CN111045447B - 高精度的高超声速飞行器轨迹优化多尺度最优控制系统 - Google Patents

高精度的高超声速飞行器轨迹优化多尺度最优控制系统 Download PDF

Info

Publication number
CN111045447B
CN111045447B CN201911149104.8A CN201911149104A CN111045447B CN 111045447 B CN111045447 B CN 111045447B CN 201911149104 A CN201911149104 A CN 201911149104A CN 111045447 B CN111045447 B CN 111045447B
Authority
CN
China
Prior art keywords
aircraft
module
sensor
hypersonic
optimization
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201911149104.8A
Other languages
English (en)
Other versions
CN111045447A (zh
Inventor
金昌龙
叶松
张志猛
马卫华
张泽银
祁振强
刘兴高
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201911149104.8A priority Critical patent/CN111045447B/zh
Publication of CN111045447A publication Critical patent/CN111045447A/zh
Application granted granted Critical
Publication of CN111045447B publication Critical patent/CN111045447B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明公开了一种高精度的高超声速飞行器轨迹优化多尺度最优控制系统,用于对飞行器轨迹进行控制。所述的高精度的高超声速飞行器轨迹优化多尺度最优控制系统由飞行器海拔高度传感器、飞行器速度传感器、飞行器飞行航道倾角传感器、飞行器水平航程传感器、飞行器MCU、飞行器攻角控制器构成。飞行器MCU根据设定的海拔高度、速度、飞行航道倾角要求自动执行内部高精度的多尺度优化算法,并将获得的控制策略转换为控制指令发送给飞行器攻角控制器执行。本发明能够根据高超声速飞行器不同的海拔高度、速度、飞行航道倾角和飞行水平航程状态快速地得到轨迹优化控制策略,使高超声速飞行器获得更远航程。

Description

高精度的高超声速飞行器轨迹优化多尺度最优控制系统
技术领域
本发明涉及高超声速飞行器再入段轨迹优化领域,尤其涉及高精度的高超声速飞行器轨迹优化多尺度最优控制系统。在高超声速飞行器到达再入段后,能够给出高超声速飞行器轨迹优化控制策略并转换为飞行器攻角控制指令,在满足安全要求的条件下,使高超声速飞行器获得更远的水平飞行距离。
背景技术
高超声速飞行器是实现远程快速精确打击和全球快速到达的新型飞行器,在未来的军事、政治和经济中具有十分重要的战略地位,已经成为世界航空航天领域一个极其重要的发展方向,是世界主要航天大国的竞争领域之一。研究和发展高超声速飞行器在开发太空和国家安全方面具有非常重要的意义。
在高超声速飞行器的研究中,轨迹优化是现代飞行器设计和控制的重要内容,不仅有利于提高飞行器飞行品质以满足既定任务要求,同时也是完成飞行任务的重要保证和实现机动飞行的必要条件,近些年来一直受到国内外各军事强国的重视,是当前国内外研究的热点和难点。
由于从大气从外缘进入大气层,高度和速度的变化范围很大,高超声速飞行器面临各种严峻的再入环境,再入段轨迹优化技术则是保证高超声速飞行器完成飞行任务的关键,对提高其打击范围和落点精度具有更重要的实用价值。然而现有方法的结果精度往往不够高。因此,研究新的高超声速飞行器再入段轨迹优化方法显得尤为重要。
发明内容
为了克服目前方法精度不高的不足,本发明的目的在于提供一种实现最优并且计算效率高、收敛速度快、精度高的多尺度最优控制系统,该控制系统借助MCU作为最优控制方法的实现载体。
高超声速飞行器再入段轨迹优化问题飞行过程可以用数学模型描述为:
其中t表示时间,t0表示高超声速飞行器再入段轨迹优化问题飞行过程开始时间,tf表示高超声速飞行器再入段轨迹优化问题飞行过程结束时间,且tf不固定;被称为状态向量,依次表示飞行器海拔高度、飞行器速度、飞行器飞行航道倾角、飞行器水平飞行距离等物理参数,nx为状态变量的维度,这里nx=4。x0是状态向量的初始值,/>是其一阶导数;u(t)表示高超声速飞行器的攻角控制量,为本问题的控制变量,ul、uu分别为其下限值和上限值;/>是根据能量守恒以及力学原理建立的微分方程组;G[u(t),x(t),t]是高超声速飞行器再入段过程的约束条件。
对于高超声速飞行器再入段过程,则使航程最大的数学模型可表示为:
其中J[u(t)]表示目标函数J由攻角控制量u(t)决定。该问题本质上是一个最优控制问题。
本发明解决其技术问题所采用的技术方案是:一种高精度的高超声速飞行器轨迹优化多尺度最优控制系统,由飞行器海拔高度传感器、飞行器速度传感器、飞行器飞行航道倾角传感器、飞行器水平航程传感器、高超声速飞行器MCU、飞行器攻角控制器构成。所述飞行器海拔高度传感器、飞行器速度传感器、飞行器飞行航道倾角传感器、飞行器水平航程传感器和飞行器攻角控制器均通过数据总线与飞行器MCU相连。所述的高超声速飞行器MCU包括依次相连的信息采集模块、状态尺度变换模块、初始化模块、常微分方程组(OrdinaryDifferential Equations,简称ODE)离散化模块、非线性规划(Non-linear Programming,简称NLP)问题求解模块、自适应模块、控制策略输出模块。其中,信息采集模块包括飞行器海拔高度和速度采集、飞行器飞行航道倾角和飞行水平距离采集、飞行器海拔高度和速度设定采集、飞行器飞行航道倾角设定采集、飞行器的运动方程和性能约束条件以及指定优化函数参数采集五个子模块;NLP求解模块包括依次相连的寻优方向求解、寻优步长求解、寻优修正、NLP收敛性判断四个子模块;自适应模块包括依次相连的约束条件满足判断、小波分解、调整时间节点三个子模块。
所述高精度的高超声速飞行器轨迹优化多尺度最优控制系统的运行过程如下:
步骤1):在高超声速飞行器MCU中输入对应于该飞行器的运动方程、性能约束条件、指定优化函数;
步骤2):高超声速飞行器到达再入段后,开启飞行器海拔高度传感器、飞行器速度传感器、飞行器飞行航道倾角传感器和飞行器水平航程传感器,得到高超声速飞行器当前的海拔高度、速度、飞行航道倾角和飞行水平航程状态信息;
步骤3):高超声速飞行器MCU根据设定的海拔高度、速度、飞行航道倾角要求执行内部高精度的多尺度优化算法,得到使高超声速飞行器水平飞行距离最长的轨迹优化控制策略;
步骤4):高超声速飞行器MCU将获得的轨迹优化控制策略发送给控制策略输出模块,并转换为控制指令发送给飞行器攻角控制器执行。
所述步骤3包括以下子步骤:
步骤3.1):信息采集模块获取步骤2得到的高超声速飞行器当前的海拔高度、速度、飞行航道倾角和飞行水平航程状态信息;
步骤3.2):利用状态尺度变换模块对状态变量进行尺度变换,缩小状态变量在数值上的尺度差距:
其中表示nx个状态向量,/>表示状态变换函数。
步骤3.3):初始化模块开始运行,设置轨迹优化过程时间的离散段数与每一段的长度、攻角控制量的初始猜测值u(0)(t),设定优化精度要求tol,将迭代次数k置零;
步骤3.4):通过ODE离散化模块将常微分方程组在时间轴[t0,tf]上全部离散;
步骤3.5):通过NLP问题求解模块获得所需的攻角控制策略和对应状态轨迹,这个过程包括多次内部迭代,每次迭代都要求解寻优方向和寻优步长,并进行寻优修正。对于某一次迭代得到的攻角控制量u(k)(t),如果其对应目标函数值J[u(k)(t)]与前一次迭代的目标函数值J[u(k-1)(t)]之差小于精度要求tol,则判断收敛性满足,并将攻角控制量u(k)(t)输出到自适应模块;
步骤3.6):通过自适应模块分析NLP问题求解模块获得的攻角控制量u(k)(t)对应的飞行器运动过程,是否满足飞行器性能约束条件。如果满足,则将攻角控制量u(k)(t)作为指令输出到控制策略输出模块,否则利用自适应模块调整轨迹优化过程时间的离散段数与每一段的长度,执行初始化模块。
所述步骤3.4包括如下子步骤:
步骤3.4.1):划分区间[t0,tf]:各节点分别为t0<t1<…<tm-1<tm=tf,其中m为分段的段数。
步骤3.4.2):将控制变量参数化:在各节点处给出控制变量的估计值u0,u1,…,um,在区间Ii=[ti,ti+1](i=0,1,…,m-1)上构造函数qi(t,u0,u1,…,um)逼近区间Ii上的控制函数,于是
步骤3.4.3):子区间打靶:在Ii=[ti,ti+1](i=0,1,…,m-1)上,相应地赋予状态变量的初值x(ti)=si,(i=0,1,…,m-1),通过求解
得到子区间Ii=[ti,ti+1]上的状态函数解x(t,si,qi)(i=0,1,…,m-1),其中f(t,x,qi)为飞行器的气动系数模型。
步骤3.4.4):匹配条件:为了保证状态函数解x(t,si,qi)(i=0,1,…,m-1)的连续性,需要满足以下条件:
x(ti+1,si,qi)=si+1(i=0,1,…,m-1) (4)
步骤3.4.5):将ODE转化为NLP问题求解。
所述步骤3.5包括如下子步骤:
步骤3.5.1):将攻角控制量u(k-1)(t)作为向量空间中的某个点,记作P1,P1对应的目标函数值就是J[u(k-1)(t)];
步骤3.5.2):从点P1出发,根据选用的NLP算法,构造向量空间中的一个寻优方向向d(k-1)和步长α(k-1)
步骤3.5.3):通过式u(k)(t)=u(k-1)(t)+α(k-1)d(k-1)构造向量空间中对应u(k)的另外一个点P2,使得P2对应的目标函数值J[u(k)(t)]比J[u(k-1)(t)]更优。
步骤3.5.4):采用寻优校正u(k)(t),得到校正后的点记为点P3,同时令使得P3对应的目标函数值J[u(k)(t)]比J[u(k-1)(t)]更优;
步骤5):如果J[u(k)(t)]与上一次迭代的目标函数值J[u(k-1)(t)]的绝对值之差小于精度tol,则判断收敛性满足,将本次迭代得到的控制策略u(k)(t)输出至控制策略输出模块27;如果收敛性不满足,迭代次数k增加1,将u(k)(t)设置为初始值,继续执行步骤2)。
所述步骤3.6包括如下子步骤:
步骤3.6.1):判断NLP求解模块得到的控制策略对应的过程是否全程满足约束条件,如果满足,则输出至控制策略输出模块27,否则执行步骤2)
步骤3.6.2):利用小波变换,将控制策略分解为高频信号/>与低频信号
步骤3.6.3):选取高频信号取值非零的区间端点作为新的时间节点,并输出至初始化模块。
本发明的有益效果主要表现在:所述高精度的高超声速飞行器轨迹优化多尺度最优控制系统对高超声速飞行器实现控制,克服高超声速飞行器在已有轨迹优化控制器在精度上的不足,利用本发明采用的高精度优化算法,获得使高超声速飞行器水平飞行距离最远的轨迹优化攻角控制指令,并且采用自适应的算法,自动调整时间节点,提高轨迹优化算法的计算效率、收敛速度以及结果的精度。
附图说明
图1是高精度的高超声速飞行器轨迹优化多尺度最优控制系统的结构示意图;
图2是高精度的高超声速飞行器轨迹优化多尺度最优控制系统高超声速飞行器MCU内部模块结构图。
具体实施方式
实施例1
高精度的高超声速飞行器轨迹优化多尺度最优控制系统的结构如图1所示,高超声速飞行器到达再入段空域,高超声速飞行器海拔高度传感器、速度传感器、飞行航道倾角传感器、水平飞行航程传感器和MCU均已开启。信息采集模块立即采集飞行器进入再入段时的初始海拔高度、速度、飞行航道倾角和水平航程,设当前初始时刻t0=0s,海拔高度传感器传入MCU的海拔高度为h0=80 000m,速度传感器传入MCU的速度为v0=6400m/s,飞行航道倾角传感器传入MCU的飞行航道倾角为γ0=-0.052rad,水平飞行距离传感器感器传入MCU的水平航程为r0=0m;终值时刻tf高超声速飞行器需要满足的条件为海拔高度设定为hf=24000m,速度设定为vf=760m/s,飞行航道倾角设定为γf=-0.08rad;结合飞行器的三维空间运动方程、气动系数模型、飞行器性能约束条件和指定优化目标,得到该问题的数学模型如下:
max J[u(t)]=x4(tf)
CL=-0.15+3.44u(t)
CD=0.29-1.51u(t)+5.87u(t)2
x1(0)=80×103,x1(tf)=24×103
x2(0)=6.4×103,x2(tf)=760
x3(0)=-0.052,x3(tf)=-0.08
x4(0)=0
其中L表示升力,D表示阻力,CL表示升力系数,CD表示阻力系数。为了便于表述,采用F(x(t),u(t),t)表示高超声速飞行器再入段三维空间运动方程建立的微分方程组数学模型,即:
采用G[u(t),x(t),t]表示高超声速飞行器再入段过程的约束条件,为:
此外,J[u(t)]表示高超声速飞行器轨迹优化的目标函数即优化结束时刻飞行器的水平飞行距离。
信息采集模块21,用于采集当前飞行器海拔高度和速度、当前飞行器飞行航道倾角和飞行水平航程、飞行器海拔高度和速度设定、飞行器飞行航道倾角信息、飞行器的运动方程和性能约束条件以及指定优化函数参数。
高超声速飞行器MCU自动产生攻角控制指令的高精度的多尺度优化算法,其运行步骤如下:
步骤1):高超声速飞行器到达再入段后,飞行器海拔高度传感器、飞行器速度传感器、飞行器飞行航道倾角传感器和飞行器水平航程传感器开启,信息采集模块21获取初始时刻t0=0s时高超声速飞行器海拔高度h0=80 000m,速度为v0=6400m/s,飞行航道倾角为γ0=-0.052rad,水平飞行距离传感器感器水平飞行距离设置为r0=0m;终值时刻tf高超声速飞行器海拔高度要求设定为hf=24000m,速度要求设定为vf=760m/s,飞行航道倾角要求设定为γf=-0.08rad;
步骤2):利用状态尺度变换模块22对状态变量进行尺度变换,缩小状态变量在数值上的尺度差距:
其中表示nx个状态向量,/>表示状态变换函数。这里nx=4且:
步骤3):初始化模块23开始运行,设置轨迹优化过程时间的离散段数、攻角控制量的初始猜测值u(0)(t),设定优化精度要求tol,将迭代次数k置零;
步骤4):通过ODE离散化模块24将常微分方程组在时间轴[t0,tf]上全部离散;
步骤5):通过NLP问题求解模块25获得所需的攻角控制策略和对应状态轨迹,这个过程包括多次内部迭代,每次迭代都要求解寻优方向和寻优步长,并进行寻优修正。对于某一次迭代得到的攻角控制量u(k)(t),如果其对应目标函数值J[u(k)(t)]与前一次迭代的目标函数值J[u(k-1)(t)]之差小于精度要求tol,则判断收敛性满足,并将攻角控制量u(k)(t)输出到自适应模块26;
步骤6):通过自适应模块26分析NLP问题求解模块25获得的攻角控制量u(k)(t)对应的飞行器运动过程,是否满足飞行器性能约束条件。如果满足,则将攻角控制量u(k)(t)作为指令输出到控制策略输出模块27,否则利用小波变换自适应调整轨迹优化过程时间的离散段数与每一段的长度,执行初始化模块23。
ODE离散化模块24的运行过程如下:
步骤1):划分区间[t0,tf]:各节点分别为t0<t1<…<tm-1<tm=tf,其中m为分段的段数。
步骤2):将控制变量参数化:在各节点处给出控制变量的估计值u0,u1,…,um,在区间Ii=[ti,ti+1](i=0,1,…,m-1)上构造函数qi(t,u0,u1,…,um)逼近区间Ii上的控制函数,于是
步骤3):子区间打靶:在Ii=[ti,ti+1](i=0,1,…,m-1)上,相应地赋予状态变量的初值x(ti)=si,(i=0,1,…,m-1),通过求解
得到子区间Ii=[ti,ti+1]上的状态函数解x(t,si,qi)(i=0,1,…,m-1),其中f(t,x,qi)为飞行器的气动系数模型。
步骤4):匹配条件:为了保证状态函数解x(t,si,qi)(i=0,1,…,m-1)的连续性,需要满足以下条件:
x(ti+1,si,qi)=si+1(i=0,1,…,m-1) (18)
步骤5):将ODE转化为NLP问题求解。
NLP求解模块25的运行过程如下:
步骤1):将攻角控制量u(k-1)(t)作为向量空间中的某个点,记作P1,P1对应的目标函数值就是J[u(k-1)(t)];
步骤2):从点P1出发,根据选用的NLP算法,构造向量空间中的一个寻优方向向d(k -1)和步长α(k-1)
步骤3):通过式u(k)(t)=u(k-1)(t)+α(k-1)d(k-1)构造向量空间中对应u(k)的另外一个点P2,使得P2对应的目标函数值J[u(k)(t)]比J[u(k-1)(t)]更优。
步骤4):采用寻优校正u(k)(t),得到校正后的点记为点P3,同时令使得P3对应的目标函数值J[u(k)(t)]比J[u(k-1)(t)]更优;
步骤5):如果本次迭代的目标函数值J[u(k)(t)]与上一次迭代的目标函数值J[u(k -1)(t)]的绝对值之差小于精度tol,则判断收敛性满足,将本次迭代得到的控制策略u(k)(t)输出至控制策略输出模块27;如果收敛性不满足,迭代次数k增加1,将u(k)(t)设置为初始值,继续执行步骤2)。
自适应模块26的运行过程如下:
步骤1):判断NLP求解模块得到的控制策略对应的过程是否全程满足约束条件,如果满足,则输出至控制策略输出模块27,否则执行步骤2)
步骤2):利用小波变换,将控制策略分解为高频信号/>与低频信号/>
步骤3):选取高频信号取值非零的区间端点作为新的时间节点,并输出至初始化模块23。
最后,飞行器MCU将获得的优化轨迹作为指令输出到控制策略输出模块,转换为控制指令发送给攻角控制器,完成轨迹优化的执行。
上述实施例用来解释说明本发明,而不是对本发明进行限制,在本发明的精神和权利要求的保护范围内,对本发明作出的任何修改和改变,都落入本发明的保护范围。

Claims (2)

1.一种高精度的高超声速飞行器轨迹优化多尺度最优控制系统,其特征在于:由飞行器海拔高度传感器、飞行器速度传感器、飞行器飞行航道倾角传感器、飞行器水平航程传感器、高超声速飞行器MCU、飞行器攻角控制器构成;所述飞行器海拔高度传感器、飞行器速度传感器、飞行器飞行航道倾角传感器、飞行器水平航程传感器和飞行器攻角控制器均通过数据总线与飞行器MCU相连;所述的高超声速飞行器MCU包括依次相连的信息采集模块、状态尺度变换模块、初始化模块、ODE离散化模块、NLP问题求解模块、自适应模块、控制策略输出模块;其中,信息采集模块包括飞行器海拔高度和速度采集、飞行器飞行航道倾角和飞行水平距离采集、飞行器海拔高度和速度设定采集、飞行器飞行航道倾角设定采集、飞行器的运动方程和性能约束条件以及指定优化函数参数采集五个子模块;NLP求解模块包括依次相连的寻优方向求解、寻优步长求解、寻优修正、NLP收敛性判断四个子模块;自适应模块包括依次相连的约束条件满足判断、小波分解、调整时间节点三个子模块;
所述高精度的高超声速飞行器轨迹优化多尺度最优控制系统的运行过程如下:
步骤1):在高超声速飞行器MCU中输入对应于该飞行器的运动方程、性能约束条件、指定优化函数;
步骤2):高超声速飞行器到达再入段后,开启飞行器海拔高度传感器、飞行器速度传感器、飞行器飞行航道倾角传感器和飞行器水平航程传感器,得到高超声速飞行器当前的海拔高度、速度、飞行航道倾角和飞行水平航程状态信息;
步骤3):高超声速飞行器MCU根据设定的海拔高度、速度、飞行航道倾角要求执行内部高精度的多尺度优化算法,得到使高超声速飞行器水平飞行距离最长的轨迹优化控制策略;
步骤4):高超声速飞行器MCU将获得的轨迹优化控制策略发送给控制策略输出模块,并转换为控制指令发送给飞行器攻角控制器执行;
所述步骤3)包括以下子步骤:
步骤3.1):信息采集模块获取步骤2)得到的高超声速飞行器当前的海拔高度、速度、飞行航道倾角和飞行水平航程状态信息;
步骤3.2):利用状态尺度变换模块对状态变量进行尺度变换,缩小状态变量在数值上的尺度差距:
其中表示nx个状态向量,/>表示状态变换函数;
步骤3.3):初始化模块开始运行,设置轨迹优化过程时间的离散段数与每一段的长度、攻角控制量的初始猜测值u(0)(t),设定优化精度要求tol,将迭代次数k置零;
步骤3.4):通过ODE离散化模块将常微分方程组在时间轴[t0,tf]上全部离散;
步骤3.5):通过NLP问题求解模块获得所需的攻角控制策略和对应状态轨迹,这个过程包括多次内部迭代,每次迭代都要求解寻优方向和寻优步长,并进行寻优修正;对于某一次迭代得到的攻角控制量u(k)(t),如果其对应目标函数值J[u(k)(t)]与前一次迭代的目标函数值J[u(k-1)(t)]之差小于精度要求tol,则判断收敛性满足,并将攻角控制量u(k)(t)输出到自适应模块;
步骤3.6):通过自适应模块分析NLP问题求解模块获得的攻角控制量u(k)(t)对应的飞行器运动过程,是否满足飞行器性能约束条件;如果满足,则将攻角控制量u(k)(t)作为指令输出到控制策略输出模块,否则利用自适应模块调整轨迹优化过程时间的离散段数与每一段的长度,执行初始化模块;
所述步骤3.4)包括如下子步骤:
步骤3.4.1):划分区间[t0,tf]:各节点分别为t0<t1<…<tm-1<tm=tf,其中m为分段的段数;
步骤3.4.2):将控制变量参数化:在各节点处给出控制变量的估计值u0,u1,…,um,在区间Ii=[ti,ti+1],i=0,1,…,m-1上构造函数qi(t,u0,u1,…,um)逼近区间Ii上的控制函数,于是
步骤3.4.3):子区间打靶:在Ii=[ti,ti+1],i=0,1,…,m-1上,相应地赋予状态变量的初值x(ti)=si,i=0,1,…,m-1,通过求解
得到子区间Ii=[ti,ti+1]上的状态函数解x(t,si,qi),i=0,1,…,m-1,其中f(t,x,qi)为飞行器的气动系数模型;
步骤3.4.4):匹配条件:为了保证状态函数解x(t,si,qi),i=0,1,…,m-1的连续性,需要满足以下条件:
x(ti+1,si,qi)=si+1,i=0,1,…,m-1 (4)
步骤3.4.5):将ODE转化为NLP问题求解;
所述步骤3.5)包括如下子步骤:
步骤3.5.1):将攻角控制量u(k-1)(t)作为向量空间中的某个点,记作P1,P1对应的目标函数值就是J[u(k-1)(t)];
步骤3.5.2):从点P1出发,根据选用的NLP算法,构造向量空间中的一个寻优方向d(k-1)和步长α(k-1)
步骤3.5.3):通过式u(k)(t)=u(k-1)(t)+α(k-1)d(k-1)构造向量空间中对应u(k)的另外一个点P2,使得P2对应的目标函数值J[u(k)(t)]比J[u(k-1)(t)]更优;
步骤3.5.4):采用寻优校正u(k)(t),得到校正后的点记为点P3,同时令使得P3对应的目标函数值J[u(k)(t)]比J[u(k-1)(t)]更优;
步骤5):如果J[u(k)(t)]与上一次迭代的目标函数值J[u(k-1)(t)]的绝对值之差小于精度tol,则判断收敛性满足,将本次迭代得到的控制策略u(k)(t)输出至控制策略输出模块;如果收敛性不满足,迭代次数k增加1,将u(k)(t)设置为初始值,继续执行步骤2)。
2.根据权利要求1所述的高精度的高超声速飞行器轨迹优化多尺度最优控制系统,其特征在于:所述步骤3.6)包括如下子步骤:
步骤3.6.1):判断NLP问题求解模块得到的控制策略对应的过程是否全程满足约束条件,如果满足,则输出至控制策略输出模块,否则执行步骤2);
步骤3.6.2):利用小波变换,将控制策略分解为高频信号/>与低频信号/>
步骤3.6.3):选取高频信号取值非零的区间端点作为新的时间节点,并输出至初始化模块。
CN201911149104.8A 2019-11-21 2019-11-21 高精度的高超声速飞行器轨迹优化多尺度最优控制系统 Active CN111045447B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911149104.8A CN111045447B (zh) 2019-11-21 2019-11-21 高精度的高超声速飞行器轨迹优化多尺度最优控制系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911149104.8A CN111045447B (zh) 2019-11-21 2019-11-21 高精度的高超声速飞行器轨迹优化多尺度最优控制系统

Publications (2)

Publication Number Publication Date
CN111045447A CN111045447A (zh) 2020-04-21
CN111045447B true CN111045447B (zh) 2023-08-29

Family

ID=70232961

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911149104.8A Active CN111045447B (zh) 2019-11-21 2019-11-21 高精度的高超声速飞行器轨迹优化多尺度最优控制系统

Country Status (1)

Country Link
CN (1) CN111045447B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113325706B (zh) * 2021-05-06 2022-09-23 中国人民解放军火箭军工程大学 基于改进控制参数化的高超声速飞行器再入轨迹优化方法
CN113705117B (zh) * 2021-05-25 2022-09-20 中国航空工业集团公司沈阳飞机设计研究所 一种高超声速巡航飞机飞行性能优化分析方法
CN113467509B (zh) * 2021-07-08 2023-08-29 中国人民解放军火箭军工程大学 一种高精度高效率飞行器轨迹优化与制导切换方法及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017005052A1 (zh) * 2015-07-09 2017-01-12 北京航空航天大学 航天器脉冲交会轨迹的梯度分割区间优化设计方法
WO2017014085A1 (ja) * 2015-07-17 2017-01-26 三菱重工業株式会社 航空機管理装置、航空機、及び航空機の軌道算出方法
CN107908109A (zh) * 2017-11-13 2018-04-13 浙江大学 一种基于正交配置优化的高超声速飞行器再入段轨迹优化控制器
CN108717265A (zh) * 2018-05-30 2018-10-30 重庆邮电大学 一种基于控制变量参数化的无人飞行器巡航跟踪控制系统及控制方法
CN109254533A (zh) * 2018-10-24 2019-01-22 哈尔滨工业大学 基于状态积分的梯度-修复算法的高超声速飞行器快速轨迹优化方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3002657B1 (fr) * 2013-02-22 2015-03-06 Thales Sa Procede d elaboration d un profil vertical de trajectoire comprenant des niveaux d altitude multiples

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017005052A1 (zh) * 2015-07-09 2017-01-12 北京航空航天大学 航天器脉冲交会轨迹的梯度分割区间优化设计方法
WO2017014085A1 (ja) * 2015-07-17 2017-01-26 三菱重工業株式会社 航空機管理装置、航空機、及び航空機の軌道算出方法
CN107908109A (zh) * 2017-11-13 2018-04-13 浙江大学 一种基于正交配置优化的高超声速飞行器再入段轨迹优化控制器
CN108717265A (zh) * 2018-05-30 2018-10-30 重庆邮电大学 一种基于控制变量参数化的无人飞行器巡航跟踪控制系统及控制方法
CN109254533A (zh) * 2018-10-24 2019-01-22 哈尔滨工业大学 基于状态积分的梯度-修复算法的高超声速飞行器快速轨迹优化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
周浩 ; 陈万春 ; 殷兴良 ; .高超声速飞行器滑行航迹优化.北京航空航天大学学报.2006,(第05期),全文. *

Also Published As

Publication number Publication date
CN111045447A (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
CN107908109B (zh) 一种基于正交配置优化的高超声速飞行器再入段轨迹优化控制器
CN111045447B (zh) 高精度的高超声速飞行器轨迹优化多尺度最优控制系统
CN108717265B (zh) 一种基于控制变量参数化的无人飞行器巡航跟踪控制系统及控制方法
CN107942651B (zh) 一种近空间飞行器控制系统
CN111290421A (zh) 一种考虑输入饱和的高超声速飞行器姿态控制方法
CN108490788A (zh) 一种基于双干扰观测的飞行器俯仰通道反演控制方法
CN112286218B (zh) 基于深度确定性策略梯度的飞行器大迎角摇滚抑制方法
CN111103795B (zh) 基于智能自适应优化算法的高超声速飞行器再入段轨迹优化控制器
CN111581784B (zh) 一种基于数据驱动自适应准稳态模型的扑翼运动参数优化方法
CN110059339B (zh) 基于em-ekf算法的rlv再入段气动参数辨识方法
CN111367182A (zh) 考虑输入受限的高超声速飞行器抗干扰反步控制方法
CN105867119A (zh) 一种采用保护映射理论的空天飞行器大包线切换控制方法
CN111324035A (zh) 一种高超声速飞行器轨迹优化自适应最优控制器
CN112947534A (zh) 一种高超声速飞行器下压段自适应伪谱法轨迹优化方法
CN112580274A (zh) 一种适用于组合动力高超声速飞机的轨迹优化方法
CN110188378B (zh) 一种基于神经网络的气动数据融合方法
CN118131803A (zh) 一种基于滑模控制器的变体飞行器姿态控制方法
CN113341696A (zh) 一种运载火箭姿态控制参数智能整定方法
CN111061294B (zh) 非平稳高超声速飞行器轨迹优化自适应最优控制系统
CN115685764B (zh) 变翼展飞行器任务自适应的抗干扰跟踪控制方法及系统
CN113126498A (zh) 基于分布式强化学习的优化控制系统和控制方法
CN114355770B (zh) 入侵杂草种群分布优化的高超声速飞行器再入段控制器
CN114815878B (zh) 基于实时优化和深度学习的高超声速飞行器协同制导方法
CN111026140B (zh) 约束全程满足的高超声速飞行器轨迹优化自适应最优控制器
CN114117631B (zh) 一种带有最优终端时间估计的火箭回收轨迹优化方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant