CN108717265B - 一种基于控制变量参数化的无人飞行器巡航跟踪控制系统及控制方法 - Google Patents

一种基于控制变量参数化的无人飞行器巡航跟踪控制系统及控制方法 Download PDF

Info

Publication number
CN108717265B
CN108717265B CN201810535506.0A CN201810535506A CN108717265B CN 108717265 B CN108717265 B CN 108717265B CN 201810535506 A CN201810535506 A CN 201810535506A CN 108717265 B CN108717265 B CN 108717265B
Authority
CN
China
Prior art keywords
aircraft
module
control
aerial vehicle
unmanned aerial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810535506.0A
Other languages
English (en)
Other versions
CN108717265A (zh
Inventor
刘平
柯梅花
黄袁园
陈晓雷
吕霞付
虞继敏
王平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University of Post and Telecommunications
Original Assignee
Chongqing University of Post and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University of Post and Telecommunications filed Critical Chongqing University of Post and Telecommunications
Priority to CN201810535506.0A priority Critical patent/CN108717265B/zh
Publication of CN108717265A publication Critical patent/CN108717265A/zh
Application granted granted Critical
Publication of CN108717265B publication Critical patent/CN108717265B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Abstract

本发明公开了一种基于控制变量参数化的无人飞行器巡航跟踪控制系统及控制方法,无人飞行器在巡航空域飞行,飞行器巡航高度传感器、飞行器速度传感器、飞行器航道倾角传感器开启,获得飞行器巡航高度偏差、速度和飞行器航道倾角信息,飞行器MCU根据设定的巡航高度偏差、速度和飞行器航道倾角要求自动执行内部控制变量参数化优化算法,得到使无人飞行器在指定时间内到达设定巡航轨迹的控制策略,飞行器MCU将获得的控制策略转换为控制指令发送给飞行器推力控制模块和俯仰角控制模块执行。本发明能够根据无人飞行器不同的巡航高度偏差、速度和飞行器航道倾角状态快速地得到优化控制策略,使无人飞行器在设定时间内平稳到达指定的巡航轨迹状态。

