CN111087627B - 一种复合水凝胶及其制备方法和应用 - Google Patents

一种复合水凝胶及其制备方法和应用 Download PDF

Info

Publication number
CN111087627B
CN111087627B CN201911375732.8A CN201911375732A CN111087627B CN 111087627 B CN111087627 B CN 111087627B CN 201911375732 A CN201911375732 A CN 201911375732A CN 111087627 B CN111087627 B CN 111087627B
Authority
CN
China
Prior art keywords
pva
hydrogel
composite hydrogel
solution
ppy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911375732.8A
Other languages
English (en)
Other versions
CN111087627A (zh
Inventor
王艳芹
王景辉
武晓刚
王鑫
陈维毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201911375732.8A priority Critical patent/CN111087627B/zh
Publication of CN111087627A publication Critical patent/CN111087627A/zh
Application granted granted Critical
Publication of CN111087627B publication Critical patent/CN111087627B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/08Ferroso-ferric oxide [Fe3O4]
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0605Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0611Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring, e.g. polypyrroles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • C08K2003/2265Oxides; Hydroxides of metals of iron
    • C08K2003/2275Ferroso-ferric oxide (Fe3O4)
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/01Magnetic additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/011Nanostructured additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Dispersion Chemistry (AREA)
  • Surgery (AREA)
  • Engineering & Computer Science (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Inorganic Chemistry (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Physiology (AREA)
  • Cardiology (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)

Abstract

本发明公开了一种复合水凝胶及其制备方法和应用。制备方法为:在聚乙烯醇(PVA)水凝胶网络内,分别采用原位氧化及原位沉淀法,逐步顺次形成导电材料(聚吡咯)及磁性材料(Fe3O4),最终得到具有电、磁学特性的复合水凝胶。本发明所提出的制备方法,可为在水凝胶中装载具有憎水性能的导电聚合物及溶解性差的磁性粒子,提供简单有效的制备策略;所得复合水凝胶可应用于应变传感、磁控开关、磁导航等生物医学工程领域。

Description

一种复合水凝胶及其制备方法和应用
技术领域
本发明涉及一种复合水凝胶及其制备方法,具体涉及一种采用原位氧化及原位沉淀法,顺次在水凝胶网络中掺杂导电材料(聚吡咯)及磁性材料(Fe3O4),制备得到兼具优良力、电、磁学特性的复合水凝胶的制备方法。
背景技术
具有优良力学、电学及磁学特性的多功能水凝胶可广泛应用于生物医学设备(如,人体关节形变监测仪、脉搏及呼吸监测仪等)研发领域。开发兼具可调控电学及磁性特性的多功能水凝胶的简单有效的制备方法,对于拓宽其应用领域具有重要的意义。
已报道的技术方法中,虽然有通过在已有的水凝胶网络内部,原位制备导电聚吡咯(Bo-Si Yin, Si-Wen Zhang, Zhen-Bo Wang, et al,J. Mater. Chem. A , 2017, 5,24942 ),或者在水凝胶网络内部采用共沉淀法制备磁性微球( Yang Gao,Chen Hu,WenJiang Zheng, Yong Mei Chen, et al, Chem Phys Chem 2016, 17, 1-10 )的成功范例,然而,若想在同一个水凝胶体系内制备导电及磁性两种材料,必须平衡采用原位氧化法制备电学材料,及采用原位沉淀法制备磁学材料间存在的矛盾,寻找克服该难题的技术方案。这是由于,通过原位法顺次制备电、磁材料的过程中,存在两个不可忽视的关键问题:一方面,当具有电学特性的Ppy组分优先被引入PVA凝胶网络中后,内部空间将被大部分占据,这将严重影响后续磁性组分的顺利引入及其形貌、磁饱和强度等性质( L. Wang, G. Gao,Y. Zhou, T. Xu, J. Chen, R. Wang, R. Zhang, J. Fu, ACS Appl. Mater.Interfaces 2019, 11, 3506 );另一方面,在采用原位沉淀法于凝胶内部制备Fe3O4磁性粒子的过程中,反应所需的化学微环境(如,温度、pH等)会对凝胶内已经存在的Ppy组分的形貌及含量等造成严重的破坏作用,从而影响甚至破坏其电学性能。因此,采用原位氧化法及原位沉淀法,实现电学及磁学特性的组分能在凝胶网络内顺次成功形成,制备得到兼具优良力、电、磁学特性的复合水凝胶,具有很大的意义及挑战性。
发明内容
本发明旨在提供一种复合水凝胶及其制备方法,所得复合水凝胶可发展为应变传感贴片成功应用于脉搏及心率传感等生物医学工程领域。
本发明中成功制备了Fe3O4/Ppy/PVA磁性导电水凝胶。通过循环冷冻-解冻制备的PVA三维网络结构作为整个水凝胶的支撑结构,使整个凝胶展现出优良的柔韧性;采用Fe3+作为氧化剂,通过原位氧化法在PVA水凝胶网络内生成了Ppy纳米颗粒,使水凝胶具有了优良的导电性;进一步采用原位沉淀法,以Fe2+/Fe3+混合离子作为原料,在强碱性条件下,在水凝胶内部制备Fe3O4磁性粒子,最终得到兼具导电性和磁性的Fe3O4/Ppy/PVA复合水凝胶。这为开发具有优异机械性能和特殊功能的软磁材料提供了参考。
本发明提供了一种复合水凝胶,包括以下重量配比的原料:
聚乙烯醇:40%~62%
吡咯:10%~30%
FeCl3:1.5%~15.5%
Fe2+/Fe3+:0.02%~12.5%
NaOH:0.2%~2%。
本发明提供了上述复合水凝胶的制备方法,首先将PVA及单体吡咯(py)共混合,经数次循环冷冻-解冻后,制备得到包埋py的聚乙烯醇水凝胶,随后在0℃下,将所得水凝胶浸泡于适宜浓度的FeCl3溶液中,通过原位氧化法制备得到聚吡咯/聚乙烯醇(Ppy/PVA)复合水凝胶;再将该Ppy/PVA复合水凝胶浸泡于Fe2+/Fe3+混合溶液中数小时,随后再浸泡于适宜浓度的NaOH溶液中,通过原位沉淀法制备得到Fe3O4/Ppy/PVA复合水凝胶。
上述制备方法,具体包括以下步骤:
(1)制备包埋有单体py的聚乙烯醇水凝胶:
将PVA溶解于90℃~100℃的二次蒸馏水中,待冷却后与py溶液共混,采用磁力搅拌使二者混合均匀,将混合溶液倒入水凝胶预制模具中,反复多次在-20℃(冷冻温度)~25℃的范围内循环冷冻-解冻,得到包埋有单体py的聚乙烯醇水凝胶:py/PVA水凝胶;
(2)制备Ppy/PVA复合水凝胶:
将步骤(1)中制备所得py/PVA水凝胶浸泡到三氯化铁溶液中,保持0℃浸泡;在此过程中,Fe3+是聚吡咯形成的氧化剂,通过控制浸泡时间,最终得到掺杂有不同形貌的聚吡咯Ppy的Ppy/PVA复合水凝胶;
(3)制备Fe3O4/Ppy/PVA复合水凝胶:
将该Ppy/PVA复合水凝胶浸泡于Fe2+/Fe3+混合溶液中,随后再浸泡于NaOH溶液中,保持溶液温度50℃,通过原位沉淀法于Ppy/PVA复合水凝胶中制备得到不同形貌及尺寸的Fe3O4纳米粒子,最后将所得Fe3O4/Ppy/PVA复合水凝胶于去离子水中浸泡24h去除未反应的Fe2+、Fe3+及NaOH。
步骤(1)中,PVA溶液的浓度为0.10~0.15g/mL,py溶液的浓度为0.2~1.0mol/L,其中,PVA溶液与py溶液的体积比为15:1~25:1;循环冷冻-解冻的次数为2~10次;冷冻温度为-20℃,解冻温度为25℃。
步骤(2)中,所用三氯化铁溶液的浓度为0.6mo/L-3.0mol/L,控制溶液中Fe3+与水凝胶中py的物质的量之比为1:2~1:4。
步骤(2)中,所述py/PVA水凝胶浸泡到FeCl3溶液中保持0~4℃的低温环境,且浸泡时间为18~24h。
步骤(3)中,所述Fe2+/Fe3+混合溶液的摩尔比为5:1~15:1,总离子浓度为1.2~2.0mol/L,浸泡时间为0~12h;所述NaOH溶液浓度为0.5~5.0 mol/L,反应温度为45~55℃,反应时间为0~24h。
步骤(3)所得的Fe3O4/Ppy/PVA复合水凝胶浸泡于去离子水中24~48h;期间每隔6h换一次水,以去除水凝胶内未反应的Fe2+、Fe3+和NaOH。
本发明提供了上述复合水凝胶作为应变传感贴片在脉搏传感中的应用。
将复合水凝胶用于制备具有导电性能的应变传感贴片,包括以下步骤:将所得复合水凝胶裁成长为1cm、宽为0.5cm的小片,以黏性塑料薄膜为载体,将其黏附在塑料薄膜上,然后在复合水凝胶的左右两侧距离边缘约3mm处的下方分别埋置直径为3mm左右的铜导线两根,并在复合水凝胶与铜导线的交界处用铜箔胶带纸固定完全,制备得到具有导电性能的应变传感贴片。
本发明的有益效果:
1)本发明基于原位氧化法及原位沉淀法,开辟了聚吡咯及Fe3O4纳米粒子在水凝胶中原位合成的新途径,制备所得水凝胶应变传感器具有导电性、高弹性、高韧性、高应变敏感度等优势,为水凝胶应变传感器应用于可穿戴领域提供了新思路和新方法。
2)本发明在凝胶内部已有导电Ppy材料共存的条件下,探求了合成Fe3O4磁性粒子的最适宜原料浓度、pH、温度等理化因素,从而实现了电学及磁性特性的组分能在凝胶网络内成功地顺次形成的目的。
附图说明
图1是制备所得Fe3O4/Ppy/PVA复合水凝胶的高分辨SEM图(制备过程中所用NaOH溶液的浓度为0.5mol/L)。左上角插图为将图1中方框所选定的区域放大10000倍后的SEM。
图2是不同py浓度(0.2, 0.4, 0.6, 0.8, 1.0 mol/L)下制备所得Fe3O4/Ppy/PVA复合水凝胶的电导率。
图3是不同NaOH浸泡时间(0h,2h,4h,12h)制备所得Fe3O4/Ppy/PVA复合水凝胶末端在NdFeB(钕铁硼)磁铁的引导下偏离垂直位置的情况。
具体实施方式
下面通过实施例来进一步说明本发明,但不局限于以下实施例。
实施例1:
一种具有优良力学、电学、磁性特性的复合水凝胶应变传感贴片的制备方法,其具体制备过程包括如下步骤:
(1)制备包埋有单体py的聚乙烯醇水凝胶:
将0.2g PVA溶解于95℃的二次蒸馏水中,待冷却后与0.4mol/L浓度的 py溶液共混,采用磁力搅拌使二者混合均匀,将混合溶液倒入水凝胶预制模具中,在-20℃与25℃下反复5次循环冷冻-解冻,得到包埋有单体py的聚乙烯醇水凝胶(py/PVA水凝胶);
(2)制备Ppy/PVA复合水凝胶:
将步骤(1)中制备所得包埋有单体py的聚乙烯醇水凝胶浸泡到1.0mol/L的三氯化铁溶液中,保持0℃浸泡18h,最终得到掺杂有不同形貌的聚吡咯Ppy的Ppy/PVA复合水凝胶。
(3)制备Fe3O4/Ppy/PVA复合水凝胶:
将该Ppy/PVA复合水凝胶浸泡于Fe2+/Fe3+混合溶液中12小时,随后再浸泡于浓度为0.5mol/L的NaOH溶液中4小时,保持溶液温度50℃,通过原位沉淀法于Ppy/PVA复合水凝胶中制备得到Fe3O4纳米粒子,最后将所得Fe3O4/Ppy/PVA复合水凝胶于去离子水中浸泡24h去除未反应的Fe2+、Fe3+及NaOH。
步骤(3)所得复合水凝胶的微观形貌如图1所示;图1是Fe3O4/Ppy/PVA复合水凝胶的高分辨扫描电子显微镜(HRSEM)图片。图中显示:因聚吡咯及Fe3O4的存在,该复合水凝胶的网络结构致密,孔洞大小均一程度高。
实施例2:
一种具有优良力学、电学、磁性特性的复合水凝胶应变传感贴片的制备方法,其具体制备过程包括如下步骤:
(1)制备包埋有单体py的聚乙烯醇水凝胶:
将0.2g PVA溶解于95℃的二次蒸馏水中,待冷却后与不同浓度的py溶液(0.2,0.4,0.6, 0.8, 1.0 mol/L)共混,采用磁力搅拌使二者混合均匀,将混合溶液倒入水凝胶预制模具中,在-20℃与25℃下反复5次循环冷冻-解冻,得到包埋有单体py的聚乙烯醇水凝胶(py/PVA水凝胶);
(2)制备Ppy/PVA复合水凝胶:
将步骤(1)中制备所得包埋有单体py的聚乙烯醇水凝胶浸泡到1.0mol/L的三氯化铁溶液中,保持0℃浸泡18h,最终得到掺杂有不同形貌的聚吡咯Ppy的Ppy/PVA复合水凝胶。
(3)制备Fe3O4/Ppy/PVA复合水凝胶:
将该Ppy/PVA复合水凝胶浸泡于Fe2+/Fe3+混合溶液中12小时,随后再浸泡于浓度为5.0mol/L的NaOH溶液中4小时,保持溶液温度50℃,通过原位沉淀法于Ppy/PVA复合水凝胶中制备得到Fe3O4纳米粒子,最后将所得Fe3O4/Ppy/PVA复合水凝胶于去离子水中浸泡24h去除未反应的Fe2+、Fe3+及NaOH。
步骤(3)在不同吡咯浓度下制备所得复合水凝胶的电导率如图2所示;图中显示:随着py浓度的不断增加,复合水凝胶的电导率也呈递增的趋势。
实施例3:
制备工艺过程同实施例1,本实施例提供了在NaOH溶液(2.5mol/L)中浸泡不同时间(0h,2h,4h,12h)所得的Fe3O4/Ppy/PVA复合水凝胶,并对其磁性进行了检测,如图3所示。图中显示:随着在NaOH溶液中浸泡时间的增加,所得复合水凝胶在NdFeB(钕铁硼)磁铁诱导作用下,其末端偏离垂直位置的距离越来越大,表明凝胶内所形成的磁性粒子含量随着在NaOH溶液中的浸泡时间增加会越来越高。
用日本电子JSM7500场发射电子扫描显微镜(SEM,加速电压5kV)观察复合水凝胶的微观形貌;Keithley 2400数字源表测定制备所得的Fe3O4/Ppy/PVA复合水凝胶的电导率。

Claims (8)

1.一种复合水凝胶,其特征在于:包括以下重量配比的原料:
聚乙烯醇:40%~62%
吡咯:10%~30%
FeCl3:1.5%~15.5%
Fe2+/Fe3+:0.02%~12.5%
NaOH:0.2%~2%;
所述的复合水凝胶的制备方法,包括以下步骤:
(1)制备包埋有单体py的聚乙烯醇水凝胶:
将PVA溶解于90℃~100℃的二次蒸馏水中,待冷却后与py溶液共混,采用磁力搅拌使二者混合均匀,将混合溶液倒入水凝胶预制模具中,反复多次在-20℃~25℃的温度范围内循环冷冻-解冻,得到包埋有单体py的聚乙烯醇水凝胶:py/PVA水凝胶;
(2)制备Ppy/PVA复合水凝胶:
将步骤(1)中制备所得py/PVA水凝胶浸泡到三氯化铁溶液中,保持0℃浸泡;在此过程中,Fe3+是聚吡咯形成的氧化剂,通过控制浸泡时间,最终得到掺杂有不同形貌的聚吡咯Ppy的Ppy/PVA复合水凝胶;
(3)制备Fe3O4/Ppy/PVA复合水凝胶:
将该Ppy/PVA复合水凝胶浸泡于Fe2+/Fe3+混合溶液中,随后再浸泡于NaOH溶液中,保持溶液温度50℃,通过原位沉淀法于Ppy/PVA复合水凝胶中制备得到不同形貌及尺寸的Fe3O4纳米粒子,最后将所得Fe3O4/Ppy/PVA复合水凝胶于去离子水中浸泡24h去除未反应的Fe2+、Fe3+及NaOH;
步骤(3)中,所述Fe2+/Fe3+混合溶液的摩尔比为5:1~15:1,总离子浓度为1.2~2.0mol/L,浸泡时间为12h;所述NaOH溶液浓度为0.5~5.0 mol/L,反应温度为45~55℃,反应时间为2~24h。
2.一种权利要求1所述的复合水凝胶的制备方法,包括以下步骤:
(1)制备包埋有单体py的聚乙烯醇水凝胶:
将PVA溶解于90℃~100℃的二次蒸馏水中,待冷却后与py溶液共混,采用磁力搅拌使二者混合均匀,将混合溶液倒入水凝胶预制模具中,反复多次在-20℃~25℃的温度范围内循环冷冻-解冻,得到包埋有单体py的聚乙烯醇水凝胶:py/PVA水凝胶;
(2)制备Ppy/PVA复合水凝胶:
将步骤(1)中制备所得py/PVA水凝胶浸泡到三氯化铁溶液中,保持0℃浸泡;在此过程中,Fe3+是聚吡咯形成的氧化剂,通过控制浸泡时间,最终得到掺杂有不同形貌的聚吡咯Ppy的Ppy/PVA复合水凝胶;
(3)制备Fe3O4/Ppy/PVA复合水凝胶:
将该Ppy/PVA复合水凝胶浸泡于Fe2+/Fe3+混合溶液中,随后再浸泡于NaOH溶液中,保持溶液温度50℃,通过原位沉淀法于Ppy/PVA复合水凝胶中制备得到不同形貌及尺寸的Fe3O4纳米粒子,最后将所得Fe3O4/Ppy/PVA复合水凝胶于去离子水中浸泡24h去除未反应的Fe2+、Fe3+及NaOH;
步骤(3)中,所述Fe2+/Fe3+混合溶液的摩尔比为5:1~15:1,总离子浓度为1.2~2.0mol/L,浸泡时间为12h;所述NaOH溶液浓度为0.5~5.0 mol/L,反应温度为45~55℃,反应时间为2~24h。
3.根据权利要求2所述的复合水凝胶的制备方法,其特征在于:步骤(1)中,PVA溶液的浓度为0.10~0.15g/mL,py溶液的浓度为0.2~1.0mol/L,其中,PVA溶液与py溶液的体积比为15:1~25:1;循环冷冻-解冻的次数为2~10次;冷冻温度为-20℃,解冻温度为25℃。
4.根据权利要求2所述的复合水凝胶的制备方法,其特征在于:步骤(2)中,所用三氯化铁溶液的浓度为0.6mo/L-3.0mol/L,控制溶液中Fe3+与水凝胶中py的物质的量之比为1:2~1:4。
5.根据权利要求2所述的复合水凝胶的制备方法,其特征在于:步骤(2)中,所述py/PVA水凝胶浸泡到FeCl3溶液中保持0~4℃的低温环境,且浸泡时间为18~24h。
6.根据权利要求2所述的复合水凝胶的制备方法,其特征在于:步骤(3)所得的Fe3O4/Ppy/PVA复合水凝胶浸泡于去离子水中24~48h;期间每隔6h换一次水,以去除水凝胶内未反应的Fe2+、Fe3+和NaOH。
7.一种权利要求1所述的复合水凝胶作为应变传感贴片在脉搏传感中的应用。
8.根据权利要求7所述的复合水凝胶作为应变传感贴片在脉搏传感中的应用,其特征在于:将复合水凝胶用于制备具有导电性能的应变传感贴片,包括以下步骤:将所得复合水凝胶裁成长为1cm、宽为0.5cm的小片,以黏性塑料薄膜为载体,将其黏附在塑料薄膜上,然后在复合水凝胶的左右两侧距离边缘3mm处的下方分别埋置直径为3mm的铜导线两根,并在复合水凝胶与铜导线的交界处用铜箔胶带纸固定完全,制备得到具有导电性能的应变传感贴片。
CN201911375732.8A 2019-12-27 2019-12-27 一种复合水凝胶及其制备方法和应用 Active CN111087627B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911375732.8A CN111087627B (zh) 2019-12-27 2019-12-27 一种复合水凝胶及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911375732.8A CN111087627B (zh) 2019-12-27 2019-12-27 一种复合水凝胶及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN111087627A CN111087627A (zh) 2020-05-01
CN111087627B true CN111087627B (zh) 2022-09-20

Family

ID=70397594

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911375732.8A Active CN111087627B (zh) 2019-12-27 2019-12-27 一种复合水凝胶及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN111087627B (zh)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102391603B (zh) * 2011-07-22 2013-06-05 西安交通大学 一种磁性高分子水凝胶的制备方法
KR101707717B1 (ko) * 2014-10-27 2017-02-27 연세대학교 산학협력단 유-무기 복합체를 포함하는 하이드로겔 조성물, 이를 포함하는 마이크로 어레이, 마이크로 어레이의 제조방법, 및 이를 포함하는 센서
CN104971703A (zh) * 2015-06-23 2015-10-14 沈阳理工大学 一种聚吡咯包覆磁性还原石墨烯纳米材料的制备方法
WO2017170928A1 (ja) * 2016-03-30 2017-10-05 国立大学法人東北大学 複合材料
CN109251449B (zh) * 2018-07-05 2021-03-16 太原理工大学 一种复合水凝胶及其制备方法和应用

Also Published As

Publication number Publication date
CN111087627A (zh) 2020-05-01

Similar Documents

Publication Publication Date Title
Aleshin et al. Transport properties of poly (3, 4-ethylenedioxythiophene)/poly (styrenesulfonate)
Jiang et al. Electromagnetic interference shielding polymers and nanocomposites-a review
Long et al. Resistivity study of polyaniline doped with protonic acids
Joo et al. Electrical, magnetic, and structural properties of chemically and electrochemically synthesized polypyrroles
He et al. Room-temperature electrochemical reduction of epitaxial magnetite films to epitaxial iron films
Aleshin et al. Metallic conductivity of highly doped poly (3, 4-ethylenedioxythiophene)
Pasha et al. Flexible, stretchable and electrically conductive PDMS decorated with polypyrrole/manganese-iron oxide nanocomposite as a multifunctional material for high performance EMI shielding applications
Sasso et al. Polypyrrole and polypyrrole/wood-derived materials conducting composites: a review.
Wang et al. Novel Electrospun Dual-Layered Composite Nanofibrous Membrane Endowed with Electricity–Magnetism Bifunctionality at One Layer and Photoluminescence at the Other Layer
Khan et al. Electrical behavior of conducting polymer based ‘polymeric–inorganic’nanocomposite: Polyaniline and polypyrrole zirconium titanium phosphate
Fedorková et al. Electrochemical and XPS study of LiFePO4 cathode nanocomposite with PPy/PEG conductive network
CN106684386B (zh) 一种三维有序大孔二硫化钼/碳复合柔性电极材料、制备方法及其应用
CN103450683A (zh) 一种聚吡咯/BaFe12O19-Ni0.8Zn0.2Fe2O4/石墨烯纳米吸波材料的制备方法
Xiao et al. Synthesis and physical properties of electromagnetic polypyrrole composites via addition of magnetic crystals
CN104403275A (zh) 一种改性石墨烯/热固性树脂复合材料及其制备方法
CN103848989A (zh) 一种镍锌铁氧体/聚苯胺复合材料的制备方法
Meng et al. Hybrid conjugated polymer/magnetic nanoparticle composite nanofibers through cooperative non-covalent interactions
CN111087627B (zh) 一种复合水凝胶及其制备方法和应用
CN101710541B (zh) 一种超级电容器用聚苯胺纳米纤维电极材料的制备方法
Shi et al. Two-dimensional imide-based covalent organic frameworks with tailored pore functionality as separators for high-performance Li–S batteries
Schaetzl et al. Magnetic alignment of gamma (core)–alpha (shell) Fe2O3 nanorods in a solid polymer electrolyte for Li-ion batteries
Bhatt et al. Crystallinity, magnetic and electrochemical studies of PVDF/Co3O4 polymer electrolyte
Long et al. Low-temperature resistivities of nanotubular polyaniline doped with H 3 PO 4 and β-naphthalene sulfonic acid
Basha et al. Spectroscopic and electrochemical properties of PVP based polymer electrolyte films
Ma et al. Flexible ribbon-shaped coaxial electrical conductive nanocable array endowed with magnetism and photoluminescence

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant