CN113398922A - 一种负载贵金属的碳材料催化剂及其制备方法和应用 - Google Patents

一种负载贵金属的碳材料催化剂及其制备方法和应用 Download PDF

Info

Publication number
CN113398922A
CN113398922A CN202110614179.XA CN202110614179A CN113398922A CN 113398922 A CN113398922 A CN 113398922A CN 202110614179 A CN202110614179 A CN 202110614179A CN 113398922 A CN113398922 A CN 113398922A
Authority
CN
China
Prior art keywords
noble metal
carbon material
temperature
carbon
preparing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110614179.XA
Other languages
English (en)
Other versions
CN113398922B (zh
Inventor
张锋伟
刘萌萌
张萌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shanxi University
Original Assignee
Shanxi University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shanxi University filed Critical Shanxi University
Priority to CN202110614179.XA priority Critical patent/CN113398922B/zh
Publication of CN113398922A publication Critical patent/CN113398922A/zh
Application granted granted Critical
Publication of CN113398922B publication Critical patent/CN113398922B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/42Platinum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/40Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals of the platinum group metals
    • B01J23/44Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/48Silver or gold
    • B01J23/52Gold
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/20Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state
    • B01J35/23Catalysts, in general, characterised by their form or physical properties characterised by their non-solid state in a colloidal state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • B01J35/615100-500 m2/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/6350.5-1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/63Pore volume
    • B01J35/638Pore volume more than 1.0 ml/g
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/64Pore diameter
    • B01J35/6472-50 nm
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C209/00Preparation of compounds containing amino groups bound to a carbon skeleton
    • C07C209/30Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds
    • C07C209/32Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups
    • C07C209/36Preparation of compounds containing amino groups bound to a carbon skeleton by reduction of nitrogen-to-oxygen or nitrogen-to-nitrogen bonds by reduction of nitro groups by reduction of nitro groups bound to carbon atoms of six-membered aromatic rings in presence of hydrogen-containing gases and a catalyst
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/584Recycling of catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及一种负载贵金属的碳材料催化剂及其制备方法和应用,应用于农药合成、药物生产、精细化学品制造等技术领域。为解决有的催化体系仍然存在有机改性剂浸出、金属氧化物种类有限、壳层厚度无法控制、第二种金属积累导致活性恶化以及制备路线繁琐等问题,本发明提供了一种负载贵金属的碳材料催化剂,具有竹节状管式形貌,为中空结构,ID/IG值范围在1.13~1.20、比表面积在154.7~239.7m2g‑1,孔容范围为0.619~1.671cm3·g‑1,孔径范围为2.38~3.51nm。