Description

一种基于控制变量参数化的无人飞行器巡航跟踪控制系统及 控制方法
技术领域
本发明涉及无人飞行器巡航跟踪控制领域,主要是一种基于控制变量参数化算法的无人飞行器巡航跟踪控制系统及控制方法。能够根据无人飞行器的不同巡航高度偏差、速度和飞行器航道倾角信息快速获取飞行器推力和俯仰角控制策略,使飞行器在设定调节时间内平稳到达指定的飞行轨迹状态。
背景技术
随着科技的进步,无人飞行器已经逐步应用于航空侦查、航空测绘、电力巡线、森林防火等领域,无人飞行器已经成为世界航空航天领域一个极其重要的发展方向,研究和发展无人飞行器控制系统对进一步提升其飞行品质和扩展其应用领域具有非常重要的意义。
通常,无人飞行器到达巡航空域后,为了保证飞行安全,飞行器的速度、航迹倾角和飞行高度需要限制在“安全气动包络线”之内,因此,巡航跟踪控制是保证无人飞行器完成飞行任务的核心关键技术之一。然而,由于无人飞行器系统非线性、多变量、时变以及多输入输出的特性,传统的经典控制方法并不能完全满足无人飞行器日益增长的高品质控制要求,研究高品质的无人飞行器跟踪控制系统已成为当前国内外研究的热点和前沿。
发明内容
为了提高无人飞行器的巡航跟踪控制品质,使飞行器在设定调节时间内平稳到达指定的飞行轨迹状态,本发明提供了一种基于控制变量参数化方法的无人飞行器巡航跟踪控制系统。
首先,在设定调节时间内飞行的无人飞行器巡航跟踪过程动力学模型可以用如下式子描述:
Figure BDA0001678009250000011
x(t0)=x0
其中,t表示时间,x(t)表示无人飞行器速度、飞行器航道倾角和飞行器巡航高度偏差组成的状态向量,
Figure BDA0001678009250000012
是x(t)的一阶导数;u(t)表示无人飞行器推力和俯仰角变量组成的控制向量,
Figure BDA0001678009250000013
是u(t)的一阶导数;f(u(t),x(t),t)是无人飞行器速度、飞行器航道倾角和飞行器巡航高度偏差动力学方程组成的微分方程组;t0表示无人飞行器进行巡航跟踪控制的起始时刻,x0为t0时刻的状态向量。要使飞行器在设定调节时间内平稳到达指定的飞行轨迹状态,即要求飞行器调节过程状态变量偏差最小,则该无人飞行器的巡航跟踪问题可以描述为:
Figure BDA0001678009250000021
Figure BDA0001678009250000022
x(t0)=x0
x(tf)=xtf
gi(u(t),x(t),t)=0,i=1,2,...,me
gj(u(t),x(t),t)≤0,j=me+1,...,m
Figure BDA0001678009250000023
t0≤t≤tf
其中t表示时间,x(t)表示无人飞行器速度、飞行器航道倾角和飞行器巡航高度偏差组成的状态向量,
Figure BDA0001678009250000024
是x(t)的一阶导数;u(t)表示无人飞行器推力(u1(t))和俯仰角(u2(t))组成的控制向量,
Figure BDA0001678009250000025
是u(t)的一阶导数;f(u(t),x(t),t)是无人飞行器速度、飞行器航道倾角和飞行器巡航高度偏差动力学方程组成的微分方程组;t0表示无人飞行器进行巡航跟踪控制的起始时刻,x0为t0时刻的状态向量;tf表示无人飞行器进行巡航跟踪控制的终止时刻,
Figure BDA0001678009250000026
为tf时刻需要到达的巡航跟踪目标状态向量;J(u(t),x(t),t)表示无人飞行器轨迹优化的目标函数;L0(u(t),x(t),t)表示飞行器调节过程状态变量偏差函数;gi(u(t),x(t),t)=0,i=1,2,...,me是无人飞行器调节过程的等式约束条件函数;gj(u(t),x(t),t)≤0,j=me+1,...,m是无人飞行器调节过程的不等式约束条件;me表示等式约束个数,m表示约束条件总的个数,
Figure BDA0001678009250000027
分别表示无人飞行器推力和俯仰角调节量的下限值,
Figure BDA0001678009250000028
分别表示无人飞行器推力和俯仰角调节量的上限值;无人飞行器的巡航跟踪调节时间为t0时刻到tf时刻。分析可知,该问题本质上为最优控制问题
本发明解决其技术问题所采用的技术方案是:在无人飞行器MCU中集成了控制变量参数化优化方法,能够根据无人飞行器的不同巡航高度偏差、飞行速度和飞行器航道倾角信息给出飞行器推力和俯仰角控制策略,使飞行器在设定调节时间内平稳到达指定的飞行轨迹状态。
具体地,本发明的系统包括动力学模型、飞行器性能约束条件、优化目标设置模块,无人飞行器MCU模块,飞行器巡航高度传感器,飞行器速度传感器,飞行器航道倾角传感器,飞行器巡航高度偏差、速度、飞行器航道倾角、飞行器调节时间设置模块,飞行器推力控制模块和飞行器俯仰角控制模块;其中所述动力学模型、飞行器性能约束条件、优化目标设置模块用于设定飞行器动力学模型函数、飞行器性能约束条件函数和飞行器推力、俯仰角优化目标参数。
所述飞行器巡航高度传感器用于获取飞行器当前的巡航高度偏差,并输入无人飞行器MCU模块。
所述飞行器速度传感器用于获取飞行器当前的速度,并输入无人飞行器MCU模块。
所述飞行器航道倾角传感器用于获取飞行器当前的航道倾角,并输入无人飞行器MCU模块。
所述飞行器巡航高度偏差、速度、飞行器航道倾角、飞行器调节时间设置模块用于设定飞行器巡航高度偏差、速度、飞行器航道倾角和飞行器调节时间;
所述无人飞行器MCU模块用于根据设定的飞行器巡航高度偏差、速度、飞行器航道倾角和飞行器调节时间,以及当前的巡航高度偏差、当前的速度和当前的航道倾角,采用控制变量参数化优化算法得到使无人飞行器在设定调节时间范围内平稳到达指定飞行轨迹状态的推力和俯仰角控制量,并分别发送给飞行器推力控制模块和飞行器俯仰角控制模块。
所述飞行器推力控制模块用于控制飞行器飞行;所述飞行器俯仰角控制模块用于控制飞行器的俯仰角。
本发明还提供了一种控制方法,步骤如下:
步骤A1):将所述MCU安装在某型无人飞行器上,通过动力学模型、飞行器性能约束条件、优化目标设置模块设定飞行器动力学模型函数、飞行器性能约束条件函数和飞行器推力、俯仰角优化目标参数;
步骤A2):无人飞行器到达指定飞行空域后,开启飞行器巡航高度传感器、飞行器速度传感器和飞行器航道倾角传感器,分别获得飞行器当前的巡航高度偏差、当前的速度和当前的飞行器航道倾角;
步骤A3):无人飞行器MCU根据飞行器巡航高度偏差、速度、飞行器航道倾角、飞行器调节时间设置模块中设定的巡航高度、飞行速度、飞行器航道倾角和调节时间,采用控制变量参数化优化算法,得到使无人飞行器在设定调节时间范围内平稳到达指定飞行轨迹状态的推力和俯仰角控制量;
步骤A4):无人飞行器MCU将步骤A3)所述推力和俯仰角控制量分别输出至飞行器推力控制模块和飞行器俯仰角控制模块。
所述的无人飞行器MCU自动产生飞行器推力和俯仰角控制指令的控制变量参数化优化算法运行步骤如下:
