CN111068736A - 竹节状碳纳米管/分级多孔生物碳复合材料及其制备方法 - Google Patents

竹节状碳纳米管/分级多孔生物碳复合材料及其制备方法 Download PDF

Info

Publication number
CN111068736A
CN111068736A CN201911391900.2A CN201911391900A CN111068736A CN 111068736 A CN111068736 A CN 111068736A CN 201911391900 A CN201911391900 A CN 201911391900A CN 111068736 A CN111068736 A CN 111068736A
Authority
CN
China
Prior art keywords
bamboo
powder
hierarchical porous
carbon nanotube
porous biochar
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201911391900.2A
Other languages
English (en)
Other versions
CN111068736B (zh
Inventor
陈文瑾
朱科
慎雅倩
何东东
宾琼
丁健
王儒杰
冷庚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Electronic Science and Technology of China
Original Assignee
University of Electronic Science and Technology of China
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Electronic Science and Technology of China filed Critical University of Electronic Science and Technology of China
Priority to CN201911391900.2A priority Critical patent/CN111068736B/zh
Publication of CN111068736A publication Critical patent/CN111068736A/zh
Application granted granted Critical
Publication of CN111068736B publication Critical patent/CN111068736B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J27/00Catalysts comprising the elements or compounds of halogens, sulfur, selenium, tellurium, phosphorus or nitrogen; Catalysts comprising carbon compounds
    • B01J27/24Nitrogen compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J21/00Catalysts comprising the elements, oxides, or hydroxides of magnesium, boron, aluminium, carbon, silicon, titanium, zirconium, or hafnium
    • B01J21/18Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/32Manganese, technetium or rhenium
    • B01J23/34Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/745Iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/75Cobalt
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/74Iron group metals
    • B01J23/755Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8892Manganese
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/33Electric or magnetic properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/30Catalysts, in general, characterised by their form or physical properties characterised by their physical properties
    • B01J35/396Distribution of the active metal ingredient
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/66Pore distribution
    • B01J35/695Pore distribution polymodal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/725Treatment of water, waste water, or sewage by oxidation by catalytic oxidation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/308Dyes; Colorants; Fluorescent agents
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/34Organic compounds containing oxygen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/36Organic compounds containing halogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/40Organic compounds containing sulfur

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Hydrology & Water Resources (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

一种竹节状碳纳米管/分级多孔生物碳复合材料及其制备方法,属于污染水体修复技术领域。所述复合材料包括分级多孔生物碳和形成于分级多孔生物碳表面的竹节状碳纳米管,其中,所述竹节状碳纳米管为似空心竹节的管状结构,管径为30~100nm,管内分散有粒径10~20nm的金属纳米颗粒;所述分级多孔生物碳为带多孔结构的颗粒,包括孔径为2nm~50nm的中孔和孔径小于2nm的微孔,其比表面积为200~400m2/g。本发明竹节状碳纳米管/分级多孔生物碳复合材料具有比表面积大、管径小、金属颗粒粒径小、催化降解性能好和传导电子能力强等优点。

Description

竹节状碳纳米管/分级多孔生物碳复合材料及其制备方法
技术领域
本发明涉及一种竹节状碳纳米管/分级多孔生物碳复合材料及其制备方法,制备所得的复合材料用于催化过硫酸盐降解有机污染物的污染水体修复领域。
背景技术
随着我国工业的高速发展,大量排放的有机污染物进入水体,其中包含染料、抗生素、农药、杀虫剂等,对动物和人类的健康带来了严重的影响。而传统水处理工艺比如吸附、分离并不能对其进行有效处理,目前高级氧化工艺(AOPS)是处理水中有机污染物的最高效的技术。
高级氧化工艺(Advanced Oxidation Processes,AOPs)是近年来发展起来的新技术,由Glaze等首次提出,是目前处理难降解有机物的最有效方法。高级氧化工艺由于具有产生强氧化性物质的能力,能够将有机污染物降解成无毒或低毒的小化合物,甚至是彻底降解成无害的二氧化碳和水,引起了越来越多的关注。传统的高级氧化技术,比如芬顿(Fenton)氧化法和类芬顿氧化法通常存在产生大量的含铁污泥、H2O2利用率低下等问题。活化过硫酸盐是一种新型的高级氧化工艺,通常采取Co2+、Cu2+等为催化剂,催化过硫酸盐产生硫酸根自由基,氧化有机污染物,矿化为CO2和H2O;但是Co2+、Cu2+等容易进入水体,带来重金属污染的风险,另外催化剂难以回收,成本高,同时,催化活性不高,一般需要借助紫外光、超声波、臭氧等进行辅助,导致费用高、能耗大等问题,限制了它们的实际应用。在活化过硫酸盐的领域,碳基材料和铁基材料,由于其价格低廉、环境友好、不会带来二次污染,在活化过硫酸盐的高级氧化工艺中显示出极其诱人的前景。
通过对现有的技术文献的检索发现,张倩等在《中国环境科学》2019,39(09)上发表Fe/污泥基生物炭持久活化过硫酸盐降解酸性橙G;王森等在《环境工程学报》2019,05上发表Fe2+活化过硫酸盐对市政污泥EPS性能的影响;刘美琴等在《中国环境科学》2018,38(04)上发表Fe2+活化过硫酸盐耦合活性炭深度处理焦化废水;还有一些用碳纳米管和石墨烯作为活化剂的报道,碳纳米管和石墨烯具有高的比表面积和高度的石墨化C提供了大量的催化活性位点,传导电子能力强,机械性能优良,耐酸碱性良好等优势,是目前研究的热点。合成碳纳米管和石墨烯的方法有许多,但是这些方法都工艺复杂、能耗和成本高。而本发明通过极少的过渡金属,在生物质废料协同作用下,原位生成了金属颗粒包封于竹节状的超长碳纳米管,旨在提供一种新的方法来合成碳纳米管,以解决传统方法中的耗时长、耗能高、纯度低、反应操作繁琐等问题。
发明内容
本发明的目的在于,针对背景技术存在的缺陷,提出了一种竹节状碳纳米管/分级多孔生物碳复合材料及其制备方法。本发明通过极少量的过渡金属,在废弃的生物质协同作用下,原位生成了金属颗粒包封于竹节状的超长碳纳米管,在简化传统碳纳米管合成方法的同时,也保证了所合成出来的碳纳米管的比表面积大、管径小,金属颗粒粒径小、催化降解性能好和传导电子能力强等优点,从而为生产高性能的金属包封于碳纳米管的材料提供了新的制备方法。
为实现上述目的,本发明采用的技术方案如下:
一种竹节状碳纳米管/分级多孔生物碳复合材料,其特征在于,所述复合材料包括分级多孔生物碳和形成于分级多孔生物碳表面的竹节状碳纳米管,其中,所述竹节状碳纳米管为类似空心竹节的管状结构,管径为30~100nm,管内分散有粒径10~20nm的金属纳米颗粒(Fe纳米颗粒、Mn纳米颗粒、Co纳米颗粒、Ni纳米颗粒等);所述分级多孔生物碳为多孔结构的颗粒,包括孔径为2nm~50nm的中孔和孔径小于2nm的微孔,分级多孔生物碳的比表面积为200~400m2/g。
一种竹节状碳纳米管/分级多孔生物碳复合材料的制备方法,其特征在于,包括以下步骤:
步骤1、取打豆浆过滤废弃的豆渣作为生物质来源,清洗、烘干、过筛后,得到豆渣粉末;然后将得到的豆渣粉末在300~500℃下热处理1~4h,进行碳化,完成后,自然冷却至室温,取出,洗涤,干燥,得到粉末A;
步骤2、将步骤1得到的粉末A与氢氧化钾按照质量比为1:(1~8)的比例加入去离子水中,充分混合,得到混合液A,其中,混合液A中氢氧化钾的浓度为4~8mol/L;
步骤3、将步骤2配制的混合液A在室温下磁力搅拌3~6h,完成后,分离,烘干,得到粉末B;
步骤4、将步骤3得到的粉末B置于管式炉内,在氮气或氩气保护下、700~900℃温度下活化2~6h,完成后,自然冷却至室温,取出,洗涤,干燥,即可得到分级多孔生物碳;
步骤5、将过渡金属盐、氮源和步骤4得到的分级多孔生物碳加入去离子水中,搅拌混合均匀,得到混合液B;其中,所述过渡金属盐、分级多孔生物碳以及氮源的质量比为1:(2~5):(10~40),混合液B中分级多孔生物碳的质量浓度为3~5g/L;
步骤6、将步骤5得到的混合液B在室温条件下搅拌4~10h,完成后,置于旋转蒸发仪中,在温度为60~80℃、转速为100~120rpm的条件下将溶剂蒸干,得到的固体充分研磨,得到粉末C;
步骤7、将步骤6得到的粉末C置于管式炉内,在氮气或氩气保护下,先以1~5℃/min的速率升温至400~500℃,保温1~3h,再以1~5℃/min的速率升温至700~900℃,保温1~4h,完成后,自然冷却至室温,取出,洗涤,干燥(在真空烘箱中60~80℃干燥6~15h),即可得到所述竹节状碳纳米管/分级多孔生物碳复合材料,经扫描电镜和透射电镜检测其形貌为分级多孔生物碳以及原位生长的竹节状碳纳米管。
进一步地,步骤1所述生物质来源为任何一种方法磨豆浆后过滤得到的废弃物,包括传统的石磨以及各种豆浆机打浆剩余的豆渣。
进一步地,步骤2所述氢氧化钾还可以采用氯化锌、氢氧化钠、碳酸钾等代替。
进一步地,步骤4所述氮气或氩气的流量为30~120mL/min,升温速率为2℃/min。
进一步地,步骤5所述过渡金属盐为FeCl3、Fe(NO3)3、MnCl2、CoCl2、NiCl2、Mn(NO3)2、Co(NO3)2、Ni(NO3)2的中的任意一种或几种,所述氮源为尿素、双聚氰胺、三聚氰胺中的任意一种。
进一步地,步骤7所述氮气或氩气的流量为40~60mL/min。
优选地,步骤1中热处理温度为400℃,时间为2h。
本发明还提供了上述竹节状碳纳米管/分级多孔生物碳复合材料在催化降解水体中有机污染物和抗生素中的应用。
与现有技术相比,本发明的有益效果为:
1、本发明提供的一种竹节状碳纳米管/分级多孔生物碳复合材料,金属颗粒被包封于碳纳米管中,克服了目前极为关注的金属溶出造成二次污染带来的健康风险的问题。
2、本发明提供通过极少的金属,在废弃的生物质协同作用下,原位生成了金属包封于竹节状的超长碳纳米管,以解决传统方法中的耗时长、耗能高、纯度低、反应操作繁琐等问题。
3、本发明竹节状碳纳米管/分级多孔生物碳复合材料具有比表面积大、管径小、金属颗粒粒径小、催化降解性能好和传导电子能力强等优点。
4、本发明提供的一种竹节状碳纳米管/分级多孔生物碳复合材料的制备方法,原料易得且成本低,绿色环保,制备过程简单,产量和纯度高。
附图说明
图1为实施例1步骤4得到的分级多孔生物碳的SEM图;
图2为实施例1步骤4得到的分级多孔生物碳的BET图;
图3为实施例8制备的N掺杂无金属生物炭的SEM图;
图4为实施例1制备的竹节状碳纳米管/分级多孔生物碳复合材料(FeMn@NCNT-800)的SEM图;
图5为实施例1制备的FeMn@NCNT-800的HRTEM图;
图6为实施例1和实施例8制备的材料的XRD图;
图7为实施例1制备的FeMn@NCNT-800的XPS图;
图8为实施例1制备的FeMn@NCNT-800活化过硫酸盐降解不同的污染物效果图。
具体实施方式
下面通过附图和实施例对本发明进一步说明,然而本发明并不局限于以下实施例。
一种竹节状碳纳米管/分级多孔生物碳复合材料的制备方法,其特征在于,包括以下步骤:
步骤1、取打豆浆过滤废弃的豆渣作为生物质来源,用去离子水清洗3次、在烘箱中100~120℃干燥6~10h、粉碎、过100目筛后,得到豆渣粉末;然后将得到的豆渣粉末装入坩埚中,并放置于马弗炉中,以5℃/min的升温速率将温度升至300~500℃,保温1~4h,进行碳化,完成后,自然冷却至室温,取出,分离,去离子水洗涤,80℃下干燥,得到粉末A;
步骤2、将步骤1得到的粉末A与氢氧化钾按照质量比为1:(1~8)的比例加入去离子水中,充分混合,得到混合液A,其中,混合液A中氢氧化钾的浓度为4~8mol/L;
步骤3、将步骤2配制的混合液A在室温下磁力搅拌3~6h,完成后,抽滤分离,80℃烘干,得到粉末B;
步骤4、将步骤3得到的粉末B置于管式炉内,在氮气或氩气保护下以2℃/min的升温速率将温度升至700~900℃,并在700~900℃温度下活化2~6h,完成后,自然冷却至室温,取出,酸洗(酸洗中的酸为盐酸,浓度为0.1mol/L~2mol/L),去离子水洗涤至中性,抽滤,然后真空80℃下烘干,即可得到比表面积为200~400m2/g的分级多孔生物碳;
步骤5、将过渡金属盐、氮源和步骤4得到的分级多孔生物碳加入去离子水中,搅拌混合均匀,得到混合液B;其中,所述过渡金属盐、分级多孔生物碳以及氮源的质量比为1:(2~5):(10~40),混合液B中分级多孔生物碳的质量浓度为3~5g/L;
步骤6、将步骤5得到的混合液B在室温条件下搅拌4~10h,完成后,置于旋转蒸发仪中,在温度为60~80℃、转速为100~120rpm的条件下将溶剂蒸干,得到的固体充分研磨,得到粉末C;
步骤7、将步骤6得到的粉末C置于管式炉内,在氮气或氩气保护下,先以1~5℃/min的速率升温至400~500℃,保温1~3h,再以1~5℃/min的速率升温至700~900℃,保温1~4h,完成后,自然冷却至室温,取出,酸洗(酸洗中的酸为盐酸,浓度为0.1mol/L~2mol/L),去离子水洗涤至中性,抽滤,然后真空烘箱中60~80℃干燥6~15h,即可得到所述竹节状碳纳米管/分级多孔生物碳复合材料,经扫描电镜和透射电镜检测其形貌为分级多孔生物碳以及原位生长的竹节状碳纳米管。
实施例1:FeMn@NCNT-800的制备(煅烧温度800℃)
步骤1、取食堂制作豆浆废弃的豆渣,用去离子水清洗3次、在烘箱中120℃干燥8h、粉碎、过100目筛后,得到豆渣粉末;然后将得到的豆渣粉末装入坩埚中,并放置于马弗炉中,以5℃/min的升温速率将温度升至400℃,保温2h,进行碳化,完成后,自然冷却至室温,取出,分离,去离子水洗涤,80℃下干燥,得到粉末A;
步骤2、将步骤1得到的粉末A与氢氧化钾按照质量比为1:4的比例加入去离子水中,充分混合,得到混合液A,其中,混合液A中氢氧化钾的浓度为6mol/L;
步骤3、将步骤2配制的混合液A在室温下磁力搅拌3h,完成后,抽滤分离,80℃烘干,得到粉末B;
步骤4、将步骤3得到的粉末B置于管式炉内,在流量为80mL/min的氮气保护下以2℃/min的升温速率将温度升至800℃,并在800℃温度下活化2h,完成后,自然冷却至室温,取出,酸洗(酸洗中的酸为盐酸,浓度为1mol/L),去离子水洗涤至中性,抽滤,然后真空80℃下烘干,即可得到比表面积为233.417m2/g的分级多孔生物碳;
步骤5、将0.1g四水合二氯化锰、0.1g六水合三氯化铁、0.4g步骤4得到的分级多孔生物碳和4.00g双聚氰胺加入100mL去离子水中,搅拌混合均匀,得到混合液B;
步骤6、将步骤5得到的混合液B在室温条件下搅拌6h,完成后,置于旋转蒸发仪中,在温度为80℃、转速为110rpm的条件下将溶剂蒸干,得到的固体充分研磨,得到粉末C;
步骤7、将步骤6得到的粉末C置于管式炉内,在流量为80mL/min的氮气保护下,先以2℃/min的速率升温至500℃,保温2h,再以2℃/min的速率升温至800℃,保温2h进行煅烧,完成后,自然冷却至室温,取出,酸洗(酸洗中的酸为盐酸,浓度为1mol/L),去离子水洗涤至中性,抽滤,然后真空烘箱中80℃干燥8h,即可得到大约0.42g的FeMn@NCNT-800。
实施例2:FeMn@NCNT-700的制备(煅烧温度700℃)
本实施例与实施例1相比,区别在于:步骤7中,将步骤6得到的粉末C置于管式炉内,在流量为80mL/min的氮气保护下,先以2℃/min的速率升温至500℃,保温2h,再以2℃/min的速率升温至700℃,保温2h进行煅烧。其余步骤与实施例1相同。最后得到大约0.4g的FeMn@NCNT-700。
实施例3:FeMn@NCNT-900的制备(煅烧温度900℃)
本实施例与实施例1相比,区别在于:步骤7中,将步骤6得到的粉末C置于管式炉内,在流量为80mL/min的氮气保护下,先以2℃/min的速率升温至500℃,保温2h,再以2℃/min的速率升温至900℃,保温2h进行煅烧。其余步骤与实施例1相同。最后得到大约0.32g的FeMn@NCNT-900。
实施例4:Fe@NCNT-800的制备(煅烧温度800℃)
本实施例与实施例1相比,区别在于:步骤1中,将得到的豆渣粉末装入坩埚中,并放置于马弗炉中,以5℃/min的升温速率将温度升至400℃,保温3h,进行碳化;步骤2中,将步骤1得到的粉末A与氢氧化钾按照质量比为1:6的比例加入去离子水中,充分混合,得到混合液A,得到比表面积为286.417m2/g的分级多孔生物碳;步骤5中,将0.1g六水合三氯化铁、0g四水合二氯化锰、0.4g步骤4得到的分级多孔生物碳和3.00g三聚氰胺加入100mL去离子水中,搅拌混合均匀,得到混合液B。其余步骤与实施例1相同。最后得到大约0.39g的Fe@NCNT-800。
实施例5:Ni@NCNT-900的制备(煅烧温度900℃)
本实施例与实施例4相比,区别在于:步骤4中,将步骤3得到的粉末B置于管式炉内,在流量为80mL/min的氮气保护下以4℃/min的升温速率将温度升至900℃,并在900℃温度下活化3h,得到比表面积为328.417m2/g的分级多孔生物碳;步骤5中,将0g六水合三氯化铁、0.15g硝酸镍、0.4g步骤4得到的分级多孔生物碳和2.00g双聚氰胺加入100mL去离子水中,搅拌混合均匀,得到混合液B;步骤7中,将步骤6得到的粉末C置于管式炉内,在流量为80mL/min的氮气保护下,先以2℃/min的速率升温至400℃,保温2h,再以2℃/min的速率升温至900℃,保温2h进行煅烧。其余步骤与实施例4相同。最后得到大约0.415g的Ni@NCNT-900。
实施例6:Mn@NCNT-900的制备(煅烧温度900℃)