Description

一种负载贵金属的碳材料催化剂及其制备方法和应用
技术领域
本发明涉及一种负载贵金属的碳材料催化剂及其制备方法和应用,应用于农药合成、药物生产、精细化学品制造等技术领域。
背景技术
基芳香烃的化学选择性氢化反应生成相应的苯胺是制药、农药、颜料和染料的重要中间体,是学术界和工业界面临的一个挑战。反应一般在高温高压H2气氛液相中进行,该催化过程的一个本质缺点是各种取代硝基芳烃如卤素、烯烃、醛、酮和酯的氢化脱氢和过度氢化副反应的发生,原因可能是-C-x和-C=C基团的反应活性高于-NO2基团,以及它们在催化剂表面的吸附强度和构型不同。因此,化学选择基团的实现从根本上取决于高效选择性加氢催化剂的制备。为此,人们开发了不同的方法来构建基于Au、Pd、Pt的多相催化剂,对金属表面进行有机分子修饰,例如产生载体氧空位、降低金属纳米颗粒(NPs)的封装尺寸、形成核壳结构的纳米复合材料,以及与第二种金属形成合金或金属间化合物,这均可以提高硝基芳烃加氢反应的化学选择性。上述策略的主要目的是减少可接触金属原子的位点,改变反应物分子的吸附行为,排斥-C-x和-C=C基团的吸附,促进缺电子-NO2基团的优先吸附。自1978年Tauster等人首次提出“强金属-载体相互作用(strong metal-supportedinteractions,SMSI)”概念以来,由于PGM催化剂独特的几何结构和电子特性以及非凡的催化能力,SMSI效应的研究受到了广泛的关注。研究表明,高温H2诱导SMSI效应可以很好地改变Pt/TiO2纳米催化剂催化硝基芳烃加氢的化学选择性。尽管已经取得了巨大的进展,但现有的催化体系仍然存在有机改性剂浸出、金属氧化物种类有限、壳层厚度无法控制、第二种金属积累导致活性降低以及制备路线繁琐等问题。因此,这些缺点应该通过设计和制造一种简单、高稳定性的化学选择性加氢催化剂来解决。
发明内容
本发明的意义在于研发一种通过高温还原处理引起的SMSI效应提高硝基芳烃化学选择性加氢的贵金属催化剂。尽管当前已经取得了很大的进展,但有的催化体系仍然存在有机改性剂浸出、金属氧化物种类有限、壳层厚度无法控制、第二种金属积累导致活性恶化以及制备路线繁琐等问题,因而探寻一种简单合成且不使用有机模板且保持其催化剂的选择性的催化剂是本发明的关键。
为了达到上述目的,本发明采用了下列技术方案:
一种负载贵金属的碳材料催化剂,具有竹节状管式形貌,为中空结构,ID/IG值范围在1.13~1.20、比表面积在154.7~239.7m2 g-1,孔容范围为0.619~1.671cm3·g-1,孔径范围为2.38~3.51nm。由于所选的碳材料有较大的比表面积、孔容和孔径,给贵金属提供了较丰富的负载面积,使得金属可以随机负载在该碳材料上,在选择性催化加氢硝基芳烃反应中,为该反应提供了丰富的活性位点,金属与载体形成的金属载体强相互作用明显提高了催化硝基芳烃加氢反应的选择性。
本发明报道了一种简便而通用的方法来制备基于Pt的化学选择性加氢催化剂。首先通过沉积沉淀法制备经典的Pt/CNTs催化剂,然后在高温还原气氛下进行处理,得到Pt/CNTs-800H催化剂。在此过程中,尺寸增大的Pt NPs被迁移的碳层原位封装,该碳层是从CNTs载体衍生而来的。Pt NPs周围的保护碳层可以有效地抑制Pt NPs的聚集和浸出,并且有望大大提高催化剂的化学选择性和稳定性。各种取代的硝基芳香族化合物的催化加氢进一步证明,与原始Pt/CNTs催化剂相比,Pt/CNTs-800H的化学选择性确实得到了转化,并且还显示出对对溴硝基苯的选择性加氢具有优异的可回收性。这项工作不仅为SMSI效应增加了新成员,而且解决了Pt基催化剂的选择性差和稳定性低的问题。
一种所述的负载贵金属的碳材料催化剂的制备方法,包括以下步骤:
步骤1,取氧化碳材料分散于乙二醇水溶液中,超声,在搅拌下逐滴加入贵金属盐的水溶液,用氢氧化钠溶液调节pH,冷凝回流,冷却至室温,抽滤,用一级水洗滤饼至中性,乙醇清洗,烘干,得到贵金属/氧化碳材料;
步骤2,在真空条件下使用还原性气体对贵金属/氧化碳材料进行吹扫后,以升温速率为3℃/min升温至200~800℃并恒温保持3~5h,自然冷却至室温,得到所述催化剂。不同煅烧温度可以得到不同尺寸纳米颗粒的催化剂,随着温度的升高,金属纳米颗粒的粒径有轻微的增大,催化加氢硝基芳烃反应的选择性越来越高,当温度达到800℃时,从TEM中可以清楚的看到,金属纳米颗粒被一层薄膜覆盖,通过XRD、XPS、Raman等可以证明该物质为碳原子。
进一步,所述步骤1中氧化碳材料为氧化石墨烯。石墨烯为较薄的碳层,在电镜下可以清楚的观察到其形貌,可以辅助证明其他碳材料的现象。
进一步,所述步骤1中氧化碳材料的制备方法为:取碳材料分散于浓硝酸中,在110℃下搅拌反应4h,抽滤,用一级水洗滤饼至中性,得到氧化碳材料。硝酸氧化的碳材料拥有丰富的羟基,提高了载体的亲水性,使得碳材料可以均匀的分散于溶剂中。
再进一步,所述碳材料为碳纳米管、C中的一种,所述碳材料与浓硝酸的质量体积比为:1g/40mL。碳纳米管不仅提供了有效的催化载体,稳定地固定了Pt纳米颗粒的活性位点,而还提供了快速的电子传输。
进一步,所述步骤1中氧化碳材料与乙二醇水溶液的的质量体积比为:1g/100mL,所述乙二醇溶液中乙二醇与水的体积比为4:1,所述贵金属盐为六水合氯铂酸、六水合氯金酸和氯钯酸钠中的一种,所述氧化碳材料与贵金属元素的质量比为50:1,制备负载量为2%的贵金属催化剂。
进一步,所述步骤1中氢氧化钠溶液的浓度为1mol/L,用氢氧化钠溶液调节pH至11~12。
进一步,所述步骤1中搅拌的转速为1000rpm/min,所述超声的时间为10min,所述冷凝回流的温度为120℃,时间为24h,所述烘干的温度为60℃,时间为12h。
进一步,述步骤2中所述还原性气体为氢气或氢气和氩气的混合气体,还原性气体的流量为50~300mL/min。
一种负载贵金属的碳纳米管催化剂的应用,在甲醇/乙醇/甲苯反应介质中对硝基芳烃催化加氢制备芳香胺,并在温和反应条件下(0.1~0.3MPa H2,30~60℃,2~8h)实现各类硝基芳烃底物的高选择性催化转化。
与现有技术相比本发明具有以下优点:
其它贵金属催化剂对硝基芳烃加氢反应通常需要高温高压以及较长的反应时间下才能实现,本技术合成的铂纳米颗粒原位负载于硝酸处理的碳纳米管上,经过高温还原诱导金属载体强相互作用性质产生,使得在温和条件下可以实现硝基芳烃的高选择性加氢。可以有效避免高温高压特殊设备的使用,降低催化加氢的成本并简化其反应工艺,为硝基芳烃低温低压下转化提供了一种新型简便的贵金属催化剂。
附图说明
图1为Pt/CNTs-TH(T=200-800℃)催化剂的扫描电镜图,其中图1a为Pt/CNTs-200H,图1b为Pt/CNTs-400H,图1c为Pt/CNTs-600H,图1d为Pt/CNTs-800H;
图2为Pt/CNTs-TH(T=200-800℃)催化剂的X-射线衍射图;
图3为Pt/CNTs-TH(T=200-800℃)催化剂的X-射线光电子能谱图,其中图3a为Pt/CNTs-200H,图3b为Pt/CNTs-400H,图3c为Pt/CNTs-600H,图3d为Pt/CNTs-800H;
图4为Pt/CNTs-TH(T=200-800℃)催化剂的物理吸附曲线图;
图5为Pt/CNTs-TH(T=200-800℃)催化剂的拉曼能谱图。
具体实施方式
实施例1
一种负载贵金属的碳材料催化剂的制备方法,包括以下步骤:
步骤1,取1g碳纳米管分散于40mL浓硝酸中,在110℃下搅拌反应4h,抽滤,用一级水洗滤饼至中性,得到OCNTs;
步骤2,取0.5g OCNTs分散于50mL乙二醇水溶液中(40mL乙二醇,10mL去离子水),超声10min,在转速为1000rpm/min的搅拌下逐滴加入2.66mL六水合氯铂酸的水溶液(3.767mg/mL),用1mol/L氢氧化钠溶液调节pH至11,120℃下冷凝回流24h,冷却至室温,抽滤,用一级水洗滤饼至中性,乙醇清洗两次,滤饼置于60℃烘箱干燥12h,得到Pt/OCNTs;
步骤3,将上述固体置于管式炉里,抽3~5次真空,向炉内以50mL/min的流量连续通入氢氩混合气体对样品进行吹扫后程序升温,炉体温度升至200℃并恒温保持5h,升温速率为3℃/min,自然冷却至室温,得到黑色固体粉末即为Pt/CNTs-200H。
Pt/CNTs-200H催化剂具有一维管状形貌,该催化剂为中空结构;ID/IG值为1.17,比表面积为161.9m2·g-1,孔容范围在0.673cm3·g-1,孔径范围在2.39nm,属于介孔材料。
实施例2
一种负载贵金属的碳材料催化剂的制备方法,包括以下步骤:
步骤1,取1g碳纳米管分散于40mL浓硝酸中,在110℃下搅拌反应4h,抽滤,用一级水洗滤饼至中性,得到OCNTs;
步骤2,取0.5g OCNTs分散于50mL乙二醇水溶液中(40mL乙二醇,10mL去离子水),超声10min,在转速为1000rpm/min的搅拌下逐滴加入2.66mL六水合氯铂酸的水溶液(3.767mg/mL),用1mol/L氢氧化钠溶液调节pH至12,120℃下冷凝回流24h,冷却至室温,抽滤,用一级水洗滤饼至中性,乙醇清洗两次,滤饼置于60℃烘箱干燥12h,得到Pt/OCNTs;
步骤3,将上述固体置于管式炉里,抽3~5次真空,向炉内以50mL/min的流量连续通入氢氩混合气体对样品进行吹扫后程序升温,炉体温度升至400℃并恒温保持5h,升温速率为3℃/min,自然冷却至室温,得到黑色固体粉末即为Pt/CNTs-400H。
Pt/CNTs-400H催化剂具有一维管状形貌形貌,该催化剂为中空结构;ID/IG值为1.13,比表面积为154.7m2·g-1,孔容范围在0.619cm3·g-1,孔径范围在3.13nm,属于介孔材料。
实施例3
一种负载贵金属的碳材料催化剂的制备方法,包括以下步骤:
步骤1,取1g碳纳米管分散于40mL浓硝酸中,在110℃下搅拌反应4h,抽滤,用一级水洗滤饼至中性,得到OCNTs;
步骤2,取0.5g OCNTs分散于50mL乙二醇水溶液中(40mL乙二醇,10mL去离子水),超声10min,在转速为1000rpm/min的搅拌下逐滴加入2.66mL六水合氯铂酸的水溶液(3.767mg/mL),用1mol/L氢氧化钠溶液调节pH至12,120℃下冷凝回流24h,冷却至室温,抽滤,用一级水洗滤饼至中性,乙醇清洗两次,滤饼置于60℃烘箱干燥12h,得到Pt/OCNTs;
步骤3,将上述固体置于管式炉里,抽3~5次真空,向炉内以50mL/min的流量连续通入氢氩混合气体对样品进行吹扫后程序升温,炉体温度升至600℃并恒温保持5h,升温速率为3℃/min,自然冷却至室温,得到黑色固体粉末即为Pt/CNTs-600H。
Pt/CNTs-600H催化剂具有一维管状形貌形貌,该催化剂为中空结构;ID/IG值为1.14,比表面积为216.2m2·g-1,孔容为0.844cm3·g-1,孔径为3.50nm,属于介孔材料。
实施例4
一种负载贵金属的碳材料催化剂的制备方法,包括以下步骤:
步骤1,取1g碳纳米管分散于40mL浓硝酸中,在110℃下搅拌反应4h,抽滤,用一级水洗滤饼至中性,得到OCNTs;
步骤2,取0.5g OCNTs分散于50mL乙二醇水溶液中(40mL乙二醇,10mL去离子水),超声10min,在转速为1000rpm/min的搅拌下逐滴加入2.66mL六水合氯铂酸的水溶液(3.767mg/mL),用1mol/L氢氧化钠溶液调节pH至12,120℃下冷凝回流24h,冷却至室温,抽滤,用一级水洗滤饼至中性,乙醇清洗两次,滤饼置于60℃烘箱干燥12h,得到Pt/OCNTs;
步骤3,将上述固体置于管式炉里,抽3~5次真空,向炉内以50mL/min的流量连续通入氢氩混合气体对样品进行吹扫后程序升温,炉体温度升至800℃并恒温保持5h,升温速率为3℃/min,自然冷却至室温,得到黑色固体粉末即为Pt/CNTs-800H。
Pt/CNTs-800H催化剂具有一维管状形貌,该催化剂为中空结构;ID/IG值为1.16,比表面积为239.7m2·g-1,孔容为1.671cm3·g-1,孔径为3.51nm,属于介孔材料。
此催化材料可在0.3MPa氢气,40℃反应温度,以乙醇作为反应溶剂的条件下,催化对硝基苯乙烯还原为对乙烯基苯胺,其转化率超过99%,选择性超过89%。
催化反应条件:0.25mmol对硝基苯乙烯,10mg Pt/CNTs-800H催化剂,3mL乙醇加入到35mL玻璃反应瓶,用H2置换3次以后并在40℃下将瓶内压力维持在0.3MPa。在1200rpm/min转速下搅拌反应12h以后,离心将催化剂分离出去,上清液通过气相色谱或气质连用进行分析并用正十四烷作为内标。
实施例5
一种负载贵金属的碳材料催化剂的制备方法,包括以下步骤:
步骤1,取1g碳纳米管分散于40mL浓硝酸中,在110℃下搅拌反应4h,抽滤,用一级水洗滤饼至中性,得到OCNTs;
步骤2,取0.5g OCNTs分散于50mL乙二醇水溶液中(40mL乙二醇,10mL去离子水),超声10min,在转速为1000rpm/min的搅拌下逐滴加入2.66mL六水合氯铂酸的水溶液(3.767mg/mL),用1mol/L氢氧化钠溶液调节pH至11,120℃下冷凝回流24h,冷却至室温,抽滤,用一级水洗滤饼至中性,乙醇清洗两次,滤饼置于60℃烘箱干燥12h,得到Pt/OCNTs;
步骤3,将上述固体置于管式炉里,抽3~5次真空,向炉内以300mL/min的流量连续通入氢氩混合气体对样品进行吹扫后程序升温,炉体温度升至800℃并恒温保持3h,升温速率为3℃/min,自然冷却至室温,得到黑色固体粉末即为该催化剂。
实施例6
一种负载贵金属的碳材料催化剂的制备方法,包括以下步骤:
步骤1,取1g碳纳米管分散于40mL浓硝酸中,在110℃下搅拌反应4h,抽滤,用一级水洗滤饼至中性,得到OCNTs;
步骤2,取0.5g OCNTs分散于50mL乙二醇水溶液中(40mL乙二醇,10mL去离子水),超声10min,在转速为1000rpm/min的搅拌下逐滴加入2.66mL六水合氯铂酸的水溶液(3.767mg/mL),用1mol/L氢氧化钠溶液调节pH至11,120℃下冷凝回流24h,冷却至室温,抽滤,用一级水洗滤饼至中性,乙醇清洗两次,滤饼置于60℃烘箱干燥12h,得到Pt/OCNTs;
步骤3,将上述固体置于管式炉里,抽3~5次真空,向炉内以10mL/min的流量连续通入氢氩混合气体对样品进行吹扫后程序升温,炉体温度升至800℃并恒温保持4h,升温速率为3℃/min,自然冷却至室温,得到黑色固体粉末即为该催化剂。
实施例7
一种负载贵金属的碳材料催化剂的制备方法,包括以下步骤:
步骤1,取0.5g氧化石墨烯分散于50mL乙二醇水溶液中(40mL乙二醇,10mL去离子水),超声10min,在转速为1000rpm/min的搅拌下逐滴加入2.66mL六水合氯铂酸的水溶液(3.767mg/mL),用1mol/L氢氧化钠溶液调节pH至12,120℃下冷凝回流24h,冷却至室温,抽滤,用一级水洗滤饼至中性,乙醇清洗两次,滤饼置于60℃烘箱干燥12h;
步骤2,将上述固体置于管式炉里,抽3~5次真空,向炉内以50mL/min的流量连续通入氢氩混合气体对样品进行吹扫后程序升温,炉体温度升至800℃并恒温保持5h,升温速率为3℃/min,自然冷却至室温,得到黑色固体粉末即为Pt/CNTs-800H。
实施例8
一种负载贵金属的碳材料催化剂的制备方法,包括以下步骤:
步骤1,取1g碳纳米管分散于40mL浓硝酸中,在110℃下搅拌反应4h,抽滤,用一级水洗滤饼至中性,得到OCNTs;
步骤2,取0.2g OCNTs分散于20mL乙二醇水溶液中(16mL乙二醇,4mL去离子水),超声10min,在转速为1000rpm/min的搅拌下逐滴加入0.823mL六水合氯金酸的水溶液(24.3mM/L),用1mol/L氢氧化钠溶液调节pH至12,120℃下冷凝回流24h,冷却至室温,抽滤,用一级水洗滤饼至中性,乙醇清洗两次,滤饼置于60℃烘箱干燥12h;
步骤3,将上述固体置于管式炉里,抽3~5次真空,向炉内以50mL/min的流量连续通入氢氩混合气体对样品进行吹扫后程序升温,炉体温度升至800℃并恒温保持5h,升温速率为3℃/min,自然冷却至室温,得到黑色固体粉末即为Au/CNTs-800H。
实施例9
一种负载贵金属的碳材料催化剂的制备方法,包括以下步骤:
步骤1,取1g碳纳米管分散于40mL浓硝酸中,在110℃下搅拌反应4h,抽滤,用一级水洗滤饼至中性,得到OCNTs;
步骤2,取0.2g OCNTs分散于20mL乙二醇水溶液中(16mL乙二醇,4mL去离子水),超声10min,在转速为1000rpm/min的搅拌下加入11.06mg氯钯酸钠溶液(3.40mM/L),用1mol/L氢氧化钠溶液调节pH至12,120℃下冷凝回流24h,冷却至室温,抽滤,用一级水洗滤饼至中性,乙醇清洗两次,滤饼置于60℃烘箱干燥12h;
步骤3,将上述固体置于管式炉里,抽3~5次真空,向炉内以50mL/min的流量连续通入氢氩混合气体对样品进行吹扫后程序升温,炉体温度升至800℃并恒温保持5h,升温速率为3℃/min,自然冷却至室温,得到黑色固体粉末即为Pd/CNTs-800H
实施例10
5%Pt/C催化剂的制备方法,步骤如下:
将5%Pt/C固体置于管式炉里,抽3~5次真空,向炉内以50mL/min的流量连续通入氢氩混合气体对样品进行吹扫后程序升温,炉体温度升至800℃并保留5小时,升温速率为3℃/min,自然冷却至室温,得到黑色固体粉末即为5%Pt/C-800H.
表1合成的不同类型贵金属催化剂对对硝基苯乙烯的选择性加氢性能.a
Figure BDA0003097352500000111
表1中,a为反应条件:0.25mmol对硝基苯乙烯,10mg催化剂,3.0mL无水乙醇,40℃,0.3MPa H2,b为转化率和选择性通过GC-FID分析并用正十四烷作为内标,c为0.1MPa H2,d为循环反应3次以后。
从表1中可以看出,Pt/OCNTs在不同温度下热解得到的催化剂具有明显不同的催化活性,其中Pt/CNTs-800H催化剂具有最高的催化选择性,对乙烯基苯胺的选择性均高于89.2%。相比之下,Au/CNTs-800H和Pd/CNTs-800H催化剂的活性却非常低。另外,我们用氧化石墨烯为载体制备了Pt/OG-800H催化剂,然而它们对对乙烯基苯胺的选择性为68.2%。由此可见,本申请采用高温热解法直接合成的Pt/CNTs-800H催化剂具有最佳的催化性能。同时,循环反应3次以后该催化剂依然具有很高的催化选择性。
图1为Pt/OCNTs(T=200、400、600、800℃)催化剂在分别在不同温度下热分解得到的微观形貌。从图1中可以看出整个催化剂颗粒上的单分散深色Pt NPs和CNTs载体的典型一维管状结构。图1a和1b中Pt NPs的平均尺寸为6.8~7nm,表面干净。相反,如图1c和1d,颗粒的一部分紧密地插入CNTs骨架中,而另一部分则被无定形碳膜包裹,尤其是在图1d中。有趣的是,在800℃煅烧5h后,Pt NPs的尺寸仅增加到约10.8nm,这表明保护性碳层可以很好地抑制Pt NPs的进一步增加。
从图2可以看出Pt/OCNTs(T=200、400、600、800℃)催化剂的粉末XRD在25.9°处出现的峰归因于石墨碳的(002)衍射峰,42.8°处出现的峰归因于石墨碳的(101)衍射峰,39.7°处出现的峰归因于Pt(111)衍射峰,当温度升高到800℃时,在39.7°处的衍射峰移至40.9°,表明在较高温度下一定数量的碳原子可能会掺入Pt NPs的间隙空间中。
图3的X射线光电子能谱显示随着温度的升高,0价Pt的含量呈上升趋势,结合能逐渐降低这可能由于惰性CNTs载体向金属Pt中注入负电荷所致,这与TEM和XRD结果一致。
图4的N2吸脱附等温线显示出这些催化剂都具有明显的第IV类型等温线,说明它们具有介孔结构。尤其,Pt/CNTs-800H催化剂的比表面积、孔容以及孔径分别为239.7m2·g-1,1.671cm3·g-1和3.51nm。这种纳米管结构的高比表面积催化剂对于对硝基苯乙烯等有机物及对乙烯基苯胺加氢产物的扩散是非常有利的,能够显著提高反应物的富集与催化性能。
从图5的拉曼谱图可看出,Pt/OCNTs(T=200、400、600、800℃)催化剂在~1350cm-1和~1610cm-1出现D带和G带特征峰,这两个峰归属于紊乱的sp3碳和石墨化的sp2碳。相对较高的ID/IG比值证明这些催化剂中存在明显的缺陷结构,这主要来源于CNTs在高温下热解使得碳元素的成功掺杂引起。

Claims (10)

1.一种负载贵金属的碳材料催化剂,其特征在于,所述催化剂具有竹节状管式形貌,为中空结构,ID/IG值范围在1.13~1.20、比表面积在154.7~239.7m2 g-1,孔容范围为0.619~1.671cm3·g-1,孔径范围为2.38~3.51nm。
2.一种权利要求1所述的负载贵金属的碳材料催化剂的制备方法,其特征在于,包括以下步骤:
步骤1,取氧化碳材料分散于乙二醇水溶液中,超声,在搅拌下逐滴加入贵金属盐的水溶液,用氢氧化钠溶液调节pH,冷凝回流,冷却至室温,抽滤,用一级水洗滤饼至中性,乙醇清洗,烘干,得到贵金属/氧化碳材料;
步骤2,在真空条件下使用还原性气体对贵金属/氧化碳材料进行吹扫后,以升温速率为3℃/min升温至200~800℃并恒温保持3~5h,自然冷却至室温,得到所述催化剂。
3.根据权利要求2所述一种负载贵金属的碳材料催化剂的制备方法,其特征在于,所述步骤1中氧化碳材料为氧化石墨烯。
4.根据权利要求2所述一种负载贵金属的碳材料催化剂的制备方法,其特征在于,所述步骤1中氧化碳材料的制备方法为:取碳材料分散于浓硝酸中,在110℃下搅拌反应4h,抽滤,用一级水洗滤饼至中性,得到氧化碳材料。
5.根据权利要求4所述一种负载贵金属的碳材料催化剂的制备方法,其特征在于,所述碳材料为碳纳米管、C中的一种,所述碳材料与浓硝酸的质量体积比为:1g/40mL。
6.根据权利要求2所述一种负载贵金属的碳材料催化剂的制备方法,其特征在于,所述步骤1中氧化碳材料与乙二醇水溶液的的质量体积比为:1g/100mL,所述乙二醇溶液中乙二醇与水的体积比为4:1,所述贵金属盐为六水合氯铂酸、六水合氯金酸和氯钯酸钠中的一种,所述氧化碳材料与贵金属元素的质量比为50:1。
7.根据权利要求2所述一种负载贵金属的碳材料催化剂的制备方法,其特征在于,所述步骤1中氢氧化钠溶液的浓度为1mol/L,用氢氧化钠溶液调节pH至11~12。
8.根据权利要求2所述一种负载贵金属的碳材料催化剂的制备方法,其特征在于,所述步骤1中搅拌的转速为1000rpm/min,所述超声的时间为10min,所述冷凝回流的温度为120℃,时间为24h,所述烘干的温度为60℃,时间为12h。
9.根据权利要求2所述一种负载贵金属的碳材料催化剂的制备方法,其特征在于,所述步骤2中所述还原性气体为氢气或氢气和氩气的混合气体,还原性气体的流量为50~300mL/min。
10.一种权利要求1所述的负载贵金属的碳材料催化剂的应用,其特征在于,在甲醇/乙醇/甲苯反应介质中对硝基芳烃催化加氢制备芳香胺,并在温和反应条件下实现各类硝基芳烃底物的高选择性催化转化。
CN202110614179.XA 2021-06-02 2021-06-02 一种负载贵金属的碳材料催化剂及其制备方法和应用 Active CN113398922B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110614179.XA CN113398922B (zh) 2021-06-02 2021-06-02 一种负载贵金属的碳材料催化剂及其制备方法和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110614179.XA CN113398922B (zh) 2021-06-02 2021-06-02 一种负载贵金属的碳材料催化剂及其制备方法和应用

Publications (2)

Publication Number Publication Date
CN113398922A true CN113398922A (zh) 2021-09-17
CN113398922B CN113398922B (zh) 2023-09-22

Family

ID=77675941

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110614179.XA Active CN113398922B (zh) 2021-06-02 2021-06-02 一种负载贵金属的碳材料催化剂及其制备方法和应用

Country Status (1)

Country Link
CN (1) CN113398922B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104289248A (zh) * 2014-10-17 2015-01-21 中国科学院化学研究所 一种碳纳米管复合材料及其制备方法和应用
CN105669464A (zh) * 2016-04-01 2016-06-15 湘潭大学 一种无金属加氢催化剂在催化硝基苯及其衍生物加氢反应中的应用
CN109647517A (zh) * 2017-10-11 2019-04-19 中国科学院大连化学物理研究所 一种用于硝基苯及其衍生物加氢催化剂制备方法
CN111068736A (zh) * 2019-12-30 2020-04-28 电子科技大学 竹节状碳纳米管/分级多孔生物碳复合材料及其制备方法
CN112657530A (zh) * 2020-12-31 2021-04-16 山西大学 非贵金属固载的氮掺杂碳纳米管催化剂及制备方法和应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104289248A (zh) * 2014-10-17 2015-01-21 中国科学院化学研究所 一种碳纳米管复合材料及其制备方法和应用
CN105669464A (zh) * 2016-04-01 2016-06-15 湘潭大学 一种无金属加氢催化剂在催化硝基苯及其衍生物加氢反应中的应用
CN109647517A (zh) * 2017-10-11 2019-04-19 中国科学院大连化学物理研究所 一种用于硝基苯及其衍生物加氢催化剂制备方法
CN111068736A (zh) * 2019-12-30 2020-04-28 电子科技大学 竹节状碳纳米管/分级多孔生物碳复合材料及其制备方法
CN112657530A (zh) * 2020-12-31 2021-04-16 山西大学 非贵金属固载的氮掺杂碳纳米管催化剂及制备方法和应用

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LIN GAN ET AL.: "Highly dispersed Pt nanoparticles by pentagon defects introduced in bamboo-shaped carbon nanotube support and their enhanced catalytic activity on methanol oxidation" *
吴启凡: "Pt基催化剂中金属—载体相互作用对加氢选择性的影响" *

Also Published As

Publication number Publication date
CN113398922B (zh) 2023-09-22

Similar Documents

Publication Publication Date Title
Han et al. Noble metal (Pt, Au@ Pd) nanoparticles supported on metal organic framework (MOF-74) nanoshuttles as high-selectivity CO2 conversion catalysts
Zhu et al. CeO2 nanocrystal-modified layered MoS2/g-C3N4 as 0D/2D ternary composite for visible-light photocatalytic hydrogen evolution: Interfacial consecutive multi-step electron transfer and enhanced H2O reactant adsorption
Chen et al. Metal–organic framework-derived porous materials for catalysis
Liu et al. The development of MOFs-based nanomaterials in heterogeneous organocatalysis
Rangraz et al. Selenium-doped graphitic carbon nitride decorated with Ag NPs as a practical and recyclable nanocatalyst for the hydrogenation of nitro compounds in aqueous media
JP5709954B2 (ja) 金属−炭素複合体担持触媒の製造方法
Chen et al. Rational design of hydrogenation catalysts using nitrogen-doped porous carbon
Wu et al. Nano-pyramid-type Co-ZnO/NC for hydrogen transfer cascade reaction between alcohols and nitrobenzene
CN111036237B (zh) 一种加氢催化剂及其制备方法和应用
Liu et al. Efficient hydrogen evolution from ammonia borane hydrolysis with Rh decorated on phosphorus-doped carbon
CN108262034B (zh) 一种催化剂及其制备方法及在常压低温合成氨中的应用
CN111215053A (zh) 负载型单原子分散贵金属催化剂及制备方法
CN112473717B (zh) 一种镍单原子/功能化石墨相氮化碳复合催化剂
KR20160142135A (ko) 암모니아 탈수소용 촉매, 이의 제조 방법 및 이를 이용하여 암모니아로부터 수소를 생산하는 방법
Ipadeola et al. Graphene-based catalysts for carbon monoxide oxidation: experimental and theoretical insights
Huang et al. Space-confined growth of nanoscale metal-organic frameworks/Pd in hollow mesoporous silica for highly efficient catalytic reduction of 4-nitrophenol
CN112657530A (zh) 非贵金属固载的氮掺杂碳纳米管催化剂及制备方法和应用
Zhang et al. Cyanogel-derived N-doped C nanosheets immobilizing Pd-P nanoparticles: One-pot synthesis and enhanced hydrogenation catalytic performance
Li et al. Bimetallic PtNi alloy modified 2D g-C3N4 nanosheets as an efficient cocatalyst for enhancing photocatalytic hydrogen evolution
Ding et al. Carbon vacancies in graphitic carbon nitride-driven high catalytic performance of Pd/CN for phenol-selective hydrogenation to cyclohexanone
Ding et al. Design and synthesis of porous nano-confined catalysts for VOCs oxidation: A critical review based on pollutant sorts
Correia et al. Vanadium C-scorpionate supported on mesoporous aptes-functionalized SBA-15 as catalyst for the peroxidative oxidation of benzyl alcohol
Moustafa et al. Co–TiO2 supported on reduced graphene oxide as a highly active and stable photocatalyst for hydrogen generation
Yuan et al. Dilute Pd3Co950 alloy encapsulated in defect-and N-rich carbon nanotubes for universal highly efficient aqueous-phase catalysis
Wang et al. Palladium nanoparticles supported over acetylene black for selective hydrogenation of phenol to cyclohexanone

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant