CN111097475A - 一种过氧化氢改性石墨相氮化碳纳米片及其制备方法 - Google Patents

一种过氧化氢改性石墨相氮化碳纳米片及其制备方法 Download PDF

Info

Publication number
CN111097475A
CN111097475A CN201911409134.8A CN201911409134A CN111097475A CN 111097475 A CN111097475 A CN 111097475A CN 201911409134 A CN201911409134 A CN 201911409134A CN 111097475 A CN111097475 A CN 111097475A
Authority
CN
China
Prior art keywords
urea
preparation
hcn
powder
carbon nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201911409134.8A
Other languages
English (en)
Inventor
蒋恒飞
王玮
罗元钟
盛建钊
周品
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Changzhou Institute of Technology
Original Assignee
Changzhou Institute of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Changzhou Institute of Technology filed Critical Changzhou Institute of Technology
Priority to CN201911409134.8A priority Critical patent/CN111097475A/zh
Publication of CN111097475A publication Critical patent/CN111097475A/zh
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/39Photocatalytic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/633Pore volume less than 0.5 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • C01B3/042Decomposition of water
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2305/00Use of specific compounds during water treatment
    • C02F2305/10Photocatalysts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Thermal Sciences (AREA)
  • Composite Materials (AREA)
  • Manufacturing & Machinery (AREA)
  • General Health & Medical Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Toxicology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Catalysts (AREA)

Abstract

本发明公开了一种过氧化氢改性石墨相氮化碳纳米片及其制备方法,属于光催化技术领域。本发明所述的H2O2 g‑C3N4纳米片的制备方法,包括以下步骤:(1)将Urea g‑C3N4粉末添加到H2O2和乙醇的混合溶剂中,搅拌后进行超声处理,使得溶液分散均匀,得到混合溶液;(2)将步骤(1)的混合溶液通过离心、干燥得到固体;(3)将步骤(2)的固体研磨为细粉,置于坩埚中,进行高温煅烧,即得到过氧化氢改性石墨相氮化碳H2O2 g‑C3N4,简称为HCN。与UCN相比,本发明的改性HCN光催化剂表现出了明显的光催化活性的提升。

Description

一种过氧化氢改性石墨相氮化碳纳米片及其制备方法
技术领域
本发明涉及一种过氧化氢改性石墨相氮化碳纳米片及其制备方法,属于光催化技术领域。
背景技术
不断增加的环境污染和化石能源危机对人类健康和生活生态系统都是有害的。半导体光催化被认为是一种利用取之不尽、用之不竭的清洁太阳能生产可再生能源和环境修复的绿色诱人技术。近年来,各种高效的光催化剂因其在太阳能转化中的应用潜力而受到广泛关注。其中,石墨相氮化碳(g-C3N4)是一种具有层状结构的无金属聚合物半导体,作为一种新型光催化剂具有巨大的性能。
但是,较严重的电子空穴再复合、有限的光响应范围、高温煅烧造成产物的晶粒尺寸较大以及较低的表面活性都制约着g-C3N4的光催化性能。因此,直接高温煅烧制备得到的g-C3N4产物光催化性能非常低,不能满足大规模工业化生产和应用的要求。
目前,常用使用酸(硝酸、硫酸、盐酸等)、碱(氢氧化钠、氢氧化钾等)以及其他溶剂对g-C3N4进行后处理,但是效果也不理想。而且大量使用强酸强碱,不但环境不友好,也不利于大规模推广。
发明内容
为了解决上述至少一个问题,本发明通过H2O2辅助剥层和快速表面热处理的改性方法来制备表面性能优化的多孔g-C3N4(H2O2 g-C3N4),简称为HCN。本发明可有效地将由尿素煅烧制备得到的样品Urea g-C3N4(简称UCN)剥离成多孔超薄纳米薄片,而且H2O2附着在g-C3N4表面,通过对样品进行表面快速热处理使得g-C3N4表面性能得到优化。同时,H2O2作为氧O源,也会使得氧O被掺杂到石墨碳氮化合物的基体中。
本发明的第一个目的是提供一种过氧化氢改性石墨相氮化碳H2O2 g-C3N4纳米片的制备方法,包括以下步骤:
(1)将Urea g-C3N4粉末添加到H2O2和乙醇的混合溶剂中,搅拌后进行超声处理,使得溶液分散均匀,得到混合溶液;
(2)将步骤(1)的混合溶液通过离心、干燥得到固体;
(3)将步骤(2)的固体研磨为细粉,然后置于坩埚中,进行高温煅烧,即得到过氧化氢改性石墨相氮化碳H2O2 g-C3N4,简称为HCN。
在一种实施方式中,步骤(1)所述的Urea g-C3N4的制备方法具体为:将25g尿素置于有盖陶瓷坩埚中,控制马弗炉的升温速率为8℃/min,将坩埚加热至550℃,并保持3小时;冷却至室温后,将坩埚内的固体物质进行研磨得到淡黄色的固体,即Urea g-C3N4粉末,简称:UCN。
在一种实施方式中,步骤(1)所述的H2O2和乙醇的体积比为2:1。
在一种实施方式中,步骤(1)所述的乙醇为无水乙醇。
在一种实施方式中,步骤(1)所述的Urea g-C3N4粉末与混合溶剂的质量体积比为2.67:100,具体为2.67gUrea g-C3N4粉末溶解在100mL混合溶剂中。
在一种实施方式中,步骤(1)所述的Urea g-C3N4粉末的添加量为:20mL的H2O2和10mL的乙醇的混合溶液中添加800mg的Urea g-C3N4粉末。
在一种实施方式中,步骤(1)所述的H2O2的浓度为30%,具体:30%是指过氧化氢溶液中有30%的过氧化氢,70%的水。
在一种实施方式中,步骤(1)所述的搅拌后进行超声处理具体为:在室温(25℃)下搅拌30min后超声处理12小时,超声功率为500W。
在一种实施方式中,步骤(2)所述的离心的具体参数为:6000rpm离心10分钟。
在一种实施方式中,步骤(2)所述的干燥的参数具体为:在50℃下干燥12小时。
在一种实施方式中,步骤(3)所述的高温煅烧具体为:600℃的马弗炉中煅烧60秒。
在一种实施方式中,步骤(3)所述的高温煅烧的升温速率为8℃/min。
本发明的第二个目的是本发明的方法制备得到的H2O2 g-C3N4纳米片。
本发明的第三个目的是本发明的H2O2 g-C3N4纳米片在可见光下的水分解产氢、CO2还原或有机物降解领域的应用。
在一种实施方式中,所述的在有机物降解领域的应用具体为:
(1)将有机物废水和H2O2 g-C3N4纳米片以质量比1000:1的比例混合;
(2)不断向废水池中暴气使废水与H2O2 g-C3N4纳米片混合均匀;
(3)用发射光光波小于380nm的汞灯照射含H2O2 g-C3N4纳米片的废水进行降解反应;
(4)废水浓度经降解达到排出标准后静置,上层清水排出,按步骤(1)中所述比例补充H2O2 g-C3N4纳米片,新流入废水继续发生降解反应。
本发明的有益效果:
(1)与UCN相比,改性HCN光催化剂表现出了巨大的光催化活性的提升。HCN的增强光催化制氢可以归因于扩大的可见光吸收边缘,以及表面活性的增多。这不仅能够激发更多的光生电子空穴对,增加的表面活性位点也促进了光生电子空穴的更快速的迁移,抑制再复合速率。与此同时,改性后的g-C3N4也表现出良好的稳定性。
(2)本发明为g-C3N4基光催化剂的发展提出了一种环境友好、可扩展的策略。
(3)本发明采用H2O2辅助对氮化碳进行剥层,同时将H2O2分子附着在氮化碳表面。经过快速热处理,H2O2在氮化碳表面会快速分解,从而使得氮化碳表面性能得到优化,优化后的样品拥有更多的表面活性位点。
附图说明
图1为实施例1中H2O2 g-C3N4的制备过程示意图。
图2为实施例1中H2O2 g-C3N4和对照例1中Urea g-C3N4的XRD图。
图3为实施例1中H2O2 g-C3N4和对照例1中Urea g-C3N4的UV-vis DRS光谱图。
图4为实施例1中H2O2 g-C3N4和对照例1中Urea g-C3N4的氮气吸附脱附图。
图5为TEM图像;(a):对照例1的Urea g-C3N4;(b-d):实施例1的H2O2 g-C3N4;(e-h):实施例1的H2O2 g-C3N4的样品元素分布。
图6为实施例1中H2O2 g-C3N4的XPS光谱图;(a):全谱图;(b):C1s峰值;(c):N1s的峰值;(d)O1s的峰值。
图7为实施例1中H2O2 g-C3N4的AFM图像。
图8为实施例1中H2O2 g-C3N4的厚度表征。
图9为实施例1中H2O2 g-C3N4和对照例1中Urea g-C3N4的PL光谱。
图10为实施例1中H2O2 g-C3N4和对照例1中Urea g-C3N4的电子自旋共振(ESR图)。
图11为实施例1中H2O2 g-C3N4和对照例1中Urea g-C3N4的光催化制氢的效果表征;(a):光催化制氢时间产量图;(b):H2O2 g-C3N4的光催化循环性能测试。
具体实施方式
以下对本发明的优选实施例进行说明,应当理解实施例是为了更好地解释本发明,不用于限制本发明。
XRD测试:Bruker D8 X射线粉末衍射仪,参数设置如下:2θ=10-80°(扫描速度8°/min),40kV,40mA,Cu靶。
氮气吸附脱附:利用Micromeritics ASAP 2020型N2吸附仪测试得出样品的比表面积、孔径和孔容等物理结构特性。
XPS测试:ESCALAB250Xi光电子能谱仪(Mg/Al靶)。
TEM测试:Tecnai G2 F30 S-TWIN(FEI,美国)场发射透射电镜,加速电压300kv。
UV-vis DRS测试:Cary 500紫外可见光漫反射光谱(测试范围200-800nm)。
PL光谱:爱丁堡RF-5301光致发光光谱(激发波长360nm,室温)。
光催化活性评价:光催化制H2在150mL石英反应器中进行;20mg粉末催化剂分散在20mL的10%三乙醇胺的水溶液中(体积分数);随后将产生的悬浮液密封在石英容器中,并用氮气清扫气路40分钟,以清除残余空气;溶液和反应器中空气排出后,在300W氙灯(420nm滤光片)下开始照射;配备导热检测仪(TCD)的在线气体色谱仪(GC2079)每30分钟记录一次氢气产量。
厚度测试:使用Nanoscope V Multimode 8型原子力显微镜(AFM)(Bruker公司)。
ESR测试:使用Bruker EMX-Plus型电子顺磁共振光谱仪(300w氙灯)对电子自旋共振(ESR)进行了研究。
实施例1
一种H2O2 g-C3N4纳米片的制备方法,包括以下步骤:具体如图1所示:
(1)Urea g-C3N4的制备方法:
将25g尿素置于有盖陶瓷坩埚中,控制马弗炉的升温速率为8℃/min,将坩埚加热至550℃,并保持3小时;冷却至室温后,将坩埚内的固体物质进行研磨得到淡黄色的固体,即Urea g-C3N4粉末(UCN)。
(2)H2O2 g-C3N4纳米片的制备方法:
将800mg Urea g-C3N4粉末UCN添加到H2O2(30%,20mL)和无水乙醇(10mL)的混合溶剂中,在室温(25℃)下搅拌30min后超声(功率500W)处理12小时,得到混合溶液;之后将上一步得到的混合溶液通过6000rpm离心10分钟得到湿态的g-C3N4纳米薄片;然后将湿态的g-C3N4纳米薄片在50℃下干燥12小时,得到g-C3N4纳米薄片;最后将g-C3N4纳米薄片研磨成细粉末,置于坩埚中,在600℃的马弗炉中煅烧60秒,即得到H2O2 g-C3N4(HCN)。
对照例1
Urea g-C3N4的制备方法:
将25g尿素置于有盖陶瓷坩埚中,控制马弗炉的升温速率为8℃/min,将坩埚加热至550℃,并保持3小时;冷却至室温后,将坩埚内的固体物质进行研磨得到淡黄色的固体,即Urea g-C3N4粉末(UCN)。
将实施例1的HCN和对照例1的UCN进行性能测试,测试结果如下:
图2为实施例1中HCN和对照例1中UCN的XRD图。从图中可以看出:在(002)平面上可以分辨出两个典型的XRD衍射峰,分别为27.4°和13.0°,可以作为共轭芳香体系分层结构的以及在(100)平面上的结构叠加单元。结果表明:经过剥层和表面快速热处理后,g-C3N4仍能保持原有的结构,没有发生明显的变化。但是与UCN相比,HCN的XRD衍射峰的强度有所减弱,主要原因是纳米材料的小尺寸效应。
图3为实施例1中HCN和对照例1中UCN的UV-vis DRS光谱图。从图中可以看出:与UCN相比,HCN的吸收边缘从440到465nm之间有明显的红移,相应得到的HCN的带隙也明显更窄[2.83vs.2.62eV]。随着带隙的减小和可见光吸收范围的扩展,有效地提高了催化剂的光吸收特性,有助于生成更多的光生电子和空穴,从而促进了光催化效率的提高。
图4为实施例1中HCN和对照例1中UCN的氮气吸附脱附图,从图中可以看出:HCN和UCN均表现出基于IUPAC分类的IV型等温线,并具有H3迟回滞环特征,说明了孔结构的存在。
表1实施例1中HCN和对照例1中UCN的氮气吸附脱附实验中得到的数据
Figure BDA0002349497700000051
表1为氮气吸附脱附实验中得到的数据,从表中可以看出:HCN的比表面积比UCN大24%(110/87.3)。
图5为TEM图像;(a):对照例1的UCN;(b-d):实施例1的HCN;(c):实施例1的HCN的样品元素分布。从图中可以看出:UCN的分散性较差,堆叠现象(图5a),但是在HCN纳米薄片中可以观察到片状结构的存在(图5b-d),说明分散性得到了改善。而经过剥层和表面处理后得到的改性二维多孔g-C3N4则显示了明显的薄层和孔隙结构。这些结构的优化有利于光生电子和空穴的快速转移。从图5e-h可以看出,所有的主要元素(C、N、O)在HCN中分布均匀。
图6为实施例1中HCN的XPS光谱图;(a):全谱图;(b):C1s峰值;(c):N1s的峰值;(d)O1s的峰值。从图中可以看出:C 1s的高分辨率XPS可以被分成位于288.2eV和284.8eV的两个典型峰,这可以归结为sp2杂化碳(N=C-N)和残余碳原子。N 1s的高分辨率XPS可以分成4个峰,结合能分别在404.6,401.1,399.5和398.6eV,归因于π-π*,(N-(C)3)和C-N-H。O 1s的峰以532.7和531.5eV为中心,归属于N-C-O和C-O。
图7为实施例1中HCN的AFM图像。图中展示了在硅片上沉积的经过优化的g-C3N4纳米片(HCN)。
图8为实施例1中HCN的厚度表征。从图中可以看出:HCN纳米薄片厚度范围在5.36到6.94nm之间。
图9为实施例1中HCN和对照例1的UCN的PL光谱。从图中可以看出:HCN的发射峰强度与UCN相比明显减弱,说明了较低的电子和空穴再复合速率,主要由于表面活性的增加可以加速电子和空穴的分离,从而提高光催化活性。
图10为实施例1中HCN和对照例1的UCN的电子自旋共振(ESR图)。从图中可以看出:HCN纳米片光催化剂具有更强的电子离域能力,从而抑制了光生载流子的再复合速率。HCN具有更强的ESR自旋程度,这表明未配对电子的显著增多。
图11为实施例1中HCN和对照例1中UCN的光催化制氢的效果表征(10vol%TEOA,λ>420nm)。从图11a中可以看出:UCN显示了相对较低的光催化活性(134.6μmol/h),而经过改性之后的样品HCN有显著的提高,达到894.9μmol/h。主要是因为扩大的可见光吸收和优化了的表面性能。图11b中显示连续的四个周期的光催化产氢实验中,HCN的产氢速率没有明显减弱,说明了HCN具有较强的光稳定性。
虽然本发明已以较佳实施例公开如上,但其并非用以限定本发明,任何熟悉此技术的人,在不脱离本发明的精神和范围内,都可做各种的改动与修饰,因此本发明的保护范围应该以权利要求书所界定的为准。

Claims (10)

1.一种过氧化氢改性石墨相氮化碳H2O2 g-C3N4纳米片的制备方法,其特征在于,包括以下步骤:
(1)将Urea g-C3N4粉末添加到H2O2和乙醇的混合溶剂中,搅拌后进行超声处理,使得溶液分散均匀,得到混合溶液;
(2)将步骤(1)的混合溶液通过离心、干燥得到固体;
(3)将步骤(2)的固体研磨为细粉,然后置于坩埚中,进行高温煅烧,即得到过氧化氢改性石墨相氮化碳H2O2 g-C3N4
2.根据权利要求1所述的制备方法,其特征在于,步骤(1)所述的H2O2和乙醇的体积比为2:1。
3.根据权利要求1所述的制备方法,其特征在于,步骤(1)所述的Urea g-C3N4粉末与混合溶剂的质量体积比为2.67:100。
4.根据权利要求1所述的制备方法,其特征在于,步骤(1)所述的搅拌后进行超声处理具体为:在25℃下搅拌30min后超声处理12小时,超声功率为500W。
5.根据权利要求1所述的制备方法,其特征在于,步骤(3)所述的高温煅烧具体为:600℃的马弗炉中煅烧60秒。
6.根据权利要求1所述的制备方法,其特征在于,步骤(3)所述的高温煅烧的升温速率为8℃/min。
7.根据权利要求1所述的制备方法,其特征在于,步骤(1)所述的Urea g-C3N4的制备方法具体为:将25g尿素置于有盖陶瓷坩埚中,控制马弗炉的升温速率为8℃/min,将坩埚加热至550℃,并保持3小时;冷却至室温后,将坩埚内的固体物质进行研磨得到淡黄色的固体,即Urea g-C3N4粉末。
8.根据权利要求1所述的制备方法,其特征在于,步骤(2)所述的离心的具体参数为:6000rpm离心10分钟。
9.权利要求1-8任一所述的制备方法得到的H2O2 g-C3N4纳米片。
10.权利要求9所述的H2O2 g-C3N4纳米片在可见光下的水分解产氢、CO2还原或有机物降解领域的应用。
CN201911409134.8A 2019-12-31 2019-12-31 一种过氧化氢改性石墨相氮化碳纳米片及其制备方法 Withdrawn CN111097475A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911409134.8A CN111097475A (zh) 2019-12-31 2019-12-31 一种过氧化氢改性石墨相氮化碳纳米片及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911409134.8A CN111097475A (zh) 2019-12-31 2019-12-31 一种过氧化氢改性石墨相氮化碳纳米片及其制备方法

Publications (1)

Publication Number Publication Date
CN111097475A true CN111097475A (zh) 2020-05-05

Family

ID=70424551

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911409134.8A Withdrawn CN111097475A (zh) 2019-12-31 2019-12-31 一种过氧化氢改性石墨相氮化碳纳米片及其制备方法

Country Status (1)

Country Link
CN (1) CN111097475A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114797937A (zh) * 2022-04-22 2022-07-29 湖南大学 填充型富介孔管状氮化碳光催化剂及其制备方法和应用
CN115196605A (zh) * 2022-05-19 2022-10-18 张家港市东大工业技术研究院 一种石墨相氮化碳纳米片的制备方法及应用

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114797937A (zh) * 2022-04-22 2022-07-29 湖南大学 填充型富介孔管状氮化碳光催化剂及其制备方法和应用
CN115196605A (zh) * 2022-05-19 2022-10-18 张家港市东大工业技术研究院 一种石墨相氮化碳纳米片的制备方法及应用

Similar Documents

Publication Publication Date Title
Li et al. Facial synthesis of dandelion-like g-C3N4/Ag with high performance of photocatalytic hydrogen production
CN108607593B (zh) 硫化镉纳米粒子修饰的五氧化二铌纳米棒/氮掺杂石墨烯复合光催化剂与应用
KR102440964B1 (ko) 3차원 나노구조체, 이를 포함하는 광촉매 및 3차원 나노구조체의 제조 방법
Yang et al. Facile synthesis of nitrogen-defective gC 3 N 4 for superior photocatalytic degradation of rhodamine B
CN112427045A (zh) 一种水热法合成的具有Z型异质结CdS/g-C3N4复合光催化剂材料的制备方法
CN109225298B (zh) 一种具有高可见光活性的MnISCN纳米复合材料及其制备方法和应用
CN109225182B (zh) 一种超薄硅纳米片光催化剂及其制备方法与应用
CN110368962A (zh) 一种BiOI/WO3异质结高效光电催化电极的制备方法、产品及应用
CN111097475A (zh) 一种过氧化氢改性石墨相氮化碳纳米片及其制备方法
CN111085236A (zh) 碳布负载硼掺杂石墨相氮化碳柔性可回收光催化膜的制备方法
CN112547102A (zh) 一种磷化镍/CdxZn1-xS催化剂的制备方法
CN110961150A (zh) 一种卟啉/氮化碳层层复合结构光催化纳米复合材料的制备方法
CN111604063A (zh) g-C3N4/In2Se3复合光催化剂及其制备方法和应用
CN109046391B (zh) 一种复合材料及其制备方法和在可见光分解水产氢中的应用
CN113058601B (zh) 用于光解水催化制氢的三元复合催化剂的制备方法及应用
Wang et al. Fabrication of nitrogen-deficient gC 3 N 4 nanosheets via an acetaldehyde-assisted hydrothermal route and their high photocatalytic performance for H 2 O 2 production and Cr (vi) reduction
CN113751049A (zh) 一种碳化钛/氮化碳复合光催化剂的制备方法、产品及应用
Huang et al. Cooperative enhancement solar hydrogen generation of reformed g-C3N4/TiO2 mesocrystals composites
CN109513454B (zh) 一种通过库仑作用制备MoS2/C3N4复合光催化剂的方法
CN116603558A (zh) 一种荸荠状钨酸锑复合材料的制备方法及其应用
CN113697783B (zh) 一种多孔g-C3N4纳米薄片的制备方法及其应用
CN116393155A (zh) 碳环掺杂的g-C3N4基面内异质结的制备方法及其应用于光重整纤维素
Wang et al. High performance of visible-light driven hydrogen production over graphdiyne (gC n H 2n− 2)/MOF S-scheme heterojunction
CN113600225A (zh) 一种异质结复合材料及其应用
CN115318308B (zh) 一种简便的溶剂热法制备In(OH)3/CdIn2S4复合催化剂

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication
WW01 Invention patent application withdrawn after publication

Application publication date: 20200505