本实施例与实施例5相比,区别在于:步骤1中,将得到的豆渣粉末装入坩埚中,并放置于马弗炉中,以5℃/min的升温速率将温度升至400℃,保温4h,进行碳化;步骤2中,将步骤1得到的粉末A与氢氧化钾按照质量比为1:8的比例加入去离子水中,充分混合,得到混合液A;步骤4中,将步骤3得到的粉末B置于管式炉内,在流量为80mL/min的氮气保护下以4℃/min的升温速率将温度升至800℃,并在800℃温度下活化5h,得到比表面积在364.23m2/g的分级多孔生物碳;步骤5中,将0g硝酸镍、0.18g四水合二氯化锰和0.4g步骤4得到的分级多孔生物碳和4.00g尿素加入100mL去离子水中,搅拌混合均匀,得到混合液B。其余步骤与实施例5相同。最后得到大约0.415g的Mn@NCNT-900。
实施例7:Co@NCNT-800的制备(煅烧温度800℃)
本实施例与实施例6相比,区别在于:步骤2中,将步骤1得到的粉末A与氢氧化钾按照质量比为1:5的比例加入去离子水中,充分混合,得到混合液A,得到比表面积为286.417m2/g的分级多孔生物碳;步骤4中,将步骤3得到的粉末B置于管式炉内,在流量为80mL/min的氮气保护下以4℃/min的升温速率将温度升至700℃,并在700℃温度下活化3h,得到比表面积为274.23m2/g的分级多孔生物碳;步骤5中,将0g四水合二氯化锰、0.12g硝酸钴、0.4g步骤4得到的分级多孔生物碳和4.00g三聚氰胺加入100mL去离子水中,搅拌混合均匀,得到混合液B;步骤7中,将步骤6得到的粉末C置于管式炉内,在流量为80mL/min的氮气保护下,先以2℃/min的速率升温至450℃,保温2h,再以2℃/min的速率升温至800℃,保温2h进行煅烧。其余步骤与实施例6相同。最后得到大约0.375g的Co@NCNT-800。
实施例8:NCNT的制备(不加入过渡金属盐)
本实施例与实施例1相比,区别在于:步骤5中不加过渡金属盐,即将0.4g步骤4得到的分级多孔生物碳和4.00g二氰二胺加入100mL去离子水中,搅拌混合均匀,得到混合液B。其余步骤与实施例1相同。最后得到的复合材料进行扫描电镜检测,如图3所示,没有金属的加入,不会形成碳纳米管,只能形成石墨化片层的结构。
实施例9:
本实例提供实施例1制备得到的FeMn@NCNT-800对水中有机污染物和抗生素进行首次催化降解的性能实验。
其包括以下步骤:
(1)用罗丹明B,橙黄,亚甲基蓝和四环素分别准确配置50mL 20mg/L的溶液,调节pH至7.0后转入100mL锥形瓶中。
(2)准确称取50mg FeMn@NCNT-800,0.0675g过硫酸钾加入锥形瓶中,将锥形瓶放入恒温振荡器中,150rpm、25℃振荡,一定的时间间隔取样测试浓度。如图8所示,染料(罗丹明B,橙黄和亚甲基蓝)在几分钟就可以达到90%以上的降解率,抗生素(四环素)在20分钟也可以达到90%左右的降解率。
图1-2为实施例1步骤4得到的分级多孔生物碳的SEM和BET图;SEM显示该分级多孔生物碳表面有许多小孔,BET图则表明该分级多孔生物碳的比表面积为233.417m2/g,表面微孔和中孔都存在,进一步表明得到的生物碳为分级多孔生物碳。
图3为实施例8制备的N掺杂无金属生物炭的SEM图;由图可知,没有金属的加入,不会形成碳纳米管,只能形成石墨化片层的结构。
图4-5为实施例1制备的竹节状碳纳米管/分级多孔生物碳复合材料(FeMn@NCNT-800)的SEM和HRTEM图;由图4可知,实施例1得到的FeMn@NCNT-800具有大量的碳纳米管结构盘旋交接在生物碳上,图5显示实施例1得到的FeMn@NCNT-800碳纳米管像空心竹节一样,管径在30~100nm,金属颗粒包封于竹节状碳纳米管内,粒径10~20nm。
图6为实施例1和实施例8制备的材料的XRD图;由图6可知NCNT和FeMn@NCNT-800都有石墨化碳的峰,但是FeMn@NCNT-800还有多种形态的铁和锰的峰。
图7为实施例1制备的FeMn@NCNT-800的XPS图;由图可知,在FeMn@NCNT-800中存在四种氮构型,分别为吡啶型N(398.57eV)、吡咯型N(399.54eV)、石墨型N(401.3eV)和氧化型N(404.14eV),表明本发明制备的复合材料成功地进行了氮掺杂。
图8为实施例1制备的FeMn@NCNT-800活化过硫酸盐对典型有机污染物:罗丹明B(RhB),橙黄(Orange I),亚甲基蓝(MB)和四环素(TC)的降解效果。从图可以看出,染料在几分钟就可以达到90%以上的降解率,四环素在20分钟也可以达到90%左右的降解率。
本发明提供的一种竹节状碳纳米管/分级多孔生物碳复合材料,具有过渡金属和碳基材料耦合活化过硫酸盐降解有机污染物的作用;过渡金属包封于竹节状碳纳米管,能够稳定地循环使用,避免了金属的溶出;同时大大扩宽了材料的pH值适用范围,解决了传统活化剂在中性和碱性效率较低的问题。

Claims (4)

1.一种竹节状碳纳米管/分级多孔生物碳复合材料,其特征在于,所述复合材料包括分级多孔生物碳和形成于分级多孔生物碳表面的竹节状碳纳米管,其中,所述竹节状碳纳米管的管径为30~100nm,管内分散有粒径10~20nm的金属纳米颗粒;所述分级多孔生物碳为多孔结构的颗粒,包括孔径为2nm~50nm的中孔和孔径小于2nm的微孔。
2.一种竹节状碳纳米管/分级多孔生物碳复合材料的制备方法,其特征在于,包括以下步骤:
步骤1、取打豆浆过滤废弃的豆渣作为生物质来源,清洗、烘干、过筛后,得到豆渣粉末;然后将得到的豆渣粉末在300~500℃下热处理1~4h,进行碳化,完成后,自然冷却至室温,取出,洗涤,干燥,得到粉末A;
步骤2、将步骤1得到的粉末A与氢氧化钾按照质量比为1:(1~8)的比例加入去离子水中,充分混合,得到混合液A,其中,混合液A中氢氧化钾的浓度为4~8mol/L;
步骤3、将步骤2配制的混合液A在室温下搅拌3~6h,完成后,分离,烘干,得到粉末B;
步骤4、将步骤3得到的粉末B置于管式炉内,在氮气或氩气保护下、700~900℃温度下活化2~6h,完成后,自然冷却至室温,取出,洗涤,干燥,即可得到分级多孔生物碳;
步骤5、将过渡金属盐、氮源和步骤4得到的分级多孔生物碳加入去离子水中,搅拌混合均匀,得到混合液B;其中,所述过渡金属盐、分级多孔生物碳以及氮源的质量比为1:(2~5):(10~40),混合液B中分级多孔生物碳的质量浓度为3~5g/L;
步骤6、将步骤5得到的混合液B在室温条件下搅拌4~10h,完成后,置于旋转蒸发仪中,在温度为60~80℃、转速为100~120rpm的条件下将溶剂蒸干,得到的固体充分研磨,得到粉末C;
步骤7、将步骤6得到的粉末C置于管式炉内,在氮气或氩气保护下,先以1~5℃/min的速率升温至400~500℃,保温1~3h,再以1~5℃/min的速率升温至700~900℃,保温1~4h,完成后,自然冷却至室温,取出,洗涤,干燥,即可得到所述竹节状碳纳米管/分级多孔生物碳复合材料。
3.根据权利要求2所述的竹节状碳纳米管/分级多孔生物碳复合材料的制备方法,其特征在于,步骤2所述氢氧化钾采用氯化锌、氢氧化钠或碳酸钾代替。
4.根据权利要求2所述的竹节状碳纳米管/分级多孔生物碳复合材料的制备方法,其特征在于,步骤5所述过渡金属盐为FeCl3、Fe(NO3)3、MnCl2、CoCl2、NiCl2、Mn(NO3)2、Co(NO3)2、Ni(NO3)2中的任意一种或几种,所述氮源为尿素、双聚氰胺、三聚氰胺中的任意一种。
CN201911391900.2A 2019-12-30 2019-12-30 竹节状碳纳米管/分级多孔生物碳复合材料及其制备方法 Active CN111068736B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911391900.2A CN111068736B (zh) 2019-12-30 2019-12-30 竹节状碳纳米管/分级多孔生物碳复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911391900.2A CN111068736B (zh) 2019-12-30 2019-12-30 竹节状碳纳米管/分级多孔生物碳复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN111068736A true CN111068736A (zh) 2020-04-28
CN111068736B CN111068736B (zh) 2022-10-14

Family

ID=70319402

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911391900.2A Active CN111068736B (zh) 2019-12-30 2019-12-30 竹节状碳纳米管/分级多孔生物碳复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN111068736B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113398922A (zh) * 2021-06-02 2021-09-17 山西大学 一种负载贵金属的碳材料催化剂及其制备方法和应用
CN114225952A (zh) * 2021-11-09 2022-03-25 华南理工大学 一种磁性氮掺杂碳纳米管及其制备方法和应用
CN114314563A (zh) * 2021-12-30 2022-04-12 西安交通大学 一种基于木质碳化多孔结构的竹节状碳纳米管复合材料及其制备方法
CN114768766A (zh) * 2022-05-24 2022-07-22 浙江树人学院 一种氮掺杂碳纳米管包覆钴铁锰纳米颗粒改性生物炭的制备方法和应用
CN116751567A (zh) * 2023-08-10 2023-09-15 华南理工大学 一种生物碳光热复合定形相变材料及其制备方法和应用
CN117244524A (zh) * 2023-10-31 2023-12-19 广东省科学院生态环境与土壤研究所 一种含铁碳基材料、其制备方法及应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005038818A (ja) * 2003-06-30 2005-02-10 Junji Nakamura 炭化モリブデン触媒およびその製造方法、並びに、該触媒を利用した燃料電池用電極および燃料電池
CA2588134A1 (en) * 2004-11-17 2006-06-22 Hyperion Catalysis International, Inc. Method for preparing catalyst supports and supported catalysts from single walled carbon nanotubes
US20180214851A1 (en) * 2017-01-31 2018-08-02 Auburn University Material for removing contaminants from water
CN109173989A (zh) * 2018-09-04 2019-01-11 电子科技大学 三维石墨烯宏观体负载纳米零价铁复合材料及制备方法
CN110203994A (zh) * 2019-06-18 2019-09-06 湖南大学 利用多层级孔生物炭激活过硫酸盐降解有机污染物的方法
CN110357063A (zh) * 2019-06-14 2019-10-22 广东工业大学 一种碳纳米管/多孔碳纳米复合材料及其制备方法和应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005038818A (ja) * 2003-06-30 2005-02-10 Junji Nakamura 炭化モリブデン触媒およびその製造方法、並びに、該触媒を利用した燃料電池用電極および燃料電池
CA2588134A1 (en) * 2004-11-17 2006-06-22 Hyperion Catalysis International, Inc. Method for preparing catalyst supports and supported catalysts from single walled carbon nanotubes
US20180214851A1 (en) * 2017-01-31 2018-08-02 Auburn University Material for removing contaminants from water
CN109173989A (zh) * 2018-09-04 2019-01-11 电子科技大学 三维石墨烯宏观体负载纳米零价铁复合材料及制备方法
CN110357063A (zh) * 2019-06-14 2019-10-22 广东工业大学 一种碳纳米管/多孔碳纳米复合材料及其制备方法和应用
CN110203994A (zh) * 2019-06-18 2019-09-06 湖南大学 利用多层级孔生物炭激活过硫酸盐降解有机污染物的方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
MANDU INYANG ET.AL: ""Synthesis, characterization, and dye sorption ability of carbon nanotube–biochar nanocomposites"", 《CHEMICAL ENGINEERING JOURNAL》 *
PIJUN DUAN ET.AL: ""Fe/Mn nanoparticles encapsulated nitrogen-doped carbon nanotubes as peroxymonosulfate activator for acetamiprid degradation"", 《ENVIRONMENTAL SCIENCE-NANO》 *
宁翔等: "纳米ZnO/Zn/CNT多孔复合结构的制备及其对亚甲基蓝的无光催化降解", 《材料科学与工程学报》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113398922A (zh) * 2021-06-02 2021-09-17 山西大学 一种负载贵金属的碳材料催化剂及其制备方法和应用
CN113398922B (zh) * 2021-06-02 2023-09-22 山西大学 一种负载贵金属的碳材料催化剂及其制备方法和应用
CN114225952A (zh) * 2021-11-09 2022-03-25 华南理工大学 一种磁性氮掺杂碳纳米管及其制备方法和应用
CN114314563A (zh) * 2021-12-30 2022-04-12 西安交通大学 一种基于木质碳化多孔结构的竹节状碳纳米管复合材料及其制备方法
CN114768766A (zh) * 2022-05-24 2022-07-22 浙江树人学院 一种氮掺杂碳纳米管包覆钴铁锰纳米颗粒改性生物炭的制备方法和应用
CN114768766B (zh) * 2022-05-24 2024-01-19 浙江树人学院 一种氮掺杂碳纳米管包覆钴铁锰纳米颗粒改性生物炭的制备方法和应用
CN116751567A (zh) * 2023-08-10 2023-09-15 华南理工大学 一种生物碳光热复合定形相变材料及其制备方法和应用
CN116751567B (zh) * 2023-08-10 2023-12-12 华南理工大学 一种生物碳光热复合定形相变材料及其制备方法和应用
CN117244524A (zh) * 2023-10-31 2023-12-19 广东省科学院生态环境与土壤研究所 一种含铁碳基材料、其制备方法及应用
CN117244524B (zh) * 2023-10-31 2024-05-24 广东省科学院生态环境与土壤研究所 一种含铁碳基材料、其制备方法及应用

Also Published As

Publication number Publication date
CN111068736B (zh) 2022-10-14

Similar Documents

Publication Publication Date Title
CN111068736B (zh) 竹节状碳纳米管/分级多孔生物碳复合材料及其制备方法
Hu et al. Singlet oxygen-dominated activation of peroxymonosulfate by passion fruit shell derived biochar for catalytic degradation of tetracycline through a non-radical oxidation pathway
CN111054395B (zh) 一种可见光催化剂及其制备方法和应用
Akhil et al. Production, characterization, activation and environmental applications of engineered biochar: a review
Liu et al. The biochar-supported iron-copper bimetallic composite activating oxygen system for simultaneous adsorption and degradation of tetracycline
Zeng et al. Visible-light-driven sonophotocatalysis and peroxymonosulfate activation over 3D urchin-like MoS2/C nanoparticles for accelerating levofloxacin elimination: Optimization and kinetic study
Hassandoost et al. Nanoarchitecturing bimetallic manganese cobaltite spinels for sonocatalytic degradation of oxytetracycline
Han et al. Catalytic degradation of tetracycline using peroxymonosulfate activated by cobalt and iron co-loaded pomelo peel biochar nanocomposite: Characterization, performance and reaction mechanism
Hashemzadeh et al. Degradation of ciprofloxacin using hematite/MOF nanocomposite as a heterogeneous Fenton-like catalyst: A comparison of composite and core− shell structures
Irshad et al. Ag-doped FeCo2O4 nanoparticles and their composite with flat 2D reduced graphene oxide sheets for photocatalytic degradation of colored and colorless compounds
Jiang et al. Co3O4-MnO2 nanoparticles moored on biochar as a catalyst for activation of peroxymonosulfate to efficiently degrade sulfonamide antibiotics
Wu et al. Facile in-situ construction of highly dispersed nano zero-valent iron modified black TiO2 Z-scheme recyclable heterojunction with highly efficient visible-light-driven photocatalytic activity
Zhang et al. Enhanced visible-light-assisted peroxymonosulfate activation over MnFe2O4 modified g-C3N4/diatomite composite for bisphenol A degradation
Huang et al. In situ fabrication of ultrathin-g-C3N4/AgI heterojunctions with improved catalytic performance for photodegrading rhodamine B solution
CN106423051A (zh) 一种磁性活化水热生物炭微球的制备方法与应用
CN110156120B (zh) 污水处理装置及处理方法
Luciano et al. Manganese ferrite dispersed over graphene sand composite for methylene blue photocatalytic degradation
Fakhri et al. Two novel sets of UiO-66@ metal oxide/graphene oxide Z-scheme heterojunction: Insight into tetracycline and malathion photodegradation
Ye et al. Confinement of ultrafine Co3O4 nanoparticles in nitrogen-doped graphene-supported macroscopic microspheres for ultrafast catalytic oxidation: Role of oxygen vacancy and ultrasmall size effect
CN104117339B (zh) 用于吸附染料的吸附剂的制备方法及其应用方法
Yi et al. Facile chemical blowing synthesis of interconnected N-doped carbon nanosheets coupled with Co3O4 nanoparticles as superior peroxymonosulfate activators for p-nitrophenol destruction: Mechanisms and degradation pathways
Rostami-Vartooni et al. Catalytic reduction of organic pollutants using biosynthesized Ag/C/Fe3O4 nanocomposite by red water and Caesalpinia gilliesii flower extract
CN107138160B (zh) 纳米零价铁/二氧化钛纳米线/石墨烯磁性复合材料的制备方法及应用
Ji et al. A review of metallurgical slag for efficient wastewater treatment: pretreatment, performance and mechanism
Ye et al. 1D/2D nanoconfinement FexOy and nitrogen-doped carbon matrix for catalytic self-cleaning membranes removal for pollutants

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant