CN109251449B - 一种复合水凝胶及其制备方法和应用 - Google Patents

一种复合水凝胶及其制备方法和应用 Download PDF

Info

Publication number
CN109251449B
CN109251449B CN201810728029.XA CN201810728029A CN109251449B CN 109251449 B CN109251449 B CN 109251449B CN 201810728029 A CN201810728029 A CN 201810728029A CN 109251449 B CN109251449 B CN 109251449B
Authority
CN
China
Prior art keywords
hydrogel
cmc
network
solution
composite hydrogel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810728029.XA
Other languages
English (en)
Other versions
CN109251449A (zh
Inventor
王景辉
薛雅楠
丁露
张雪慧
严达祥
王艳芹
武晓刚
朱亚萍
安美文
陈维毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyuan University of Technology
Original Assignee
Taiyuan University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyuan University of Technology filed Critical Taiyuan University of Technology
Priority to CN201810728029.XA priority Critical patent/CN109251449B/zh
Publication of CN109251449A publication Critical patent/CN109251449A/zh
Application granted granted Critical
Publication of CN109251449B publication Critical patent/CN109251449B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/24Crosslinking, e.g. vulcanising, of macromolecules
    • C08J3/246Intercrosslinking of at least two polymers
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/02Detecting, measuring or recording pulse, heart rate, blood pressure or blood flow; Combined pulse/heart-rate/blood pressure determination; Evaluating a cardiovascular condition not otherwise provided for, e.g. using combinations of techniques provided for in this group with electrocardiography or electroauscultation; Heart catheters for measuring blood pressure
    • A61B5/024Detecting, measuring or recording pulse rate or heart rate
    • A61B5/02444Details of sensor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/683Means for maintaining contact with the body
    • A61B5/6832Means for maintaining contact with the body using adhesives
    • A61B5/6833Adhesive patches
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/0605Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms
    • C08G73/0611Polycondensates containing five-membered rings, not condensed with other rings, with nitrogen atoms as the only ring hetero atoms with only one nitrogen atom in the ring, e.g. polypyrroles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/02Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques
    • C08J3/03Making solutions, dispersions, lattices or gels by other methods than by solution, emulsion or suspension polymerisation techniques in aqueous media
    • C08J3/075Macromolecular gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2329/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an alcohol, ether, aldehydo, ketonic, acetal, or ketal radical; Hydrolysed polymers of esters of unsaturated alcohols with saturated carboxylic acids; Derivatives of such polymer
    • C08J2329/02Homopolymers or copolymers of unsaturated alcohols
    • C08J2329/04Polyvinyl alcohol; Partially hydrolysed homopolymers or copolymers of esters of unsaturated alcohols with saturated carboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2401/00Characterised by the use of cellulose, modified cellulose or cellulose derivatives
    • C08J2401/08Cellulose derivatives
    • C08J2401/26Cellulose ethers
    • C08J2401/28Alkyl ethers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2479/00Characterised by the use of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen, or carbon only, not provided for in groups C08J2461/00 - C08J2477/00
    • C08J2479/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/16Halogen-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/07Aldehydes; Ketones

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Cardiology (AREA)
  • General Health & Medical Sciences (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Medical Informatics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • Physics & Mathematics (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physiology (AREA)
  • Dispersion Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Materials For Medical Uses (AREA)
  • Medicinal Preparation (AREA)

Abstract

本发明公开了一种复合水凝胶及其制备方法和应用。首先将聚乙烯醇(PVA)、羧甲基纤维素钠(CMC)及单体吡咯(Py)共混合后,以戊二醛作为交联剂,在酸性条件下,制备得到包埋有CMC及Py的聚乙烯醇单网络水凝胶,随后在低温下,将所得单网络水凝胶浸泡于适宜浓度的FeCl3溶液中,制得聚吡咯/羧甲基纤维素钠‑Fe3+/聚乙烯醇(PPy/CMC‑Fe3+/PVA)双网络复合水凝胶。本发明将上述复合水凝胶应用于应变传感贴片中,最终得到具有高力学强度、弹性、导电性及应变敏感性的复合水凝胶应变传感贴片。本发明开辟了聚吡咯在水凝胶中原位合成的新途径,为水凝胶应变传感器应用于可穿戴领域提供了新思路和新方法。

Description

一种复合水凝胶及其制备方法和应用
技术领域
本发明涉及一种复合水凝胶及其制备方法和应用,具体涉及一种采用原位氧化法制备掺杂有导电材料(聚吡咯)的双网络结构复合水凝胶的制备方法,及将该具有高力学强度、弹性、导电性及应变敏感性的复合水凝胶应用于应变传感贴片的方法。
背景技术
传感器作为可穿戴设备的核心组件,其功能化决定了可穿戴设备的发展。应变传感器具有随机械形变可重复变化的电学特性以及类似人体皮肤触觉的传感灵敏度,有望应用于生物力学研究、人体健康监测、嵌入治疗传感。聚合物水凝胶作为一种由大量水分和三维聚合物网络构成的物质,具有类似生物软组织的柔软性,而且还展现出优于传统聚合物的延展性、自修复能力和自恢复性,成为可穿戴或可嵌入设备的理想柔软基体材料。导电水凝胶作为一类新型材料,在健康监测体系领域具有潜在应用价值。目前已有的导电水凝胶均无法兼具优异的导电性及优良的力学性能,而解决这一问题的途径之一就是建立起化学和物理交联网络之间的平衡。 (Y. J. Liu, W. T. Cao, M. G. Ma, P. B. Wan, AcsAppl Mater Interfaces, 2017 , 9 (30))。 将可观的机械性能和高传感灵敏度整合到一起,设计出一款可伸缩、弹性、应变敏感的水凝胶作为可穿戴传感器仍然存在挑战。
发明内容
本发明旨在提供一种复合水凝胶及其制备方法及应用。相比已有的水凝胶应变传感贴片,本发明提供了一种集成可导电、弹性和应变敏感的双网络结构复合水凝胶,并将其发展为多功能可穿戴式应变传感器,从而实现快速、准确地监测手指关节运动、呼吸方式的变化以及不同运动状态下的轻微脉搏。
本发明提供了一种具有导电性能的双网络水凝胶及其应用于应变传感贴片的方法。该方法不仅制备过程操作简便,节约成本,更重要的是,在制备过程中,Fe3+既可作为羧甲基纤维素钠(CMC)分子链间的配位交联剂,同时还可以作为吡咯单体被氧化过程中的氧化剂及掺杂剂,从而使聚吡咯缓慢掺杂于双网络水凝胶内,最终得到具有高力学强度、弹性、导电性及应变敏感性的复合水凝胶应变传感贴片。
本发明提供了一种复合水凝胶,包括以下重量配比的原料:
聚乙烯醇:40%~72%
羧甲基纤维素钠: 5%~35%
吡咯:4%~25%
戊二醛:0.5%~2.5%
FeCl3:1.5%~4.5%。
本发明提供了上述复合水凝胶的制备方法,首先将聚乙烯醇、羧甲基纤维素钠(CMC)及单体吡咯(Py)共混合后,以戊二醛作为交联剂,在酸性条件下,制备得到包埋有CMC及Py的聚乙烯醇单网络水凝胶,随后在低温下,将所得单网络水凝胶浸泡于适宜浓度的FeCl3溶液中,制得聚吡咯/羧甲基纤维素钠-Fe3+/聚乙烯醇(PPy/CMC-Fe3+/PVA)双网络复合水凝胶。上述制备方法,具体包括以下步骤:
(1)包埋有CMC及单体Py的聚乙烯醇单网络水凝胶的制备:将PVA和CMC溶解于90℃-100℃的二次蒸馏水中,磁力搅拌使二者混合均匀,给混合溶液中缓慢滴加(20μL/min)稀盐酸,调节pH为2.0-5.0,随后加入一定浓度的吡咯溶液并于氮气氛围下搅拌30min,待溶液混合均匀后加入一定浓度的戊二醛水溶液,搅拌均匀,将混合溶液倒入水凝胶预制模具中,在水浴条件下反应30~90min,得到包埋有CMC及单体py的聚乙烯醇单网络水凝胶;
(2)PPy/CMC-Fe3+/PVA双网络复合水凝胶的制备:将步骤(1)中制备所得包埋有CMC及单体py的聚乙烯醇单网络水凝胶浸泡到适宜浓度的三氯化铁溶液中,保持低温(0℃)状态浸泡数小时;在此过程中,Fe3+既能同步与CMC分子链间发生络合交联,从而得到CMC-Fe3+的第二层高分子网络结构,也是聚吡咯形成的氧化剂及掺杂剂,最终得到掺杂有PPy的Ppy/CMC-Fe3+/PVA双网络复合水凝胶。
上述的制备方法,步骤(1)中,PVA溶液的浓度为0.10~0.15g/mL,CMC溶液的浓度为0.03~0.07g/mL,戊二醛溶液的浓度为4.0~6.0mg/mL,Py溶液的浓度为0.2~1.0mol/L,HCl溶液的溶度为10%~15%(体积百分比)。其中,PVA溶液、CMC溶液、戊二醛溶液与Py溶液的体积比为15:8:0.5:1~25:15:1.0:1。
上述的制备方法,步骤(1)中,水浴的温度控制在40~70℃。
上述的制备方法,步骤(2)中,所用FeCl3溶液的浓度为0.6mo/L-3.0mol/L,控制溶液中Fe3+与水凝胶中Py的物质的量之比为1:2~1:4。
上述的制备方法,步骤(2)中,所述单网络水凝胶浸泡到FeCl3溶液中保持0~4℃的低温环境,且浸泡时间为18~24h。
上述的制备方法,步骤(2)所得的双网络复合水凝胶浸泡于去离子水中24~48h。期间每隔6h换一次水,以去除水凝胶网络内未反应的FeCl3
本发明提供了上述复合水凝胶在应变传感贴片中的应用。
将复合水凝胶用于制备具有导电性能的双网络水凝胶应变传感贴片,包括以下步骤:将所得复合水凝胶裁成长为1cm、宽为0.5cm的小片,以黏性塑料薄膜为载体,将其黏附在塑料薄膜上,然后在复合水凝胶的左右两侧距离边缘约3mm处的下方分别埋置直径为3mm左右的铜导线两根,并在复合水凝胶与铜导线的交界处用铜箔胶带纸固定完全,制备得到具有导电性能的双网络水凝胶应变传感贴片。
本发明的有益效果:
1)本发明通过结合化学交联与动态配位键合,在保证水凝胶的力学稳定性和导电性的基础上,将其发展为双网络水凝胶应变传感贴片。
2)本发明基于原位氧化合成,制备的水凝胶应变传感器具有导电性、高弹性、高韧性、高应变敏感度等优势,开辟了聚吡咯在水凝胶中原位合成的新途径,为水凝胶应变传感器应用于可穿戴领域提供了新思路和新方法。
3)本发明的应变响应导电特性的水凝胶制备过程中,一方面,羧甲基纤维素钠上的羧基与Fe3+配位形成具有导电能力的“芯-皮”结构网络,另一方面,水凝胶网络中包埋的聚吡咯也具有很强的导电能力,因此该复合水凝胶具有良好的应变响应导电特性。
附图说明
图1是PPy/CMC-Fe3+/PVA复合水凝胶的高分辨扫描电子显微镜(HRSEM)下照片。照片的放大倍数为2000倍。
图2是PPy/CMC-Fe3+/PVA复合水凝胶作为应变传感贴片应用于监测人体运动前后脉搏跳动次数。
图3是不同吡咯浓度下制备所得PPy/CMC-Fe3+/PVA复合水凝胶的断裂强度。吡咯浓度分别为(a)0mol/L,(b)0.2mol/L,(c)0.4mol/L,(d)0.6mol/L,(e)0.8mol/L,(f)1.0mol/L。
图4是不同吡咯浓度下制备所得PPy/CMC-Fe3+/PVA复合水凝胶的含水率。吡咯浓度分别为(a)0mol/L,(b)0.2mol/L,(c)0.4mol/L,(d)0.6mol/L,(e)0.8mol/L,(f)1.0mol/L。
具体实施方式
下面通过实施例来进一步说明本发明,但不局限于以下实施例。
实施例1:
一种具有导电性能的双网络水凝胶应变传感贴片的制备方法,其具体制备过程包括如下步骤:
①包埋有CMC及单体Py的聚乙烯醇单网络水凝胶的制备:将浓度为0.1g/mL的PVA溶液(10.5mL)和浓度为0.04g/mL的CMC溶液(5.5mL)混合,并保持溶液温度为95℃,磁力搅拌使二者混合均匀,给混合溶液中滴加浓度为20%的HCl溶液100μL,调节pH为4.0,随后加入浓度为0.5mol/L的吡咯(Py)溶液0.5mL并搅拌30min,待溶液混合均匀后加入浓度为4.0mg/mL的戊二醛水溶液(0.38 mL),搅拌均匀,将混合溶液倒入模具中,水浴60℃反应50min,得到包埋有CMC及单体Py的聚乙烯醇单网络水凝胶;
②PPy/CMC-Fe3+/PVA复合水凝胶的制备:将步骤①中制备所得包埋有CMC及单体Py的聚乙烯醇单网络水凝胶浸泡到浓度为2.0 mol/L的三氯化铁(FeCl3)溶液中,保持低温(0℃)状态反应24h,随后将该复合水凝胶浸泡于去离子水中48h,期间每隔6h换一次水,从而去除水凝胶网络内未反应的FeCl3
③具有导电性能的双网络水凝胶应变传感贴片的制备:将步骤②制备所得复合水凝胶裁成长、宽分别为1cm、0.5cm的小片,以自制黏性塑料薄膜为载体,将其黏附在塑料薄膜上,并在复合水凝胶的左右两侧的下方分别埋置直径为3mm左右的铜导线两根,并在复合水凝胶与铜导线的交界处用铜箔胶带纸固定完全,从而制备得到具有导电性能的双网络水凝胶应变传感贴片。
步骤②所得复合水凝胶的微观形貌如图1所示;图1是PPy/CMC-Fe3+/PVA复合水凝胶的高分辨扫描电子显微镜(HRSEM)照片。图中显示:因聚吡咯的存在,该复合水凝胶的网络结构更加致密,孔洞大小均一程度高。
将步骤③所得双网络水凝胶应变传感贴片应用于志愿者运动前后的脉搏监测。图2是PPy/CMC-Fe3+/PVA复合水凝胶作为应变传感贴片佩戴于志愿者手臂的脉搏跳动最明显处,应用于监测人体运动前、后脉搏跳动次数。运动前志愿者的心率约为80次/min,运动后志愿者的心率约为120次/min,图中显示,当志愿者佩戴由该复合水凝胶制备所得的应变传感贴片后,可从该应变传感贴片的电阻变化率监测到志愿者的脉搏跳动变化情况,表明该水凝胶可作为柔性可穿戴传感贴片,应用于健康监护领域。
实施例2:
一种具有导电性能的双网络水凝胶应变传感贴片的制备方法,其具体制备过程包括如下步骤:
①包埋有CMC及单体Py的聚乙烯醇单网络水凝胶的制备:将浓度为0.15g/mL的PVA溶液(10.5mL)和浓度为0.05g/mL的CMC溶液(5.5mL)混合,并保持溶液温度为95℃,磁力搅拌使二者混合均匀,给混合溶液中滴加浓度为20%的HCl溶液200μL,调节pH为4.0,随后加入浓度为1.0mol/L的吡咯(Py)溶液0.5mL并搅拌30min,待溶液混合均匀后加入浓度为5.0mg/mL的戊二醛水溶液(0.38 mL),搅拌均匀,将混合溶液倒入模具中,水浴60℃反应50min,得到包埋有CMC及单体Py的聚乙烯醇单网络水凝胶;
②PPy/CMC-Fe3+/PVA复合水凝胶的制备:将步骤①中制备所得包埋有CMC及单体Py的聚乙烯醇单网络水凝胶浸泡到浓度为3.0 mol/L的三氯化铁(FeCl3)溶液中,保持低温(0℃)状态反应24h,随后将该复合水凝胶浸泡于去离子水中48h,期间每隔6h换一次水,从而去除水凝胶网络内未反应的FeCl3
③具有导电性能的双网络水凝胶应变传感贴片的制备:将步骤②制备所得复合水凝胶裁成长、宽分别为1cm、0.5cm的小片,以自制黏性塑料薄膜为载体,将其黏附在塑料薄膜上,并在复合水凝胶的左右两侧的下方分别埋置直径为3mm左右的铜导线两根,并在复合水凝胶与铜导线的交界处用铜箔胶带纸固定完全,从而制备得到具有导电性能的双网络水凝胶应变传感贴片。
实施例3:
制备工艺过程同实施例1,本实施例提供了不同吡咯浓度下制备的PPy/CMC-Fe3+/PVA复合水凝胶,并对其性能进行了检测,如图3、图4所示。吡咯浓度分别为0mol/L,0.2mol/L, 0.4mol/L,0.6mol/L,0.8mol/L,1.0mol/L。
用Instron3343测定制备所得的PPy/CMC-Fe3+/PVA复合水凝胶的力学性能(Instron3343:美国,加载速率:30mm/min)。用Keithley 2400数字源表测定制备所得的聚吡咯/羧甲基纤维素钠-Fe3+/PVA复合水凝胶在不同应变及实际应用条件下的电阻(R),并将其换算为电阻的改变率(R-R0/R0×100%)。
图3是所用吡咯浓度分别为0mol/L,0.2mol/L, 0.4mol/L,0.6mol/L,0.8mol/L和1.0mol/L条件下制备所得PPy/CMC-Fe3+/PVA复合水凝胶的断裂强度。图中显示,随着制备过程中所用单体吡咯含量的增加,该复合水凝胶的断裂强度呈现先增加后减小的趋势,且当吡咯单体的浓度为0.4mol/L时,该复合水凝胶的断裂强度值最大,约为220kPa。
图4是所用吡咯浓度分别为0mol/L,0.2mol/L, 0.4mol/L,0.6mol/L,0.8mol/L和1.0mol/L条件下制备所得PPy/CMC-Fe3+/PVA复合水凝胶的含水率。图中显示,随着制备过程中所用单体吡咯含量的增加,该复合水凝胶的含水率也呈现先增加后减小的趋势,且当吡咯单体浓度为0.4 mol/L时,该复合水凝胶的含水率值最大,约为92%。

Claims (9)

1.一种复合水凝胶,其特征在于:包括以下重量配比的原料:
聚乙烯醇:40%~72%
羧甲基纤维素钠:5%~35%
吡咯:4%~25%
戊二醛:0.5%~2.5%
FeCl3:1.5%~4.5%;
所述的复合水凝胶的制备方法:首先将聚乙烯醇、羧甲基纤维素钠及单体吡咯共混合后,以戊二醛作为交联剂,在酸性条件下,制备得到包埋有CMC及Py的聚乙烯醇单网络水凝胶,随后在低温下,将所得单网络水凝胶浸泡于FeCl3溶液中,制得聚吡咯/羧甲基纤维素钠-Fe3+/聚乙烯醇双网络复合水凝胶。
2.根据权利要求1所述的复合水凝胶的制备方法,其特征在于:包括以下步骤:
(1)制备包埋有CMC及单体Py的聚乙烯醇单网络水凝胶:
将PVA和CMC溶解于90℃-100℃的二次蒸馏水中,磁力搅拌使二者混合均匀,给混合溶液中缓慢滴加稀盐酸,调节pH为2.0-5.0,随后加入吡咯溶液并于氮气氛围下搅拌30min,待溶液混合均匀后加入戊二醛水溶液,搅拌均匀,将混合溶液倒入水凝胶预制模具中,在水浴条件下反应30~90min,得到包埋有CMC及单体py的聚乙烯醇单网络水凝胶;
(2)制备PPy/CMC-Fe3+/PVA双网络复合水凝胶:
将步骤(1)中制备所得包埋有CMC及单体Py的聚乙烯醇单网络水凝胶浸泡到三氯化铁溶液中,保持低温状态浸泡;在此过程中,Fe3+既能同步与CMC分子链间发生络合交联,从而得到CMC-Fe3+的第二层高分子网络结构,也是聚吡咯形成的氧化剂及掺杂剂,最终得到掺杂有聚吡咯PPy的PPy/CMC-Fe3+/PVA双网络复合水凝胶。
3.根据权利要求2所述的复合水凝胶的制备方法,其特征在于:步骤(1)中,PVA溶液的浓度为0.10~0.15g/mL,CMC溶液的浓度为0.03~0.07g/mL,戊二醛溶液的浓度为4.0~6.0mg/mL,Py溶液的浓度为0.2~1.0mol/L,其中,PVA溶液、CMC溶液、戊二醛溶液与Py溶液的体积比为15:8:0.5:1~25:15:1.0:1;稀盐酸的体积浓度为10%~15%;滴加速度为20μL/min。
4.根据权利要求2所述的复合水凝胶的制备方法,其特征在于:步骤(1)中,水浴的温度控制在40~70℃。
5.根据权利要求2所述的复合水凝胶的制备方法,其特征在于:步骤(2)中,所用三氯化铁溶液的浓度为0.6mo/L-3.0mol/L,控制溶液中Fe3+与水凝胶中Py的物质的量之比为1:2~1:4。
6.根据权利要求2所述的复合水凝胶的制备方法,其特征在于:步骤(2)中,所述单网络水凝胶浸泡到FeCl3溶液中保持0~4℃的低温环境,且浸泡时间为18~24h。
7.根据权利要求2所述的复合水凝胶的制备方法,其特征在于:步骤(2)所得的双网络复合水凝胶浸泡于去离子水中24~48h;期间每隔6h换一次水,以去除水凝胶网络内未反应的FeCl3
8.一种权利要求1所述的复合水凝胶在应变传感贴片中的应用。
9.根据权利要求8所述的应用,其特征在于:将复合水凝胶用于制备具有导电性能的双网络水凝胶应变传感贴片,包括以下步骤:将所得复合水凝胶裁成长为1cm、宽为0.5cm的小片,以黏性塑料薄膜为载体,将其黏附在塑料薄膜上,然后在复合水凝胶的左右两侧距离边缘3mm处的下方分别埋置直径为3mm的铜导线两根,并在复合水凝胶与铜导线的交界处用铜箔胶带纸固定完全,制备得到具有导电性能的双网络水凝胶应变传感贴片。
CN201810728029.XA 2018-07-05 2018-07-05 一种复合水凝胶及其制备方法和应用 Active CN109251449B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810728029.XA CN109251449B (zh) 2018-07-05 2018-07-05 一种复合水凝胶及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810728029.XA CN109251449B (zh) 2018-07-05 2018-07-05 一种复合水凝胶及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN109251449A CN109251449A (zh) 2019-01-22
CN109251449B true CN109251449B (zh) 2021-03-16

Family

ID=65051467

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810728029.XA Active CN109251449B (zh) 2018-07-05 2018-07-05 一种复合水凝胶及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN109251449B (zh)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109880127B (zh) * 2019-03-05 2022-02-08 中原工学院 一种高强度的三重网络聚吡咯基导电复合水凝胶材料的制备方法
CN111721190A (zh) * 2019-03-20 2020-09-29 青岛大学 一种具有超宽传感范围和超高信噪比直流驱动离子水凝胶应变传感器的设计方法
CN110105591B (zh) * 2019-05-09 2022-03-15 武汉工程大学 一种具有拉伸性能的聚乙烯醇-聚吡咯复合导电水凝胶的制备方法
CN110736420B (zh) * 2019-09-19 2020-09-11 北京科技大学 一种便携式自供能水凝胶应变传感器的制备方法
CN112986338A (zh) * 2019-12-13 2021-06-18 中国科学院大连化学物理研究所 一种水凝胶气体传感器、气体检测装置及气体检测方法
CN111087627B (zh) * 2019-12-27 2022-09-20 太原理工大学 一种复合水凝胶及其制备方法和应用
CN114672049B (zh) * 2020-05-29 2023-04-28 深圳硅基传感科技有限公司 生物传感器用的聚合物膜的制备方法
CN111848986B (zh) * 2020-08-05 2023-02-03 太原理工大学 一种复合水凝胶及其制备方法和应用、一种复合水凝胶受多重因素刺激响应的方法
CN112113498B (zh) * 2020-09-14 2021-09-28 山西大学 一种高灵敏度压阻式应变传感器的制备方法
CN112386241A (zh) * 2020-11-13 2021-02-23 深圳大学 一种基于nfc的可植入式血压测量计
CN113004577B (zh) * 2021-03-09 2022-07-12 太原理工大学 一种形状记忆复合水凝胶及其制备方法和应用
CN113372582B (zh) * 2021-06-23 2022-10-21 太原理工大学 一种仿生复合水凝胶及其制备方法和应用
CN113980296B (zh) * 2021-11-17 2022-10-11 江南大学 一种高拉伸光固化离子导电水凝胶及其制备方法
CN114420375B (zh) * 2022-02-09 2023-02-21 福州大学 一种明胶/碳纳米管/聚吡咯/纳米金复合柔性凝胶电极材料及其制备方法
CN114672044A (zh) * 2022-04-26 2022-06-28 中国林业科学研究院林产化学工业研究所 一种纤维素导电水凝胶及其制备方法
CN114920997A (zh) * 2022-05-23 2022-08-19 云南大学 一种高电导率聚吡咯凝胶及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105273187A (zh) * 2014-06-17 2016-01-27 中国科学院苏州纳米技术与纳米仿生研究所 弹性导电高分子水凝胶、海绵及其制备方法和应用
CN106496639A (zh) * 2016-09-18 2017-03-15 南京林业大学 一种纳米纤维素‑聚吡咯‑聚乙烯醇复合导电水凝胶及其制备方法和应用
CN106589411A (zh) * 2016-11-28 2017-04-26 华南理工大学 一种菠萝皮渣羧甲基纤维素/聚乙烯醇/介孔二氧化硅复合水凝胶及其制备方法与应用
CN106893120A (zh) * 2017-03-06 2017-06-27 乌鲁木齐诺西辰环境工程有限公司 一种应变响应导电水凝胶的制备方法
CN107206190A (zh) * 2014-12-02 2017-09-26 新加坡科技研究局 传感器贴片和具有该传感器贴片的感测装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105273187A (zh) * 2014-06-17 2016-01-27 中国科学院苏州纳米技术与纳米仿生研究所 弹性导电高分子水凝胶、海绵及其制备方法和应用
CN107206190A (zh) * 2014-12-02 2017-09-26 新加坡科技研究局 传感器贴片和具有该传感器贴片的感测装置
CN106496639A (zh) * 2016-09-18 2017-03-15 南京林业大学 一种纳米纤维素‑聚吡咯‑聚乙烯醇复合导电水凝胶及其制备方法和应用
CN106589411A (zh) * 2016-11-28 2017-04-26 华南理工大学 一种菠萝皮渣羧甲基纤维素/聚乙烯醇/介孔二氧化硅复合水凝胶及其制备方法与应用
CN106893120A (zh) * 2017-03-06 2017-06-27 乌鲁木齐诺西辰环境工程有限公司 一种应变响应导电水凝胶的制备方法

Also Published As

Publication number Publication date
CN109251449A (zh) 2019-01-22

Similar Documents

Publication Publication Date Title
CN109251449B (zh) 一种复合水凝胶及其制备方法和应用
Li et al. Development of conductive hydrogels for fabricating flexible strain sensors
Wang et al. Flexible and wearable strain sensors based on tough and self-adhesive ion conducting hydrogels
Chen et al. Multifunctional conductive hydrogels and their applications as smart wearable devices
Gan et al. Mussel-inspired redox-active and hydrophilic conductive polymer nanoparticles for adhesive hydrogel bioelectronics
Ying et al. Skin-like hydrogel devices for wearable sensing, soft robotics and beyond
Zhang et al. Ultra-stretchable wearable strain sensors based on skin-inspired adhesive, tough and conductive hydrogels
Sun et al. Carbon nanotubes reinforced hydrogel as flexible strain sensor with high stretchability and mechanically toughness
Zhang et al. Lignin sulfonate induced ultrafast polymerization of double network hydrogels with anti-freezing, high strength and conductivity and their sensing applications at extremely cold conditions
Duan et al. Ultra‐stretchable and force‐sensitive hydrogels reinforced with chitosan microspheres embedded in polymer networks
Ma et al. Skin-contactable and antifreezing strain sensors based on bilayer hydrogels
An et al. Healing, flexible, high thermal sensitive dual-network ionic conductive hydrogels for 3D linear temperature sensor
Wang et al. Tannic acid-Fe3+ activated rapid polymerization of ionic conductive hydrogels with high mechanical properties, self-healing, and self-adhesion for flexible wearable sensors
Hao et al. Low-Temperature tolerance and conformal adhesion zwitterionic hydrogels as electronic skin for strain and temperature responsiveness
Suneetha et al. Tissue-adhesive, stretchable, and self-healable hydrogels based on carboxymethyl cellulose-dopamine/PEDOT: PSS via mussel-inspired chemistry for bioelectronic applications
Li et al. A self-healing and self-adhesive chitosan based ion-conducting hydrogel sensor by ultrafast polymerization
Cao et al. Gelatin-reinforced zwitterionic organohydrogel with tough, self-adhesive, long-term moisturizing and antifreezing properties for wearable electronics
Fang et al. Stretchable, healable, and degradable soft ionic microdevices based on multifunctional soaking-toughened dual-dynamic-network organohydrogel electrolytes
Zhang et al. Biomimetic epidermal sensors assembled from polydopamine-modified reduced graphene oxide/polyvinyl alcohol hydrogels for the real-time monitoring of human motions
Zong et al. Mussel inspired Cu-tannic autocatalytic strategy for rapid self-polymerization of conductive and adhesive hydrogel sensors with extreme environmental tolerance
Liu et al. Conductive polymer based hydrogels and their application in wearable sensors: a review
Yao et al. Flexible, programable sensing system with poly (AAm-HEMA-SA) for human motion detection
Li et al. Functional conductive hydrogels: from performance to flexible sensor applications
Liu et al. Stretchable, self-adhesive, conductive, anti-freezing sodium polyacrylate-based composite hydrogels for wearable flexible strain sensors
CN108053946A (zh) 一种可拉伸、低电阻变化的导电纤维的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant