH2PO2一起置于石英舟中,并在保护气体的保护下加热得到碳布负载的F-CoP纳米片阵列。
2.根据权利要求1所述的碳布负载的F-CoP纳米片阵列复合电解水催化剂的制备方法,其特征在于,所述复合催化剂的前驱体的制备是通过水热反应进行的。
3.根据权利要求1所述的碳布负载的F-CoP纳米片阵列复合电解水催化剂的制备方法,其特征在于,所述产物皆是由前驱体在气体保护的无溶液的情况下合成的。
CN201911327094.2A 2019-12-20 2019-12-20 一种氟改性CoP纳米片全pH电解水催化剂的制备方法 Pending CN111111714A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911327094.2A CN111111714A (zh) 2019-12-20 2019-12-20 一种氟改性CoP纳米片全pH电解水催化剂的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911327094.2A CN111111714A (zh) 2019-12-20 2019-12-20 一种氟改性CoP纳米片全pH电解水催化剂的制备方法

Publications (1)

Publication Number Publication Date
CN111111714A true CN111111714A (zh) 2020-05-08

Family

ID=70500653

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911327094.2A Pending CN111111714A (zh) 2019-12-20 2019-12-20 一种氟改性CoP纳米片全pH电解水催化剂的制备方法

Country Status (1)

Country Link
CN (1) CN111111714A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111822014A (zh) * 2020-07-01 2020-10-27 南昌航空大学 一种钛箔负载Fe-CoP纳米阵列结构催化剂及其制备方法和应用
CN113201746A (zh) * 2021-03-26 2021-08-03 广州费舍尔人工智能技术有限公司 一种氟改性钴酸镍修饰碳纳米管电极催化剂

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104941674A (zh) * 2015-06-18 2015-09-30 西南大学 一种活性炭上负载磷化钴的催化剂及其制备方法和应用
US20180023199A1 (en) * 2016-07-19 2018-01-25 Utah State University Electrocatalytic hydrogen evolution and biomass upgrading
CN110252360A (zh) * 2019-06-28 2019-09-20 浙江理工大学 一种生长在碳布上的钴锰磷海胆状纳米线析氢催化材料
CN110354905A (zh) * 2019-08-13 2019-10-22 哈尔滨理工大学 一种电解水析氢催化剂NiCoP/NF@PANI复合材料及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104941674A (zh) * 2015-06-18 2015-09-30 西南大学 一种活性炭上负载磷化钴的催化剂及其制备方法和应用
US20180023199A1 (en) * 2016-07-19 2018-01-25 Utah State University Electrocatalytic hydrogen evolution and biomass upgrading
CN110252360A (zh) * 2019-06-28 2019-09-20 浙江理工大学 一种生长在碳布上的钴锰磷海胆状纳米线析氢催化材料
CN110354905A (zh) * 2019-08-13 2019-10-22 哈尔滨理工大学 一种电解水析氢催化剂NiCoP/NF@PANI复合材料及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
XIAOYU YANG ET AL.: "Self-supported rectangular CoP nanosheet arrays grown on a carbon cloth as an efficient electrocatalyst for the hydrogen evolution reaction over a variety of pH values", 《NEW JOURNAL OF CHEMISTRY》 *
XIULIN YANG ET AL.: "CoP nanosheet assembly grown on carbon cloth: A highly efficient electrocatalyst for hydrogen generation", 《NANO ENERGY》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111822014A (zh) * 2020-07-01 2020-10-27 南昌航空大学 一种钛箔负载Fe-CoP纳米阵列结构催化剂及其制备方法和应用
CN113201746A (zh) * 2021-03-26 2021-08-03 广州费舍尔人工智能技术有限公司 一种氟改性钴酸镍修饰碳纳米管电极催化剂

Similar Documents

Publication Publication Date Title
Xie et al. Bimetal–organic framework MIL-53 (Co–Fe): an efficient and robust electrocatalyst for the oxygen evolution reaction
Lv et al. Urchin-like Al-doped Co3O4 nanospheres rich in surface oxygen vacancies enable efficient ammonia electrosynthesis
Li et al. 3D self-supported porous vanadium-doped nickel nitride nanosheet arrays as efficient bifunctional electrocatalysts for urea electrolysis
CN107376958B (zh) NiFeP双功能过渡金属磷化物催化剂及其制备和用途
Xu et al. In situ grown Ni phosphate@ Ni12P5 nanorod arrays as a unique core–shell architecture: competitive bifunctional electrocatalysts for urea electrolysis at large current densities
Zhang et al. Ni3S2 nanowires grown on nickel foam as an efficient bifunctional electrocatalyst for water splitting with greatly practical prospects
Yang et al. An efficient bifunctional electrocatalyst for water splitting based on cobalt phosphide
CN107587161B (zh) 一种棒状NiFeSe/C电解水催化剂的制备方法
Li et al. Self-supported electrocatalysts for the hydrogen evolution reaction
CN108554413A (zh) 一种三维多级结构高分散镍基电催化材料及其制备方法
CN111270263B (zh) 一种泡沫镍负载富硼、氧空位的四氧化三钴电极及其制备方法
CN109621981B (zh) 一种金属氧化物-硫化物复合析氧电催化剂及其制备方法和应用
CN108940336B (zh) 一种含氮掺杂的钴基碳纳米催化剂及其制备方法和应用
Si et al. Natural light driven photovoltaic-electrolysis water splitting with 12.7% solar-to-hydrogen conversion efficiency using a two-electrode system grown with metal foam
Li et al. Two-dimensional layered SnO2 nanosheets for ambient ammonia synthesis
CN108048868A (zh) 一种氮化钼纳米棒电极材料及其制备方法和应用
Ye et al. Realizing interfacial electron/hole redistribution and superhydrophilic surface through building heterostructural 2 nm co0. 85se‐nise nanograins for efficient overall water splittings
CN111111714A (zh) 一种氟改性CoP纳米片全pH电解水催化剂的制备方法
CN108479791B (zh) 一种Co/Ni-MoO2复合电解水催化剂的制备方法
CN110306204A (zh) 一种掺杂银的层状氢氧化镍复合电极材料及其制备方法与应用
Yang et al. Heterogeneous cobalt-iron phosphide nanosheets formed by in situ phosphating of hydroxide for efficient overall water splitting
Roh et al. Low power consumed PV-electrolysis with CoFeP nanowires for hydrazine-assisted hydrogen production
Yang et al. Interfaces modulation strategy to synthesize bifunctional electrocatalyst for highly efficient overall water splitting
Feng et al. Designing cactus-like Fe-P doped CoNi-S arrays as highly efficient electrocatalyst for overall water splitting
CN114214664A (zh) 一种钴掺杂二硫化钼电催化材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200508

WD01 Invention patent application deemed withdrawn after publication