CN111077298A - 一种免疫荧光共定位成像平台的制备方法及应用 - Google Patents

一种免疫荧光共定位成像平台的制备方法及应用 Download PDF

Info

Publication number
CN111077298A
CN111077298A CN201911332047.7A CN201911332047A CN111077298A CN 111077298 A CN111077298 A CN 111077298A CN 201911332047 A CN201911332047 A CN 201911332047A CN 111077298 A CN111077298 A CN 111077298A
Authority
CN
China
Prior art keywords
quartz plate
immunofluorescence
solution
imaging
gold nano
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911332047.7A
Other languages
English (en)
Inventor
宗慎飞
刘云
王著元
崔一平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201911332047.7A priority Critical patent/CN111077298A/zh
Publication of CN111077298A publication Critical patent/CN111077298A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/569Immunoassay; Biospecific binding assay; Materials therefor for microorganisms, e.g. protozoa, bacteria, viruses
    • G01N33/56966Animal cells
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/6456Spatial resolved fluorescence measurements; Imaging
    • G01N21/6458Fluorescence microscopy
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/6428Measuring fluorescence of fluorescent products of reactions or of fluorochrome labelled reactive substances, e.g. measuring quenching effects, using measuring "optrodes"
    • G01N2021/6432Quenching

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Hematology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Urology & Nephrology (AREA)
  • Molecular Biology (AREA)
  • Cell Biology (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Tropical Medicine & Parasitology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

本发明公开了一种免疫荧光共定位成像平台的制备方法和应用,该检测平台通过电子束光刻技术生成金纳米阵列图案,在其表面通过金硫键偶联带有荧光基团FAM的HER2(人表皮生长因子受体‑2)核酸适配体。该平台能够特异性捕获HER2高表达的肿瘤细胞分泌的外泌体;成像链为带有另一种荧光基团Cy5的HER2核酸适配体探针;两种探针均具有荧光闪烁特性,可用于超分辨单分子定位成像(SMLM);通过SMLM成像技术,即可对捕获的外泌体进行超分辨光学成像;结合双色荧光共定位技术,可以在单分子水平上判断假阳性事件,提高三明治免疫检测技术的准确性。

Description

一种免疫荧光共定位成像平台的制备方法及应用
技术领域
本发明涉及免疫检测与荧光共定位的领域,特别涉及一种免疫荧光共定位成像平台的制备方法及应用。
背景技术
荧光免疫检测技术具有专一性强、灵敏度好的特点,在生物检测方面有较为广泛的应用,常被用于检测含量较低的生物活性物质,例如蛋白质、激素等。夹心型免疫检测的原理是在固相载体上固定过量的捕获用的抗体,然后加入待检测的含有相应抗原溶液,反应一段时间之后清洗干净,再加入适量的荧光标记的抗体,形成“抗体-抗原-抗体”三明治夹心结构复合物。可根据荧光强度来判断待测溶液中蛋白质的含量。荧光免疫检测固然实用性和易用性较好,但是由于非特异性吸附,常常存在假阳性现象,对实验结果造成较大的影响。
近几年出现的超分辨显微技术巧妙地绕过了可见光的衍射极限,可以对亚细胞结构进行成像,使得我们对细胞的研究层次更加深入。目前的超分辨显微技术主要包括受激发射损耗显微术(STED)、光活化定位显微术(PALM/STORM)和结构光超分辨显微术(SIM)。其中,PALM技术通过调节激活和激发激光器的状态,实现荧光基团在亮(“开”)和暗(“关”)的状态之间进行随机切换,然后对每个荧光闪烁进行定位、多张定位数据及进行重建形成超分辨图样。目前已报道的可用于单分子定位显微镜的光学探针包括有机染料、量子点以及荧光蛋白等。这些条件给单分子层面的科学研究提供了技术手段。
外泌体是小型的细胞外囊泡,直径一般在30-100nm。外泌体富含一部分蛋白质,包括四跨膜蛋白家族成员(CD9,CD63,CD81等),也包含了一部分生物特异性标志物,如HER2蛋白等。这些小囊泡代表了细胞间通讯和交换物质(例如蛋白质、脂质和核酸)的一种重要方式,这种方式没有直接的细胞接触并且具有临床应用的潜质。
利用单分子定位显微术的高分辨率有望在单分子层面上,对外泌体进行定量分析达到诊断、区分癌症的目的。同时,双色共定位技术相较于传统的荧光免疫检测技术而言可以提高荧光免疫检测的灵敏度和鲁棒性,并且可以对假阳性事件进行区分,提高检测结果的准确度。
发明内容
本发明为了提升传统的三明治免疫检测手段的检测精度和鲁棒性,提供了一种免疫荧光共定位成像平台的制备方法及应用,可用于探究所获样本的外泌体的种类以及减少免疫检测实验中的假阳性事件对实验结果的干扰。
一种免疫荧光共定位成像平台的制备方法,具体步骤如下:以电子束光刻技术在涂有光刻胶的石英片上制备图样化纳米阵列图案,以蒸镀的方法依次蒸镀金属铬层和金层,经过lift-off工艺获得最终的金纳米阵列,将带有巯基和FAM荧光基团的HER2核酸适配体(FAM-HER2-SH)通过金硫键固定在金纳米阵列上,与带有荧光基团Cy5的HER2核酸适配体(Cy5-HER2)及特异性捕获了外泌体的金纳米荧光阵列形成三层夹心结构,即可获得可特异性捕获肿瘤细胞外泌体进行免疫荧光共定位成像的平台。
作为本发明的进一步改进,具体步骤如下:
(1)将边长为1.5cm的石英片放置于光刻胶旋涂机上,在石英片上滴加适量的光刻胶,设置旋涂机的参数进行旋涂并烘干,即可得到涂有80nm厚的光刻胶的石英片;
(2)将步骤(1)得到的涂有光刻胶的石英片放入电子束光刻机的样品槽中,利用电子束进行纳米阵列的图案化处理,再将其浸泡在铬刻蚀液中,并用去离子水冲洗干净,然后依次放入显影液和定影液中浸泡,最后用去离子水冲洗,用氮气吹干,即可得到图案化的石英片;
(3)将步骤(2)所得的石英片固定在载玻片上,并将载玻片固定于镀膜机上,采用蒸镀的方法,依次镀铬层和金层,将镀好膜的石英片置于丙酮溶液中,加热使石英片表面的光刻胶脱离干净,即可得到带有金纳米阵列的石英片。
(4)将步骤(3)得到的石英片首先使用氧等离子体清洗机处理,再通过气相沉积法用硅烷进行疏水处理,并加热除去多余的硅烷,用无水乙醇冲洗干净并用氮气吹干,即可得到疏水处理过的石英片;
(5)将核酸适配体FAM-HER2-SH溶解于PBS溶液中,然后进行适量的稀释,滴加在金纳米阵列上,4℃过夜,去离子水冲洗1min,配置1%的BSA封闭液,滴加在金纳米阵列上,常温下封闭,用PBS冲洗干净,即可得到偶联了带荧光的核酸适配体阵列;
(6)将提取的外泌体溶液适当稀释,滴加在步骤(5)所得的金纳米阵列上,常温反应,用PBS冲洗干净并用氮气轻轻吹干;
(7)将适量浓度的检测探针Cy5-HER2核酸适配体滴加在捕获了外泌体的金纳米阵列上,常温反应1h,用去离子水冲洗并用氮气轻轻吹干,即可得到带有两种不同荧光分子的外泌体金纳米阵列检测样品,用于超分辨共定位成像。
作为本发明的进一步改进在于:所述所述步骤(1)中真空旋涂即的参数设置如下:首先转速为500rpm,增速为2,转动时间9s,然后速度提升到4000rpm,增速为5,时间60s;烘干的温度为180℃,时间为2min。
作为本发明的进一步改进在于:,所述步骤(2)中电子束光刻的参数为:束流大小为0.097,spot为2.5,步长为 ,设计的图形化图案为带边框的纳米阵列,边框的边长为70um,宽度为100nm,在边框内部正中间边长50um的区域内为纳米阵列,单个纳米柱的底面直径为120nm,纳米柱之间的中心间距为1.5um。
作为本发明的进一步改进在于:所述步骤(2)的显影液由异丙醇(IPA)和甲基异丁酮(MIBK)以体积比3:1的比例配置,定影液为异丙醇;石英片在铬刻蚀液中的浸泡时间为30s,显影和定影的时间均为60s。
作为本发明的进一步改进在于:所述步骤(3)中镀膜的厚度为铬层5nm,金层15nm;镀膜采用蒸镀的方法,蒸镀的速度为0.3埃/秒;lift-off工艺中,石英片先在常温的丙酮中浸泡10-15分钟,再在通风橱中加热至沸腾,直至石英片表面的光刻胶和金属层剥离干净;加热完毕迅速取出来一次放入常温的丙酮、去离子水、甲醇中,并吹干备用。
作为本发明的进一步改进在于:所述步骤(4)中氧等离子体清洗剂的处理时长为1分钟,氧气的流量为50sccm,功率为70w;疏水处理的时间为30min。
作为本发明的进一步改进在于:所述步骤(5)的核酸适配FAM-HER2-SH的浓度为1nM,所述步骤(7)中的Cy5-HER2核酸适配体的浓度为1.25nM。
作为本发明的进一步改进在于:所述步骤(6)中的外泌体使用超高速冷冻型离心机对SK-BR-3肿瘤细胞的培养液进行提取得到的,外泌体提纯后分散在PBS中。
作为本发明的进一步改进在于:所述的制备方法制得的荧光共定位免疫检测平台在外泌体检测成像上的应用;应用于免疫检测上;其具体步骤如下:
1)将制备的样品倒置置于贴有超薄防水双面胶的盖玻片上。形成一个体积为0.1125μm3的腔室;
2)向步骤1)的腔室中加入成像缓冲液;所述成像缓冲液的成分包含巯基乙醇、葡萄糖氧化酶、过氧化氢酶、葡萄糖以及Tris-NaCl buffer;
3)将加入了成像缓冲液的样品放于单分子定位显微镜下进行成像,激发光波长分别为488 nm和642nm,收集495-575nm和>655nm之间的荧光信号进行双色荧光共定位成像。
本发明所制备的外泌体检测频台可用于基于单分子定位(SMLM)的超分辨光学成像中,FAM-HER2-SH和Cy5-HER2核酸适配体探针上的FAM和Cy5染料作为荧光基团,它们都具有闪烁的特性,可用于SMLM成像;他们的激发谱与发射谱彼此区分,可用于双通道同时成像。同时核酸适配体具有较强的靶向特性,可以高选择性得捕获HER2蛋白过度分泌的外泌体。利用SMLM技术进行了双色荧光共定位的成像,空间分辨率可达到30nm,小于外泌体的平均粒径,故可以在单分子水平上对荧光共定位进行分析与计算。
由于采用了以上技术,本发明较现有技术相比,具有的有益效果如下:
本发明采用金纳米阵列提供荧光成像探针的附着位点,使探针有序排列。所设计的荧光探针带有FAM和Cy5荧光基团,具有闪烁的特性,适用于SMLM技术的应用需求,也能进行长时间的超分辨荧光显微成像。结合双色荧光共定位技术和SMLM技术,可以实现单分子水平上的免疫检测的研究。同时双色荧光共定位技术为免疫检测提供了较好的准确性,可以区分免疫检测中的假阳性事件。
附图说明
图1为超分辨共定位成像图(左:FAM-HER2-SH,中:Cy5-HER2,右:双通道荧光合并);
图2为纳米阵列的制备示意图。
图3为一种可特异性捕获肿瘤细胞外泌体进行免疫荧光共定位成像的平台的制备方法结构示意图。
图4为观测腔室的示意图。
具体实施方式
一、原料来源
1、PBS缓冲液为pH=7.4,浓度为10 mM的PBS缓冲液;
2、FAM-HER2-SH与Cy5-HER2核酸适配体均由生工生物工程(上海)公司合成;
3、BSA购自Sigma公司;
4、其余材料均为市售所得。
二、双通道成像平台的制备
实施例:
将石英片在食人鱼溶液中超声清洗30min,之后用清水冲洗并吹干。将石英片放置于旋涂机上,滴加适量的PMMA,以转速为500rpm,增速为2,转动时间9s,然后速度提升到4000rpm,增速为5,时间60s;烘干的温度为180℃,时间为2min,再利用蒸镀的方法镀上8nm厚的铬层以使石英片可以导电。将涂有光刻胶的石英片放置在电子束刻蚀机中进行图案化处理,经过铬刻蚀液、去离子水、显影液、定影液和去离子水依次浸泡,即可得到图案化的石英片。
采用蒸镀的方法在石英片上依次镀5nm的铬和15nm的金,放入丙酮以去除多余光刻胶和金属层,即可得到带有金纳米阵列的石英片。该平台为可靶向的核酸适配体提供了有序的附着位点,为后续成像与分析提供了良好的支撑。
将上述得到的金纳米阵列首先通过氧等离子体清洗机去除表面有机物和进行羟基化处理,然后利用硅烷的气相沉积法进行疏水处理30min,并加热5min去除多余的硅烷分子,再用酒精冲洗、吹干。疏水处理是为了减少荧光分子在石英片上空白区域的非特异性吸附。
将疏水处理过的石英片放置在湿盒中,在阵列上滴加适量的FAM-HER2-SH 核酸适配体,4℃过夜。反应完毕之后用去离子水冲洗1min并吹干。接着用1%的BSA常温封闭1.5小时,以减少探针和外泌体的非特异性吸附,去离子水冲洗干净并吹干。然后在纳米阵列上滴加适当浓度的外泌体溶液或者空白对照用的PBS溶液,常温反应1h,去离子水冲洗并吹干。最后滴加Cy5-HER2探针,常温反应1h,去离子水冲洗干净即可得到可用于双色荧光共定位的纳米阵列样片。
三、SMLM成像
实施例:
上述免疫荧光共定位免疫检测平台在超分辨中的应用为:先利用盖玻片、超薄双面胶、载玻片制备一个观测用的腔室,在腔室中加入成像缓冲液以用于基于单分子定位的超分辨成像。成像缓冲液的配方为巯基乙醇(10μL/mL)、葡萄糖氧化酶(50μg/mL)、过氧化氢酶(50μg/mL)、葡萄糖(100mg/mL)。激发光波长分别为488 nm和642nm,收集495-575nm和>655nm之间的荧光信号进行双色荧光共定位分析。

Claims (10)

1.一种免疫荧光共定位成像平台的制备方法,其特征在于:具体步骤如下:以电子束光刻技术在涂有光刻胶的石英片上制备图样化纳米阵列图案,以蒸镀的方法依次蒸镀金属铬层和金层,经过lift-off工艺获得最终的金纳米阵列,将带有巯基和FAM荧光基团的HER2核酸适配体通过金硫键固定在金纳米阵列上,与带有荧光基团Cy5的HER2核酸适配体及特异性捕获了外泌体的金纳米荧光阵列形成三层夹心结构,即可获得可特异性捕获肿瘤细胞外泌体进行免疫荧光共定位成像的平台。
2.根据权利要求1所述一种免疫荧光共定位成像平台的制备方法,其特征在于:具体步骤如下:
(1)将边长为1.5cm的石英片放置于光刻胶旋涂机上,在石英片上滴加适量的光刻胶,设置旋涂机的参数进行旋涂并烘干,即可得到涂有80nm厚的光刻胶的石英片;
(2)将步骤(1)得到的涂有光刻胶的石英片放入电子束光刻机的样品槽中,利用电子束进行纳米阵列的图案化处理,再将其浸泡在铬刻蚀液中,并用去离子水冲洗干净,然后依次放入显影液和定影液中浸泡,最后用去离子水冲洗,用氮气吹干,即可得到图案化的石英片;
(3)将步骤(2)所得的石英片固定在载玻片上,并将载玻片固定于镀膜机上,采用热蒸发蒸镀的方法,依次镀铬层和金层,将镀好膜的石英片置于丙酮溶液中,加热使石英片表面的光刻胶脱离干净,即可得到带有金纳米阵列的石英片;
(4)将步骤(3)得到的石英片用氧等离子体清洗机使其表面羟基化,通过气相沉积法用硅烷进行疏水处理,并加热除去多余的硅烷,用无水乙醇冲洗干净并用氮气吹干,即可得到疏水处理过的石英片;
(5)将靶向HER2抗原的核酸适配体探针FAM-HER2-SH滴加在步骤(4)得到的金纳米阵列上,4℃过夜,用PBS冲洗干净,并用BSA 4℃封闭,即得到可特异性捕获HER2过表达的肿瘤细胞外泌体的金纳米荧光阵列;
(6)将提取的外泌体溶液适当稀释,滴加在步骤(5)所得的金纳米阵列上,常温反应,用PBS冲洗干净并用氮气轻轻吹干;
(7)将适量浓度的检测探针Cy5-HER2核酸适配体滴加在捕获了外泌体的金纳米阵列上,常温反应1h,用去离子水冲洗并用氮气轻轻吹干,即可得到带有两种不同荧光分子的外泌体金纳米阵列检测样品,用于共定位成像。
3.根据权利要求2所述的一种免疫荧光共定位成像平台的制备方法一种免疫荧光共定位成像平台的制备方法,其特征在于:所述步骤(1)中真空旋涂即的参数设置如下:首先转速为500rpm,增速为2,转动时间9s,然后速度提升到4000rpm,增速为5,时间60s;烘干的温度为180℃,时间为2min。
4.根据权利要求2所述一种免疫荧光共定位成像平台的制备方法,其特征在于:所述步骤(2)的显影液由异丙醇和甲基异丁酮以体积比3:1的比例配置,定影液为异丙醇;石英片在铬刻蚀液中的浸泡时间为30s,显影和定影的时间均为60s。
5.根据权利要求2所述的一种免疫荧光共定位成像平台的制备方法,其特征在于:所述步骤(3)中蒸镀的速度为0.3埃/s,其中铬的厚度为5nm,金的厚度为15nm;在丙酮溶液中先浸泡10-15min,再加热至沸腾直至表面的光刻胶和多余的金属剥离干净;所得的金纳米阵列中,单个金纳米柱的尺寸为底面直径为120nm左右、高20nm。
6.根据权利要求2所述的一种免疫荧光共定位成像平台的制备方法,其特征在于:所述步骤(4)中氧等离子体清洗剂的处理时长为1分钟,氧气的流量为50sccm,功率为70w;疏水处理的时间为30min。
7.根据权利要求2所述的一种免疫荧光共定位成像平台的制备方法,其特征在于:所述步骤(5)和步骤(7)中,核酸适配体探针FAM-HER2-SH的浓度为1nM,核酸适配体Cy5-HER2的浓度为1.25nM。
8.根据权利要求2所述的一种免疫荧光共定位成像平台的制备方法,其特征在于:所述步骤(5)中,封闭用的BSA溶液溶解在10mM的PBS缓冲液中,BSA的质量浓度为1%(w/v),封闭时间为1.5h。
9.根据权利要求2所述的一种免疫荧光共定位成像平台的制备方法,其特征在于:所述步骤(6)中的外泌体使用超高速冷冻型离心机对SK-BR-3肿瘤细胞的培养液进行提取得到的,外泌体提纯后分散在PBS中;外泌体与金纳米阵列反应时间为1h。
10.根据权利要求1-9所制备的一种免疫荧光共定位成像平台的;其特征在于:应用于免疫检测上;其具体步骤如下:
1)将制备的样品倒置置于贴有超薄防水双面胶的盖玻片上;
形成一个体积为0.1125μm3的腔室;
2)向步骤1)的腔室中加入成像缓冲液;所述成像缓冲液的成分包含巯基乙醇、葡萄糖氧化酶、过氧化氢酶、葡萄糖以及Tris-NaCl buffer;并将腔室密封起来;
3)将加入了成像缓冲液的样品放于单分子定位显微镜下进行成像,激发光波长分别为488 nm和642nm,收集495-575nm和>655nm之间的荧光信号进行双色荧光共定位成像,同时能够检测到FAM和Cy5荧光信号的金纳米阵列才是有效的外泌体结合位点。
CN201911332047.7A 2019-12-21 2019-12-21 一种免疫荧光共定位成像平台的制备方法及应用 Pending CN111077298A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911332047.7A CN111077298A (zh) 2019-12-21 2019-12-21 一种免疫荧光共定位成像平台的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911332047.7A CN111077298A (zh) 2019-12-21 2019-12-21 一种免疫荧光共定位成像平台的制备方法及应用

Publications (1)

Publication Number Publication Date
CN111077298A true CN111077298A (zh) 2020-04-28

Family

ID=70316591

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911332047.7A Pending CN111077298A (zh) 2019-12-21 2019-12-21 一种免疫荧光共定位成像平台的制备方法及应用

Country Status (1)

Country Link
CN (1) CN111077298A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113552041A (zh) * 2021-06-08 2021-10-26 上海交通大学 一种基于单颗粒成像的外泌体亚型分析方法
CN114487053A (zh) * 2022-01-18 2022-05-13 东南大学 一种提高金纳米电极阵列空间分辨率的方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005085849A2 (en) * 2003-10-24 2005-09-15 U S. Genomics, Inc Biohazard identification by fluorescent immunoassay and single molecule detection
US20130172207A1 (en) * 2011-12-28 2013-07-04 The Board Of Trustees Of The Leland Stanford Junior University Fluorescence enhancing plasmonic nanoscopic gold films and assays based thereon
US20140256593A1 (en) * 2011-11-22 2014-09-11 University Of Maryland, Baltimore Plasmonic substrates for metal-enhanced fluorescence based sensing, imaging and assays
WO2015135450A1 (zh) * 2014-03-14 2015-09-17 厦门大学 蘑菇形阵列表面增强拉曼光谱活性基底及制备方法
CN106053405A (zh) * 2016-05-10 2016-10-26 东南大学 一种基于单分子定位法的超分辨光学成像方法
US20170284941A1 (en) * 2014-12-17 2017-10-05 Shenzhen Nanobioimaging Limited Two-color fluorescence localization super-resolution biological microscopy method and system
US20180016569A1 (en) * 2016-07-13 2018-01-18 Arizona Board Of Regents On Behalf Of Arizona State University Nanocaged Enzymes with Enhanced Catalytic Activity and Increased Stability
US20190144936A1 (en) * 2016-01-15 2019-05-16 Massachusetts Institute Of Technology Semi-permeable arrays for analyzing biological systems and methods of using same

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005085849A2 (en) * 2003-10-24 2005-09-15 U S. Genomics, Inc Biohazard identification by fluorescent immunoassay and single molecule detection
US20140256593A1 (en) * 2011-11-22 2014-09-11 University Of Maryland, Baltimore Plasmonic substrates for metal-enhanced fluorescence based sensing, imaging and assays
US20130172207A1 (en) * 2011-12-28 2013-07-04 The Board Of Trustees Of The Leland Stanford Junior University Fluorescence enhancing plasmonic nanoscopic gold films and assays based thereon
WO2015135450A1 (zh) * 2014-03-14 2015-09-17 厦门大学 蘑菇形阵列表面增强拉曼光谱活性基底及制备方法
US20170284941A1 (en) * 2014-12-17 2017-10-05 Shenzhen Nanobioimaging Limited Two-color fluorescence localization super-resolution biological microscopy method and system
US20190144936A1 (en) * 2016-01-15 2019-05-16 Massachusetts Institute Of Technology Semi-permeable arrays for analyzing biological systems and methods of using same
CN106053405A (zh) * 2016-05-10 2016-10-26 东南大学 一种基于单分子定位法的超分辨光学成像方法
US20180016569A1 (en) * 2016-07-13 2018-01-18 Arizona Board Of Regents On Behalf Of Arizona State University Nanocaged Enzymes with Enhanced Catalytic Activity and Increased Stability

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
XIAODONG ZHOU ET AL.: "Point-of-Care Device with Plasmonic Gold Nanoarray Sensing Chip for Biomarker Detections", NEXT GENERATION POINT-OF-CARE BIOMEDICAL SENSORS TECHNOLOGIES FOR CANCER DIAGNOSIS, pages 14 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113552041A (zh) * 2021-06-08 2021-10-26 上海交通大学 一种基于单颗粒成像的外泌体亚型分析方法
CN114487053A (zh) * 2022-01-18 2022-05-13 东南大学 一种提高金纳米电极阵列空间分辨率的方法
CN114487053B (zh) * 2022-01-18 2023-10-10 东南大学 一种提高金纳米电极阵列空间分辨率的方法

Similar Documents

Publication Publication Date Title
Yeo et al. Tip-enhanced Raman Spectroscopy–Its status, challenges and future directions
Bonhommeau et al. Tip‐enhanced Raman spectroscopy: A tool for nanoscale chemical and structural characterization of biomolecules
Han et al. Fluorescein isothiocyanate linked immunoabsorbent assay based on surface-enhanced resonance Raman scattering
EP3371194A1 (en) Protein sequencing methods and reagents
JP2002511792A (ja) チップ及びライブラリの大量製造における物質溶液の静電噴霧
Xu et al. Synthesis of the 3D AgNF/AgNP arrays for the paper-based surface enhancement Raman scattering application
JP2007170870A (ja) 質量分析を用いたinsitu検出方法
JP2003329682A (ja) 微小物体の光固定化方法、微小物体固定化担体及び微小物体の観察方法
CN111077298A (zh) 一种免疫荧光共定位成像平台的制备方法及应用
Li et al. Attenuated total reflection surface-enhanced infrared absorption spectroscopy: A powerful technique for bioanalysis
US20130294972A1 (en) Zero-mode waveguide for single biomolecule fluorescence imaging
Lebogang et al. Capacitive sensing of microcystin variants of Microcystis aeruginosa using a gold immunoelectrode modified with antibodies, gold nanoparticles and polytyramine
Li-Xu et al. Bioanalytical applications of surface-enhanced infrared absorption spectroscopy
WO2006032158A1 (en) Electrochemical patterning on multi-channel microelectrode array for biosensing applications
Le et al. A simple method for controlled immobilization of proteins on modified SAMs
EP3350117A1 (en) End-cap suitable for optical fiber devices and nanoplasmonic sensors
US20090166222A1 (en) Electrical nanotraps for spectroscopically characterizing biomolecules within
KR101878214B1 (ko) 최소세제곱 알고리즘을 기반으로 하는 암시야 조명을 이용한 비형광 나노 입자의 3차원 초고분해 영상 이미지의 획득 방법 및 시스템
JPH07260790A (ja) ビオチンシラン化合物及びこれらの化合物を含む結合マトリックス
JPH10307139A (ja) 試薬スポットの形成方法
Na et al. Analyte-Induced desert rose-like Ag nanostructures for surface-enhanced Raman scattering-based biomolecule detection and imaging
Liu et al. Liposome-mediated enhancement of the sensitivity in immunoassay based on surface-enhanced Raman scattering at gold nanosphere array substrate
Li et al. A high-performance SERS imprinted membrane based on Ag/CNTs for selective detection of spiramycin
CN112986171B (zh) 一种等离激元共振增强基底及其制备方法和应用
KR101691067B1 (ko) 무표지 금속 3차원 나노 밀집체 동기화 표면증강 라만산란법을 이용한 단백질 검출방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200428

RJ01 Rejection of invention patent application after publication