步骤B1):无人飞行器到达巡航空域后,飞行器巡航高度传感器、飞行器速度传感器和飞行器航道倾角传感器开启,信息采集模块获取无人飞行器当前的巡航高度偏差、飞行速度和飞行器航道倾角状态信息;
步骤B2):初始化模块开始运行,输入信息采集模块获得的信息,设置调节时间优化过程的离散段数、飞行器推力和俯仰角变量组成的控制向量的初始猜测值u(0)(t),设定优化精度要求tol,将迭代次数k置零;
步骤B3):通过ODE求解模块获取本次迭代的状态信息x(k)(t)和目标函数值J(k)(x(t),u(t),t);
步骤B4):通过梯度求解模块24获取本次迭代目标函数梯度信息dJ(k)(u(t),x(t),t)和约束条件梯度信息dg(k)(u(t),x(t),t);当k=0时跳过步骤B5)和B6),直接执行步骤B7);
步骤B5):NLP问题求解模块25运行,通过NLP收敛性判断模块进行收敛性判断,如果本次迭代得到的目标函数值J(k)(u(t),x(t),t)与上一次迭代的目标函数值J(k-1)(u(t),x(t),t)的绝对值之差小于精度tol,则判断收敛性满足,并将本次迭代的控制策略转换为无人飞行器的推力和俯仰角控制指令输出至控制策略输出模块26;如果本次迭代得到的目标函数值J(k)(u(t),x(t),t)与上一次迭代的目标函数值J(k-1)(u(t),x(t),t)的绝对值之差大于精度tol,则判断收敛性不满足,继续执行步骤B6);
步骤B6):用u(k)(t),J(k)(u(t),x(t),t),dJ(k)(u(t),x(t),t),dg(k)(u(t),x(t),t)的值覆盖上一次迭代u(k-1)(t),J(k-1)(u(t),x(t),t),dJ(k-1)(u(t),x(t),t),dg(k-1)(u(t),x(t),t)的值,并将迭代次数k加1;
步骤B7):NLP问题求解模块25利用在步骤B3)和B4)中获得的目标函数值和梯度信息,求解寻优方向和寻优步长,并进行寻优修正,获得比上一次迭代推力和俯仰角控制策略组成的控制向量u(k-1)(t)更优的新的推力和俯仰角控制策略组成的控制向量u(k)(t)。该步骤执行完成后再次跳转至步骤B3),直至NLP收敛性判断模块满足为止;得到的最优解作为控制策略输入控制策略输出模块26。
所述的ODE快速求解模块,采用的是四级五阶龙格库塔方法,求解公式为:
K1=f[u(k)(t),x(k)(ti),ti]
K2=f[u(k)(t),x(k)(ti)+K1h/2,ti+h/2]
K3=f[u(k)(t),x(k)(ti)+K2h/2,ti+h/2]
K4=f[u(k)(t),x(k)(ti)+K3h,ti+h]
x(k)(ti+h)=x(k)(ti)+h(K1+2K2+2K3+K4)/6
其中,t表示时间,ti表示龙格库塔方法选择的积分时刻,h为积分步长,x(k)(ti)表示无人飞行器在第k次迭代中第ti时刻的飞行状态信息(包括飞行器巡航高度偏差、飞行器速度、飞行器航道倾角),f(·)是描述无人飞行器动力学方程组的函数,K1、K2、K3、K4分别表示龙格库塔法积分过程中的4个节点的函数值。u(k)(t)表示推力和俯仰角控制策略组成的控制向量。
所述的梯度求解模块,采用灵敏度轨迹方程法:
步骤C1):定义第k次迭代的灵敏度轨迹方程Γ(k)(t)为:
Figure BDA0001678009250000051
Γ(k)(t)的求解公式为:
Figure BDA0001678009250000052
Figure BDA0001678009250000053
其中,t表示时间,
Figure BDA0001678009250000054
表示第k次迭代中灵敏度轨迹方程对于时间t的导数,f(u(k)(t),x(k)(t),t)是描述无人飞行器状态微分方程的函数,Γ(k)(t0)表示灵敏度轨迹方程在第k次迭代时的初始时刻状态值,x0表示无人飞行器状态微分方程函数的初始时刻状态值。
步骤C2):采用四级五阶龙格库塔方法求解灵敏度轨迹方程Γ(k)(t)在各积分时刻的值,求解公式为:
Q1=S[u(k)(t),x(k)(ti),ti]
Q2=S[u(k)(t),x(k)(ti)+Q1h/2,ti+h/2]
Q3=S[u(k)(t),x(k)(ti)+Q2h/2,ti+h/2]
Q4=S[u(k)(t),x(k)(ti)+Q3h,ti+h]
Γ(k)(ti+h)=Γ(k)(ti)+h(Q1+2Q2+2Q3+Q4)/6
其中,t表示时间,ti表示龙格库塔方法选择的控制过程中某一时间点,h为积分步长,x(k)(ti)表示无人飞行器在第k次迭代中第ti时刻的状态信息(包括飞行器巡航高度偏差、飞行器速度、飞行器航道倾角),S(·)是描述灵敏度方程的函数,Q1、Q2、Q3、Q4分别表示龙格库塔法积分过程中的4个节点的函数值。
步骤C3):根据得到的无人飞行器状态信息x(k)(t)和灵敏度轨迹方程Γ(k)(t),求解目标函数的梯度信息dJ(k)(u(t),x(t),t):
Figure BDA0001678009250000055
其中,J(k)(u(t),x(t),t)表示第k次迭代的目标函数,dJ(k)(u(t),x(t),t)表示第k次迭代的目标函数关于控制向量u(k)(t)的梯度信息。
步骤C4):根据得到的无人飞行器状态信息x(k)(t)和灵敏度轨迹方程Γ(k)(t),求解约束条件的梯度信息dg(k)(u(t),x(t),t):
Figure BDA0001678009250000061
dg(k)(u(t),x(t),t)=[dg1 (k) … dgj (k)],j=1,2,...,me,me+1,...,m
其中,gj (k)(u(t),x(t),t)表示第j个约束条件第k次迭代的函数,dgj (k)(u(t),x(t),t)表示第j个约束条件关于控制向量u(k)(t)的第k次迭代梯度信息,me表示等式约束个数,m表示约束条件总的个数。
所述的NLP求解模块,采用如下步骤实现:
步骤D1):将飞行器推力和俯仰角变量组成的控制向量u(k-1)(t)作为向量空间中的某个点,记作P1,P1对应的目标函数值就是J(k-1)(u(t),x(t),t);
步骤D2):从点P1出发,根据选用的NLP算法,构造向量空间中的一个寻优方向d(k-1)和步长α(k-1)
步骤D3):通过式u(k)(t)=u(k-1)(t)+α(k-1)d(k-1)构造向量空间中对应u(k)(t)的另外一个点P2,使得P2对应的目标函数值J(k)(u(t),x(t),t)比J(k-1)(u(t),x(t),t)更优。
步骤D4):采用寻优校正u(k)(t),得到校正后的点
Figure BDA0001678009250000062
记为点P3,同时令
Figure BDA0001678009250000063
使得P3对应的目标函数值
Figure BDA0001678009250000064
比J(k)(u(t),x(t),t)更优;
步骤D5):如果本次迭代的目标函数值
Figure BDA0001678009250000066
与上一次迭代的目标函数值J(k-1)(u(t),x(t),t)的绝对值之差小于精度tol,则判断收敛性满足,令
Figure BDA0001678009250000067
同时将本次迭代得到的控制策略u(k)(t)输出至控制策略输出模块26;如果收敛性不满足,迭代次数k增加1,将u(k)(t)设置为向量空间点P1,继续执行步骤D2)。
本发明的有益效果主要表现在:根据无人飞行器的不同巡航高度偏差、速度和飞行器航道倾角信息快速获取飞行器推力和俯仰角控制策略,使飞行器在设定调节时间内平稳到达指定的巡航轨迹状态,提高无人飞行器的巡航跟踪控制水平。
附图说明
图1是本发明的结构示意图;
图2是本发明无人飞行器MCU内部模块结构图;
图3是实施例1的无人飞行器推力控制曲线图;
图4是实施例1的无人飞行器俯仰角控制曲线图;
图5是实施例1的无人飞行器速度曲线图;
图6是实施例1的无人飞行器航迹倾角曲线图;
图7是实施例1的无人飞行器巡航高度偏差曲线图。
具体实施方式
所述巡航跟踪控制系统如图1所示,包括动力学模型、飞行器性能约束条件、优化目标设置模块11,无人飞行器MCU模块12,飞行器巡航高度传感器13,飞行器速度传感器14,飞行器航道倾角传感器15,飞行器巡航高度偏差、速度、飞行器航道倾角、飞行器调节时间设置模块16,飞行器推力控制模块17,飞行器俯仰角控制模块18,所述系统内的各组成部分均由控制器内数据总线连接。
所述的无人飞行器MCU部分如图2所示,包括信息采集模块21、初始化模块22、常微分方程组(Ordinary Differential Equations,简称ODE)求解模块23、梯度求解模块24、非线性规划(Non-linear Programming,简称NLP)问题求解模块25、控制策略输出模块26。其中,信息采集模块包括飞行器初始巡航高度偏差和飞行速度采集、飞行器初始飞行器航道倾角采集、飞行器巡航高度偏差和速度设定采集、飞行器航道倾角设定采集、飞行器的气动系数模型函数和性能约束条件函数以及优化目标参数采集五个子模块;NLP求解模块包括寻优方向求解、寻优步长求解、寻优修正、NLP收敛性判断四个子模块。
实施例1
某型号无人飞行器,其动力学模型如下:
Figure BDA0001678009250000071
其中,x1(t)表示飞行器的飞行速度,x2(t)表示飞行器的航道倾角,x3(t)表示飞行器的巡航高度偏差,u1(t)表示飞行器的推力,u2(t)表示飞行器的俯仰角,x(t)是由x1(t)、x2(t)和x3(t)组成的状态向量(x(t)=[x1(t)x2(t)x3(t)]T),
Figure BDA0001678009250000072
是x(t)的一阶导数,控制向量为u(t)=[u1(t)u2(t)]T。为了保证飞行器的飞行安全,飞行器在巡航空域的性能约束限制为:
92≤x1(t)≤170(m/s),-20≤x2(t)≤25(°),-150≤x3(t)≤150(m)
60000≤u1(t)≤125000(N),-20≤u2(t)≤25(°)
无人飞行器到达指定巡航空域后,飞行器巡航高度传感器、飞行器速度传感器和飞行器航道倾角传感器和MCU均已开启。信息采集模块立即采集飞行器动力学性能约束条件函数,当前时刻的巡航高度偏差、飞行速度和飞行器航道倾角信息,设当前初始时刻t0=0s,巡航高度传感器传入MCU后得到偏差为x3(t0)=-120(m),速度传感器传入MCU的速度为x1(t0)=150(m/s),飞行器航道倾角传感器传入MCU的飞行器航道倾角为x2(t0)=20(°);飞行器的调节时间限制为100s,即调节终值时间为tf=100(s);终止时刻无人飞行器需要满足的巡航轨迹要求为
Figure BDA0001678009250000085
无人飞行器的巡航跟踪要求是根据无人飞行器当前巡航高度偏差、速度和飞行器航道倾角信息快速获取飞行器推力和俯仰角控制策略,使飞行器在设定调节时间内平稳到达指定的巡航轨迹状态。因此,结合飞行器的三维空间运动方程、气动系数模型、飞行器性能约束条件函数和控制目标,整理得到该问题的数学模型如下:
Figure BDA0001678009250000081
Figure BDA0001678009250000082
92≤x1(t)≤170(m/s)
-20≤x2(t)≤25(°)
-150≤x3(t)≤150(m)
60000≤u1(t)≤125000(N)
-20≤u2(t)≤25(°)
x1(t0)=150(m/s),x2(t0)=20(°),x3(t0)=-120(m)
Figure BDA0001678009250000083
Figure BDA0001678009250000084
t0=0(s),tf=100(s)
其中,J(u(t),x(t),t)表示无人飞行器巡航跟踪问题的优化目标函数。可以看出问题是一个典型的最优控制问题。为了便于表述,采用F(u(t),x(t),t)表示无人飞行器动力学微分方程组数学模型,即:
Figure BDA0001678009250000091
采用g(u(t),x(t),t)表示无人飞行器状态变量约束条件,为:
Figure BDA0001678009250000092
所述无人飞行器巡航跟踪控制系统自动产生推力和俯仰角控制指令的控制变量参数化算法如图2所示,其运行步骤如下:
步骤B1):无人飞行器到达巡航空域后,飞行器巡航高度传感器、飞行器速度传感器和飞行器航道倾角传感器开启,设当前初始时刻t0=0s,信息采集模块21采集无人飞行器的性能约束条件函数和控制目标函数J(u(t),x(t),t),获取t0时刻无人飞行器速度x1(t0)=150(m/s),飞行器航道倾角x2(t0)=20(°),巡航高度偏差x3(t0)=-120(m),设定飞行器的调节时间限制为100s,终止时刻无人飞行器巡航轨迹要求
Figure BDA0001678009250000093
步骤B2):初始化模块22开始运行,输入信息采集模块21获得的信息,设置调节时间优化过程的离散段数为20、控制向量的初始猜测值为u(0)(t)=0.5,设定优化精度要求tol=10-4,将迭代次数k置零;
步骤B3):通过ODE快速求解模块23获取本次迭代的状态信息x(k)(t)和目标函数值J(k)(u(t),x(t),t);
步骤B4):通过梯度求解模块24获取本次迭代目标函数梯度信息dJ(k)(u(t),x(t),t)和约束条件梯度信息dg(k)(u(t),x(t),t);当k=0时跳过步骤B5)和步骤B6),直接执行步骤B7);
步骤B5):NLP问题求解模块25运行,通过NLP收敛性判断模块进行收敛性判断,如果本次迭代得到的目标函数值J(k)(u(t),x(t),t)与上一次迭代的目标函数值J(k-1)(u(t),x(t),t)的绝对值之差小于精度tol=10-4,则判断收敛性满足,并将本次迭代的控制策略转换为无人飞行器的推力和俯仰角控制指令输出至控制策略输出模块26;如果本次迭代得到的目标函数值J(k)(u(t),x(t),t)与上一次迭代的目标函数值J(k-1)(u(t),x(t),t)的绝对值之差大于精度tol,则判断收敛性不满足,继续执行步骤B6);
步骤B6):用u(k)(t),J(k)(u(t),x(t),t),dJ(k)(u(t),x(t),t),dg(k)(u(t),x(t),t)的值覆盖上一次迭代u(k-1)(t),J(k-1)(u(t),x(t),t),dJ(k-1)(u(t),x(t),t),dg(k-1)(u(t),x(t),t)的值,并将迭代次数k加1;
步骤B7):NLP问题求解模块25利用在步骤B3)和B4)中获得的目标函数值和梯度信息,求解寻优方向和寻优步长,并进行寻优修正,获得比上一次迭代推力和俯仰角控制策略组成的控制向量u(k-1)(t)更优的新的推力和俯仰角控制策略组成的控制向量u(k)(t)。该步骤执行完成后再次跳转至步骤B3),直至NLP收敛性判断模块满足为止;得到的最优解作为控制策略输入控制策略输出模块26。
所述的ODE快速求解模块,采用的是四级五阶龙格库塔方法,求解公式为:
K1=F[u(k)(t),x(k)(ti),ti]
K2=F[u(k)(t),x(k)(ti)+K1h/2,ti+h/2]
K3=F[u(k)(t),x(k)(ti)+K2h/2,ti+h/2]
K4=F[u(k)(t),x(k)(ti)+K3h,ti+h]
x(k)(ti+h)=x(k)(ti)+h(K1+2K2+2K3+K4)/6
其中,t表示时间,ti表示龙格库塔方法选择的积分时刻,h为积分步长,x(k)(ti)表示无人飞行器在第k次迭代中第ti时刻的飞行状态信息(包括飞行器巡航高度偏差、飞行器速度、飞行器航道倾角),F(·)是无人飞行器动力学微分方程组数学模型,K1、K2、K3、K4分别表示龙格库塔法积分过程中的4个节点的函数值。
所述的梯度求解模块,采用灵敏度轨迹方程法:
步骤C1):定义第k次迭代的灵敏度轨迹方程Γ(k)(t)为:
Figure BDA0001678009250000101
Γ(k)(t)的求解公式为:
Figure BDA0001678009250000102
Figure BDA0001678009250000103
其中,t表示时间,
Figure BDA0001678009250000104
表示第k次迭代中灵敏度轨迹方程对于时间t的导数,F(u(k)(t),x(k)(t),t)是无人飞行器动力学微分方程组数学模型,Γ(k)(t0)表示灵敏度轨迹方程在第k次迭代时的初始时刻状态值,x0表示无人飞行器状态微分方程函数的初始时刻状态值。
步骤C2):采用四级五阶龙格库塔方法求解灵敏度轨迹方程Γ(k)(t)在各积分时刻的值,求解公式为:
Q1=S[u(k)(t),x(k)(ti),ti]
Q2=S[u(k)(t),x(k)(ti)+Q1h/2,ti+h/2]
Q3=S[u(k)(t),x(k)(ti)+Q2h/2,ti+h/2]
Q4=S[u(k)(t),x(k)(ti)+Q3h,ti+h]
Γ(k)(ti+h)=Γ(k)(ti)+h(Q1+2Q2+2Q3+Q4)/6
其中,t表示时间,ti表示龙格库塔方法选择的控制过程中某一时间点,h为积分步长,x(k)(ti)表示无人飞行器在第k次迭代中第ti时刻的状态信息(包括飞行器巡航高度偏差、飞行器速度、飞行器航道倾角),S(·)是描述灵敏度方程的函数,Q1、Q2、Q3、Q4分别表示龙格库塔法积分过程中的4个节点的函数值。
步骤C3):根据得到的无人飞行器状态信息x(k)(t)和灵敏度轨迹方程Γ(k)(t),求解目标函数的梯度信息dJ(k)(u(t),x(t),t):
Figure BDA0001678009250000111
其中,J(k)(u(t),x(t),t)表示第k次迭代的目标函数,dJ(k)(u(t),x(t),t)表示第k次迭代的目标函数关于控制向量u(t)的梯度信息。
步骤C4):根据得到的无人飞行器状态信息x(k)(t)和灵敏度轨迹方程Γ(k)(t),求解约束条件的梯度信息dg(k)(u(t),x(t),t):
Figure BDA0001678009250000112
dg(k)(u(t),x(t),t)=[dg1 (k) … dgj (k)],j=1,2,...,6
其中,gj (k)(u(t),x(t),t)表示第j个约束条件第k次迭代的函数,dgj (k)(u(t),x(t),t)表示第j个约束条件关于控制向量u(t)的第k次迭代梯度信息。
所述的NLP求解模块,采用如下步骤实现:
步骤D1):将飞行器推力和俯仰角变量组成的控制向量u(k-1)(t)作为向量空间中的某个点,记作P1,P1对应的目标函数值就是J(k-1)(u(t),x(t),t);
步骤D2):从点P1出发,根据选用的NLP算法,构造向量空间中的一个寻优方向d(k-1)和步长α(k-1)
步骤D3):通过式u(k)(t)=u(k-1)(t)+α(k-1)d(k-1)构造向量空间中对应u(k)(t)的另外一个点P2,使得P2对应的目标函数值J(k)(u(t),x(t),t)比J(k-1)(u(t),x(t),t)更优。
步骤D4):采用寻优校正u(k)(t),得到校正后的点
Figure BDA0001678009250000121
记为点P3,同时令
Figure BDA0001678009250000122
使得P3对应的目标函数值
Figure BDA0001678009250000123
比J(k)(u(t),x(t),t)更优;
步骤D5):如果本次迭代的目标函数值
Figure BDA0001678009250000124
与上一次迭代的目标函数值J(k-1)(u(t),x(t),t)的绝对值之差小于精度tol=10-4,则判断收敛性满足,令
Figure BDA0001678009250000125
同时将本次迭代得到的控制策略u(k)(t)输出至控制策略输出模块26;如果收敛性不满足,迭代次数k增加1,将u(k)(t)设置为向量空间点P1,继续执行步骤D2)。
最后,飞行器MCU将获得的巡航跟踪推力和俯仰角控制量作为指令输出到控制策略输出模块,转换为控制指令发送给推力和俯仰角控制模块,完成巡航跟踪的执行。
图3~图7给出了实施例1中飞行器MCU执行内部控制变量参数化优化算法得到的无人飞行器推力、俯仰角控制曲线,以及在该推力和俯仰角控制策略下的无人飞行器速度、航迹倾角、巡航高度偏差曲线。可以看出,针对实施例1,控制变量参数化优化算法得到的无人飞行器推力控制量维持在6×104N附近,如图3所示;而俯仰角控制量则主要在前40秒进行调节,之后趋于平稳,如图4所示。采用图3和图4所示的无人飞行器推力和俯仰角控制策略后,飞行器的速度由150m/s调整到目标设定的140m/s,如图5所示;同时,飞行器航迹倾角由20度降低到优化设定目标的0度,如图6所示;此外,飞行器巡航高度偏差由-120米调整到0米,如图7所示。
以上内容是结合具体的优选实施方式对本发明所作的进一步详细说明,不能认定本发明的具体实施只限于这些说明。对于本发明所属技术领域的普通技术人员来说,在不脱离发明构思的前提下,还可以做出若干简单推演或替换,都应当视为属于本发明的保护范围。

Claims (5)

1.一种基于控制变量参数化的无人飞行器巡航跟踪控制系统,其特征在于:包括动力学模型、飞行器性能约束条件、优化目标设置模块(11),无人飞行器MCU模块(12),飞行器巡航高度传感器(13),飞行器速度传感器(14),飞行器航道倾角传感器(15),飞行器巡航高度偏差、速度、飞行器航道倾角、飞行器调节时间设置模块(16),飞行器推力控制模块(17)和飞行器俯仰角控制模块(18);其中所述动力学模型、飞行器性能约束条件、优化目标设置模块(11)用于设定飞行器动力学模型函数、飞行器性能约束条件函数和飞行器推力、俯仰角优化目标参数;
所述飞行器巡航高度传感器(13)用于获取飞行器当前的巡航高度偏差,并输入无人飞行器MCU模块(12);
所述飞行器速度传感器(14)用于获取飞行器当前的速度,并输入无人飞行器MCU模块(12);
所述飞行器航道倾角传感器(15)用于获取飞行器当前的航道倾角,并输入无人飞行器MCU模块(12);
所述飞行器巡航高度偏差、速度、飞行器航道倾角、飞行器调节时间设置模块(16)用于设定飞行器巡航高度偏差、速度、飞行器航道倾角值和飞行器调节时间;
所述无人飞行器MCU模块(12)用于根据设定的飞行器巡航高度偏差、速度、飞行器航道倾角和飞行器调节时间,以及当前的巡航高度偏差、当前的速度和的航道倾角,采用控制变量参数化优化算法得到使无人飞行器在设定调节时间范围内平稳到达指定飞行轨迹状态的推力和俯仰角控制量,并分别发送给飞行器推力控制模块(17)和飞行器俯仰角控制模块(18);
所述飞行器推力控制模块(17)用于控制飞行器飞行推力;
所述飞行器俯仰角控制模块(18)用于控制飞行器的俯仰角;
所述无人飞行器MCU模块(12)包括信息采集模块(21)、初始化模块(22)、ODE求解模块(23)、梯度求解模块(24)、NLP问题求解模块(25)和控制策略输出模块(26);
所述信息采集模块(21)用于采集无人飞行器当前的巡航高度偏差、飞行速度和飞行器航道倾角状态信息;
所述初始化模块(22)用于设置由调节时间优化过程的离散段数、飞行器推力和俯仰角变量组成的控制向量初始猜测值u(0)(t),设置优化精度要求tol,将迭代次数k置零;
所述ODE求解模块(23)根据无人飞行器动力学方程获取本次迭代的状态信息x(k)(t)和目标函数值J(k)(u(t),x(t),t);
所述梯度求解模块(24)根据状态信息x(k)(t)和灵敏度轨迹方程Γ(k)(t)获取本次迭代目标函数梯度信息dJ(k)(u(t),x(t),t)和约束条件梯度信息dg(k)(u(t),x(t),t);
所述NLP问题求解模块(25)进行收敛性判断,如果本次迭代得到的目标函数值J(k)(u(t),x(t),t)与上一次迭代目标函数值J(k-1)(u(t),x(t),t)的绝对值之差小于精度tol,则判断收敛性满足,并将本次迭代的控制策略转换为无人飞行器的推力和俯仰角控制指令输出至控制策略输出模块(26);如果本次迭代得到的目标函数值J(k)(u(t),x(t),t)与上一次迭代的目标函数值J(k-1)(u(t),x(t),t)的绝对值之差大于精度tol,则判断收敛性不满足。
2.一种基于控制变量参数化的无人飞行器巡航跟踪控制方法,其特征在于,包括以下步骤:
步骤A1):通过动力学模型、飞行器性能约束条件、优化目标设置模块(11)设定飞行器动力学模型函数、飞行器性能约束条件函数和飞行器推力、俯仰角优化目标参数;
步骤A2):无人飞行器到达指定飞行空域后,开启飞行器巡航高度传感器(13)、飞行器速度传感器(14)和飞行器航道倾角传感器(15),分别获得飞行器当前的巡航高度偏差、当前的速度和当前的飞行器航道倾角;
步骤A3):无人飞行器MCU(12)根据飞行器巡航高度偏差、速度、飞行器航道倾角、飞行器调节时间设置模块(16)中设定的巡航高度偏差、飞行速度、飞行器航道倾角和调节时间,采用控制变量参数化优化算法,得到使无人飞行器在设定调节时间范围内平稳到达指定飞行轨迹状态的推力和俯仰角控制量;
所述控制变量参数化优化算法包括以下步骤:
步骤B1):信息采集模块(21)采集无人飞行器当前的巡航高度偏差、飞行速度和飞行器航道倾角状态信息;
步骤B2):初始化模块(22)设置由调节时间优化过程的离散段数、飞行器推力和俯仰角变量组成的控制向量的初始猜测值u(0)(t),设置优化精度要求tol,将迭代次数k置零;
步骤B3):ODE求解模块(23)根据无人飞行器动力学方程获取本次迭代的状态信息x(k)(t)和目标函数值J(k)(u(t),x(t),t);
步骤B4):梯度求解模块(24)根据状态信息x(k)(t)和灵敏度轨迹方程Γ(k)(t)获取本次迭代目标函数梯度信息dJ(k)(u(t),x(t),t)和约束条件梯度信息dg(k)(u(t),x(t),t),当k=0时跳过步骤B5)和B6),直接执行步骤B7);
步骤B5):NLP问题求解模块(25)进行收敛性判断,如果本次迭代得到的目标函数值J(k)(u(t),x(t),t)与上一次迭代的目标函数值J(k-1)(u(t),x(t),t)的绝对值之差小于精度tol,则判断收敛性满足,并将本次迭代的控制策略转换为无人飞行器的推力和俯仰角控制指令输出至控制策略输出模块(26);如果本次迭代得到的目标函数值J(k)(u(t),x(t),t)与上一次迭代的目标函数值J(k-1)(u(t),x(t),t)的绝对值之差大于精度tol,则判断收敛性不满足,继续执行步骤B6);
步骤B6):用u(k)(t),J(k)(u(t),x(t),t),dJ(k)(u(t),x(t),t),dg(k)(u(t),x(t),t)的值覆盖上一次迭代u(k-1)(t),J(k-1)(u(t),x(t),t),dJ(k-1)(u(t),x(t),t),dg(k-1)(u(t),x(t),t)的值,并将迭代次数k加1;
步骤B7):利用在步骤B3)和B4)中获得的目标函数值和梯度信息,求解寻优方向和寻优步长,并进行寻优修正,获得比上一次迭代推力和俯仰角控制策略组成的控制向量u(k-1)(t)更优的新的推力和俯仰角控制策略组成的控制向量u(k)(t);该步骤执行完成后再次跳转至步骤B3),直至NLP收敛性判断模块满足为止;得到的最优解作为控制策略输入控制策略输出模块(26);
步骤A4):无人飞行器MCU(12)将步骤A3)所述推力和俯仰角控制量分别输出至飞行器推力控制模块(17)和飞行器俯仰角控制模块(18)。
3.根据权利要求2所述一种基于控制变量参数化的无人飞行器巡航跟踪控制方法,其特征在于:所述步骤B3)中ODE快速求解采用的是四级五阶龙格库塔方法,求解公式为:
K1=f[u(k)(t),x(k)(ti),ti]
K2=f[u(k)(t),x(k)(ti)+K1h/2,ti+h/2]
K3=f[u(k)(t),x(k)(ti)+K2h/2,ti+h/2]
K4=f[u(k)(t),x(k)(ti)+K3h,ti+h]
x(k)(ti+h)=x(k)(ti)+h(K1+2K2+2K3+K4)/6
其中,t表示时间,ti表示龙格库塔方法选择的积分时刻,h为积分步长,x(k)(ti)表示无人飞行器在第k次迭代中第ti时刻的飞行状态信息,f(·)表示描述无人飞行器动力学方程组的函数,K1、K2、K3、K4分别表示龙格库塔法积分过程中的4个节点的函数值,u(k)(t)表示推力和俯仰角控制策略组成的控制向量。
4.根据权利要求3所述一种基于控制变量参数化的无人飞行器巡航跟踪控制方法,其特征在于:所述梯度求解模块采用灵敏度轨迹方程法,具体为:
步骤C1):定义第k次迭代的灵敏度轨迹方程Γ(k)(t)为:
Figure FDA0002884032400000041
Γ(k)(t)的求解公式为:
Figure FDA0002884032400000042
Figure FDA0002884032400000043
其中,t表示时间,
Figure FDA0002884032400000044
表示第k次迭代中灵敏度轨迹方程对于时间t的导数,f(u(k)(t),x(k)(t),t)是描述无人飞行器状态微分方程的函数,Γ(k)(t0)表示灵敏度轨迹方程在第k次迭代时的初始时刻状态值,x0表示无人飞行器状态微分方程函数的初始时刻状态值;
步骤C2):采用四级五阶龙格库塔方法求解灵敏度轨迹方程Γ(k)(t)在各积分时刻的值,求解公式为:
Q1=S[u(k)(t),x(k)(ti),ti]
Q2=S[u(k)(t),x(k)(ti)+Q1h/2,ti+h/2]
Q3=S[u(k)(t),x(k)(ti)+Q2h/2,ti+h/2]
Q4=S[u(k)(t),x(k)(ti)+Q3h,ti+h]
Γ(k)(ti+h)=Γ(k)(ti)+h(Q1+2Q2+2Q3+Q4)/6
其中,t表示时间,ti表示龙格库塔方法选择的控制过程中某一时间点,h为积分步长,x(k)(ti)表示无人飞行器在第k次迭代中第ti时刻的状态信息,S(·)是描述灵敏度轨迹方程的函数,Q1、Q2、Q3、Q4分别表示龙格库塔法积分过程中的4个节点的函数值;
步骤C3):根据得到的无人飞行器状态信息x(k)(t)和灵敏度轨迹方程Γ(k)(t),求解目标函数的梯度信息dJ(k)(u(t),x(t),t):
Figure FDA0002884032400000045
其中,J(k)(u(t),x(t),t)表示第k次迭代的目标函数,dJ(k)(u(t),x(t),t)表示第k次迭代的目标函数关于控制向量u(k)(t)的梯度信息;
步骤C4):根据得到的无人飞行器状态信息x(k)(t)和灵敏度轨迹方程Γ(k)(t),求解约束条件的梯度信息dg(k)(u(t),x(t),t):
Figure FDA0002884032400000051
dg(k)(u(t),x(t),t)=[dg1 (k) … dgj (k)],j=1,2,...,me,me+1,...,m
其中,gj (k)(u(t),x(t),t)表示第j个约束条件第k次迭代的函数,dgj (k)(u(t),x(t),t)表示第j个约束条件关于控制向量u(k)(t)的第k次迭代梯度信息,me表示等式约束个数,m表示约束条件总的个数。
5.根据权利要求2所述一种基于控制变量参数化的无人飞行器巡航跟踪控制方法,其特征在于:所述NLP问题求解模块(25)进行收敛性判断的步骤为:
步骤D1):将飞行器推力和俯仰角变量组成的控制向量u(k-1)(t)作为向量空间中的某个点,记作P1,P1对应的目标函数值就是J(k-1)(u(t),x(t),t);
步骤D2):从点P1出发,构造向量空间中的一个寻优方向d(k-1)和步长α(k-1)
步骤D3):通过式u(k)(t)=u(k-1)(t)+α(k-1)d(k-1)构造向量空间中对应u(k)(t)的另外一个点P2,使得P2对应的目标函数值J(k)(u(t),x(t),t)比J(k-1)(u(t),x(t),t)更优;
步骤D4):采用寻优校正u(k)(t),得到校正后的点
Figure FDA0002884032400000052
记为点P3,同时令
Figure FDA0002884032400000053
使得P3对应的目标函数值
Figure FDA0002884032400000054
比J(k)(u(t),x(t),t)更优;
步骤D5):如果本次迭代的目标函数值
Figure FDA0002884032400000055
与上一次迭代的目标函数值
Figure FDA0002884032400000057
的绝对值之差小于精度
Figure FDA0002884032400000058
则判断收敛性满足,令
Figure FDA0002884032400000056
同时将本次迭代得到的控制向量u(k)(t)输出至控制策略输出模块(26);如果收敛性不满足,迭代次数k增加1,将u(k)(t)设置为向量空间点P1,继续执行步骤D2)。
CN201810535506.0A 2018-05-30 2018-05-30 一种基于控制变量参数化的无人飞行器巡航跟踪控制系统及控制方法 Active CN108717265B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810535506.0A CN108717265B (zh) 2018-05-30 2018-05-30 一种基于控制变量参数化的无人飞行器巡航跟踪控制系统及控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810535506.0A CN108717265B (zh) 2018-05-30 2018-05-30 一种基于控制变量参数化的无人飞行器巡航跟踪控制系统及控制方法

Publications (2)

Publication Number Publication Date
CN108717265A CN108717265A (zh) 2018-10-30
CN108717265B true CN108717265B (zh) 2021-05-18

Family

ID=63911481

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810535506.0A Active CN108717265B (zh) 2018-05-30 2018-05-30 一种基于控制变量参数化的无人飞行器巡航跟踪控制系统及控制方法

Country Status (1)

Country Link
CN (1) CN108717265B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109871612B (zh) * 2019-02-19 2020-08-25 华东理工大学 结合ode积分和牛顿法迭代的多相催化表面覆盖度获取方法
CN109976373B (zh) * 2019-04-26 2021-10-15 沈阳理工大学 飞行器中的差分量化反馈控制器及其控制方法
CN112444248B (zh) * 2019-08-27 2022-12-27 广州极飞科技股份有限公司 一种航线生成方法、装置、设备和存储介质
CN110715664B (zh) * 2019-11-05 2021-04-20 大连理工大学 多约束条件下智能无人飞行器航迹快速规划方法
CN111338364B (zh) * 2019-11-21 2021-09-21 浙江大学 快速响应的高超声速飞行器轨迹优化高精度控制器
CN111045447B (zh) * 2019-11-21 2023-08-29 浙江大学 高精度的高超声速飞行器轨迹优化多尺度最优控制系统
CN111324035A (zh) * 2019-11-21 2020-06-23 浙江大学 一种高超声速飞行器轨迹优化自适应最优控制器
CN110825114A (zh) * 2019-11-27 2020-02-21 浙江大学 基于希尔伯特黄时间网格重构的飞行跟踪控制信号发生装置及方法
CN110727285A (zh) * 2019-11-27 2020-01-24 浙江大学 基于高斯时间配点控制参数化的无动力航空飞行器控制信号发生装置及方法
CN112960020B (zh) * 2021-04-08 2023-02-28 重庆邮电大学 基于伪谱法的城市轨道列车赶点运行优化操纵控制信号发生系统及方法

Citations (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002097540A1 (en) * 2001-05-25 2002-12-05 Parametric Optimization Solutions Ltd. Improved process control
US7249730B1 (en) * 2004-09-23 2007-07-31 United States Of America As Represented By The Secretary Of The Army System and method for in-flight trajectory path synthesis using the time sampled output of onboard sensors
CN102663520A (zh) * 2012-04-05 2012-09-12 中国人民解放军国防科学技术大学 一种基于最优控制问题伪谱法求解构架的次优解求解方法
CN103226631A (zh) * 2013-03-29 2013-07-31 南京航空航天大学 一种小推力转移轨道快速设计与优化方法
CN103309371A (zh) * 2013-06-08 2013-09-18 浙江大学 一种基于控制变量参数化方法的间歇反应釜控制系统
CN103411609A (zh) * 2013-07-18 2013-11-27 北京航天自动控制研究所 一种基于在线构图的飞行器返航路线规划方法
CN104793629A (zh) * 2015-05-04 2015-07-22 中国人民解放军国防科学技术大学 一种飞艇三维航迹跟踪的反步神经网络控制方法
CN105068536A (zh) * 2015-08-13 2015-11-18 吉林大学 基于非线性优化方法实现的移动基座轨迹规划器
CN105205562A (zh) * 2015-11-19 2015-12-30 浙江大学 塔式太阳能电站接收器的运行优化方法
CN106909161A (zh) * 2017-01-05 2017-06-30 浙江大学 一种敏捷卫星零偏流角成像的最优姿态机动规划方法
JP6212610B2 (ja) * 2015-09-03 2017-10-11 ゼネラル・エレクトリック・カンパニイ 非線形計画法を使用する飛行経路最適化
CN107562068A (zh) * 2017-09-28 2018-01-09 天津理工大学 一种四旋翼飞行器姿态的动态面输出调节控制方法
CN107807663A (zh) * 2017-11-29 2018-03-16 南京航空航天大学 基于自适应控制的无人机编队保持控制方法
CN107844123A (zh) * 2017-10-11 2018-03-27 中国空气动力研究与发展中心计算空气动力研究所 一种非线性飞行器航迹控制方法
CN107918396A (zh) * 2017-11-30 2018-04-17 深圳市智能机器人研究院 一种基于船体模型的水下清洗机器人路径规划方法及系统
CN107957730A (zh) * 2017-11-01 2018-04-24 华南理工大学 一种无人飞行器稳定飞行控制方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050031133A1 (en) * 2003-08-07 2005-02-10 Tymphany Corporation Process for position indication
US20050031137A1 (en) * 2003-08-07 2005-02-10 Tymphany Corporation Calibration of an actuator

Patent Citations (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002097540A1 (en) * 2001-05-25 2002-12-05 Parametric Optimization Solutions Ltd. Improved process control
US7249730B1 (en) * 2004-09-23 2007-07-31 United States Of America As Represented By The Secretary Of The Army System and method for in-flight trajectory path synthesis using the time sampled output of onboard sensors
CN102663520A (zh) * 2012-04-05 2012-09-12 中国人民解放军国防科学技术大学 一种基于最优控制问题伪谱法求解构架的次优解求解方法
CN103226631A (zh) * 2013-03-29 2013-07-31 南京航空航天大学 一种小推力转移轨道快速设计与优化方法
CN103309371A (zh) * 2013-06-08 2013-09-18 浙江大学 一种基于控制变量参数化方法的间歇反应釜控制系统
CN103309371B (zh) * 2013-06-08 2015-07-22 浙江大学 一种基于控制变量参数化方法的间歇反应釜控制系统
CN103411609A (zh) * 2013-07-18 2013-11-27 北京航天自动控制研究所 一种基于在线构图的飞行器返航路线规划方法
CN104793629A (zh) * 2015-05-04 2015-07-22 中国人民解放军国防科学技术大学 一种飞艇三维航迹跟踪的反步神经网络控制方法
CN105068536A (zh) * 2015-08-13 2015-11-18 吉林大学 基于非线性优化方法实现的移动基座轨迹规划器
JP6212610B2 (ja) * 2015-09-03 2017-10-11 ゼネラル・エレクトリック・カンパニイ 非線形計画法を使用する飛行経路最適化
CN105205562A (zh) * 2015-11-19 2015-12-30 浙江大学 塔式太阳能电站接收器的运行优化方法
CN106909161A (zh) * 2017-01-05 2017-06-30 浙江大学 一种敏捷卫星零偏流角成像的最优姿态机动规划方法
CN107562068A (zh) * 2017-09-28 2018-01-09 天津理工大学 一种四旋翼飞行器姿态的动态面输出调节控制方法
CN107844123A (zh) * 2017-10-11 2018-03-27 中国空气动力研究与发展中心计算空气动力研究所 一种非线性飞行器航迹控制方法
CN107957730A (zh) * 2017-11-01 2018-04-24 华南理工大学 一种无人飞行器稳定飞行控制方法
CN107807663A (zh) * 2017-11-29 2018-03-16 南京航空航天大学 基于自适应控制的无人机编队保持控制方法
CN107918396A (zh) * 2017-11-30 2018-04-17 深圳市智能机器人研究院 一种基于船体模型的水下清洗机器人路径规划方法及系统

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Parameterization Modeling of UAV Configuration Using API in CATIA;Liao Yanping; Liu Li; Wang Jiabo;《Journal of Projectiles, Rockets, Missiles and Guidance》;20111231;第68-71页 *
Slack variable-based control variable parameterization method for constrained engineering optimization;Ping Liu;Guodong Li;《2017 Chinese Automation Congress (CAC)》;20171231;第6800-6805页 *
基于控制变量参数化的带约束最优控制问题计算方法;胡云卿;《中国博士学位论文全文数据库 信息科技辑》;20130815;第I140-120页 *
平流层飞艇轨迹优化设计方法研究;刘建斌;《中国优秀硕士学位论文全文数据库 工程科技Ⅱ辑》;20150515;第C031-79页 *
控制变量参数化最优控制问题计算方法研究;刘平;《中国博士学位论文全文数据库 基础科学辑》;20170815;第A002-76页 *
航迹跟踪的优化方法研究;何珮等;《北京航空航天大学学报》;20031231;第598-601页 *

Also Published As

Publication number Publication date
CN108717265A (zh) 2018-10-30

Similar Documents

Publication Publication Date Title
CN108717265B (zh) 一种基于控制变量参数化的无人飞行器巡航跟踪控制系统及控制方法
CN109062237B (zh) 一种无人倾转旋翼机自抗扰姿态控制方法
Cai et al. Disturbance suppression for quadrotor UAV using sliding-mode-observer-based equivalent-input-disturbance approach
Huang et al. Fixed-time autonomous shipboard landing control of a helicopter with external disturbances
CN109270947B (zh) 倾转旋翼无人机飞行控制系统
CN105607473B (zh) 小型无人直升机的姿态误差快速收敛自适应控制方法
Shen et al. Prescribed performance dynamic surface control for trajectory tracking of quadrotor UAV with uncertainties and input constraints
CN110908281A (zh) 无人直升机姿态运动有限时间收敛强化学习控制方法
Chen et al. Disturbance observer-based control for small nonlinear UAV systems with transient performance constraint
CN111290421A (zh) 一种考虑输入饱和的高超声速飞行器姿态控制方法
CN111831002B (zh) 一种基于预设性能的超高声速飞行器姿态控制方法
Jiang et al. Enhanced LQR control for unmanned helicopter in hover
CN106527462A (zh) 无人机控制装置
CN111045447B (zh) 高精度的高超声速飞行器轨迹优化多尺度最优控制系统
CN107037727A (zh) 一种无人直升机大包线自适应增益调度方法
Steffensen et al. Longitudinal incremental reference model for fly-by-wire control law using incremental non-linear dynamic inversion
CN111324035A (zh) 一种高超声速飞行器轨迹优化自适应最优控制器
Abdulla et al. Roll control system design using auto tuning LQR technique
Schirrer et al. LQ-based design of the inner loop lateral control for a large flexible BWB-type aircraft
CN110347036B (zh) 基于模糊滑模控制的无人机自主抗风智能控制方法
CN116360255A (zh) 一种非线性参数化高超声速飞行器的自适应调节控制方法
CN111007867A (zh) 一种可预设调整时间的高超声速飞行器姿态控制设计方法
Eressa et al. PID and neural net controller performance comparsion in UAV pitch attitude control
CN111708378B (zh) 一种基于强化学习的导弹纵向姿态控制算法
CN115685764A (zh) 变翼展飞行器任务自适应的抗干扰跟踪控制方法及系统

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant