CN111041080A - 一种新型的硅球上超支化放大的荧光信号探针及其制备和应用 - Google Patents

一种新型的硅球上超支化放大的荧光信号探针及其制备和应用 Download PDF

Info

Publication number
CN111041080A
CN111041080A CN202010003295.3A CN202010003295A CN111041080A CN 111041080 A CN111041080 A CN 111041080A CN 202010003295 A CN202010003295 A CN 202010003295A CN 111041080 A CN111041080 A CN 111041080A
Authority
CN
China
Prior art keywords
dna
incubated
added
amplified
signal probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202010003295.3A
Other languages
English (en)
Inventor
接贵芬
张煜琪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Qingdao University of Science and Technology
Original Assignee
Qingdao University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qingdao University of Science and Technology filed Critical Qingdao University of Science and Technology
Priority to CN202010003295.3A priority Critical patent/CN111041080A/zh
Publication of CN111041080A publication Critical patent/CN111041080A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6816Hybridisation assays characterised by the detection means
    • C12Q1/682Signal amplification

Abstract

本发明公开了一种新型的硅球上超支化放大的荧光信号探针;以及所述荧光信号探针的制备方法及其检测Cu2+的分析应用。本发明的技术方案是利用点击化学反应引发的步行器放大技术结合超支化杂交链式反应(HB‑HCR)构建了树枝状扩增的荧光平台,实现了对Cu2+的灵敏检测。目标Cu2+首先引发点击化学反应和DNA步行器放大过程,将Cu2+转化为大量的DNAS3产物。通过DNA S3与SiO2微球上H1杂交反应,引发了发夹H2、HS‑DNA、H3‑DNA和LT‑DNA之间的超支化杂交链式反应(HB‑HCR),组装成新型的树枝状DNA结构,负载大量的荧光Cy5,实现了对Cu2+放大信号的超灵敏荧光检测。

Description

一种新型的硅球上超支化放大的荧光信号探针及其制备和 应用
技术领域:
本发明涉及一种新型的硅球上超支化放大的荧光信号探针;以及所述荧光信号探针的制备方法及其检测Cu2+的分析应用。
背景技术:
荧光法具有背景干扰低、成本低、灵敏度高和线性范围宽等多种优点,是检测Cu2+的理想技术。此外,测定Cu2+还使用了基于化学的识别方法,如Cu(I)催化的点击化学反应[Shen,Q.P.et.al.Biosens.Bioelectron.2013,41,663-668.]以及其他特定试剂[Li,F.;Wang,J.et.al.Biosens.Bioelectron.2013,39,82-87]。从HCR进化而来的超分化杂交链式反应(HB-HCR)可以在等温环境下实现,HB-HCR可以产生许多不同长度的树突状DNA纳米结构,具有更高的扩增效率。脱氧核糖核酸自组装树突状DNA纳米结构因其具有良好的生物相容性、结构稳定性、合成方便,在生物和生物医学领域都备受关注[Hu,Y.;Chen,Z.et.al.DrugDelivery2017,24,1295-1301.]。
本工作开发了一种基于点击化学反应和超支化杂交链式反应(HB-HCR)的多功能荧光平台,并结合DNA步行多重扩增技术,对Cu2+进行了超灵敏检测
发明内容:
本发明的目的之一提供一种新型的硅球上超支化放大的荧光信号探针;以及所述荧光信号探针的制备方法及其检测Cu2+的分析应用。
具体包括以下步骤:
步骤1.基于DNA步行器的放大过程:10μL磁珠(MB)、80μLDNA酶(1μM)、4μL S1(1μM)混合后在37℃下温育12h,磁分离得到的MB-DNA分散到80μL PBS(0.1M,pH 7.4)。然后取8μLS2(1μM)、不同浓度的Cu2+、1μL AA(1μM),37℃下温育90min。离心后分散到50μL PBS,加入6μL Mg2+(10μM),37℃下温育4h。分离后得到大量的DNA(S3)。
步骤2.超支化放大的荧光信号探针的制备用于Cu2+的放大荧光检测:将DNA(S3)和SiO2-H1均匀混合,37℃下温育1.5h,离心除去多余的S3。将H2(50μL0.1μM)加到上述SiO2-H1-S3混合物中温育120分钟,多余的H2离心除去。将50μL 5.0×10-7M SH DNA加到上述混合物中温育120分钟进行杂交反应。再将50μL 5.0×10-7M H3(Cy5-BHQ2)加到上述混合物中温育120min,然后将50μLAS1(5.0×10-7M)加到上述混合物中温育120分钟进行杂交反应。LT和LA温育反应1h获得LT/LA。50μL 5.0×10-7M LT/LA加到上述混合物中温育90分钟进行杂交反应。最后,50μL 5.0×10-7M的AS2加到上述混合物进行HB-HCR反应90分钟。离心除去多余的DNA,沉淀分散到50μL超纯水中,进行荧光检测。
附图说明:
图1(A)基于目标Cu2+引发的点击化反应和步行器放大技术产生DNA S3,(B)二氧化硅微球上超支化放大的荧光探针检测目标Cu2+的原理图。
图2电泳表征:DNA超支化放大的荧光系统构建过程。
图3(A))二氧化硅微球的SEM图像;(B)二氧化硅微球的TEM图像;(C)SiO2微球表面树枝状DNA结构的TEM图像;(D)HB-HCR形成的树枝状DNA的TEM图像。
图4(A)不同浓度目标Cu2+对应的荧光信号。(B)荧光信号变化和Cu2+浓度的关系,插图:测定Cu2+的矫正曲线。
实施例1.超支化放大的荧光信号探针制备及对Cu2+的检测。
基于DNA步行器对Cu2+的放大过程:
10μL磁珠(MB)、80μLDNA酶(1μM)、4μL S1(1μM)混合后在37℃下温育12h,磁分离得到的MB-DNA分散到80μL PBS(0.1M,pH 7.4)。然后取8μL S2(1μM)、一定浓度的、1μLAA(1μM),37℃下温育90min。离心后分散到50μL PBS,加入6μL Mg2+(10μM),37℃下温育4h。分离后得到大量的DNA(S3)。
超支化放大的荧光信号探针的制备用于Cu2+的放大荧光检测:
将DNA(S3)和SiO2-H1均匀混合,37℃下温育1.5h,离心除去多余的S3。将H2(50μL0.1μM)加到上述SiO2-H1-S3混合物中温育120分钟,多余的H2离心除去。将50μL 5.0×10-7MSH加到上述混合物中温育120分钟进行杂交反应。再将50μL 5.0×10-7M H3(Cy5-BHQ2)加到上述混合物中温育120min,然后将50μLAS1(5.0×10-7M)加到上述混合物中温育120分钟进行杂交反应。LT和LA温育反应1h获得LT/LA。50μL 5.0×10-7M LT/LA加到上述混合物中温育90分钟进行杂交反应。最后,50μL 5.0×10-7MAS2加到上述混合物进行HB-HCR反应90分钟。离心除去多余的DNA,沉淀分散到50μL超纯水中,进行荧光检测。
实施例2.超支化放大的荧光信号探针制备及对Cu2+的检测。
将“然后取8μL S2(1μM)、一定浓度的、1μLAA(1μM),37℃下温育90min。”改为“然后取8μL S2(1μM)、一定浓度的、1μLAA(1μM),37℃下温育100min。”制备的其他条件同实施例1,得到形貌与性质类似于实施例1的荧光信号探针。对Cu2+检测的结果同实施例1。
实施例3.超支化放大的荧光信号探针制备及对Cu2+的检测。
将“离心后分散到50μLPBS,加入6μLMg2+(10μM),37℃下温育4h。”改为“离心后分散到50μLPBS,加入6μLMg2+(10μM),37℃下温育3h。”制备的其他条件同实施例1,得到形貌与性质类似于实施例1的荧光信号探针。对Cu2+检测的结果同实施例1。
实施例4.超支化放大的荧光信号探针制备及对Cu2+的检测。
将“将DNA(S3)和SiO2-H1均匀混合,37℃下温育1.5h,离心除去多余的S3。”改为“将DNA(S3)和SiO2-H1均匀混合,37℃下温育2h,离心除去多余的S3。”制备的其他条件同实施例1,得到形貌与性质类似于实施例1的荧光信号探针。对Cu2+检测的结果同实施例1。
实施例5.超支化放大的荧光信号探针制备及对Cu2+的检测。
将“将H2(50μL 0.1μM)加到上述SiO2-H1-S3混合物中温育120分钟,多余的H2离心除去。”改为“将H2(50μL 0.1μM)加到上述SiO2-H1-S3混合物中温育100分钟,多余的H2离心除去。”制备的其他条件同实施例1,得到形貌与性质类似于实施例1的荧光信号探针。对Cu2+检测的结果同实施例1。

Claims (2)

1.一种新型的硅球上超支化放大的荧光信号探针,其特征是:利用点击化学反应引发的步行器放大技术结合超支化杂交链式反应(HB-HCR)构建了树枝状扩增的荧光平台,实现了对Cu2+的灵敏检测。目标Cu2+首先引发点击化学反应和DNA步行器放大过程,将Cu2+转化为大量的DNA S3产物。通过DNA S3与SiO2微球上H1杂交反应,引发了发夹H2、HS-DNA、H3-DNA和LT-DNA之间的超支化杂交链式反应(HB-HCR),组装成新型的树枝状DNA结构,负载大量的荧光Cy5,实现了对Cu2+放大信号的超灵敏荧光检测。
2.一种制备权利要求1所述的硅球上超支化放大的荧光信号探针的方法和应用,其特征方法由下列步骤组成:
步骤1.基于DNA步行器的放大过程:10μL磁珠(MB)、80μLDNA酶(1μM)、4μL S1(1μM)混合后在37℃下温育12h,磁分离得到的MB-DNA分散到80μL PBS(0.1M,pH 7.4)。然后取8μL S2(1μM)、不同浓度的Cu2+、1μL AA(1μM),37℃下温育90min。离心后分散到50μL PBS,加入6μLMg2+(10μM),37℃下温育4h。分离后得到大量的DNA(S3)。
步骤2.超支化放大的荧光信号探针的制备用于Cu2+的放大荧光检测:将DNA(S3)和SiO2-H1均匀混合,37℃下温育1.5h,离心除去多余的S3。将H2(50μL 0.1μM)加到上述SiO2-H1-S3混合物中温育120分钟,多余的H2离心除去。将50μL 5.0×10-7M SH加到上述混合物中温育120分钟进行杂交反应。再将50μL 5.0×10-7M H3(Cy5-BHQ2)加到上述混合物中温育120min,然后将50μLAS1(5.0×10-7M)加到上述混合物中温育120分钟进行杂交反应。LT和LA温育反应1h获得LT/LA。50μL 5.0×10-7M LT/LA加到上述混合物中温育90分钟进行杂交反应。最后,50μL 5.0×10-7M AS2加到上述混合物进行HB-HCR反应90分钟。离心除去多余的DNA,沉淀分散到50μL超纯水中,进行荧光检测。
CN202010003295.3A 2020-01-03 2020-01-03 一种新型的硅球上超支化放大的荧光信号探针及其制备和应用 Pending CN111041080A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010003295.3A CN111041080A (zh) 2020-01-03 2020-01-03 一种新型的硅球上超支化放大的荧光信号探针及其制备和应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010003295.3A CN111041080A (zh) 2020-01-03 2020-01-03 一种新型的硅球上超支化放大的荧光信号探针及其制备和应用

Publications (1)

Publication Number Publication Date
CN111041080A true CN111041080A (zh) 2020-04-21

Family

ID=70244165

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010003295.3A Pending CN111041080A (zh) 2020-01-03 2020-01-03 一种新型的硅球上超支化放大的荧光信号探针及其制备和应用

Country Status (1)

Country Link
CN (1) CN111041080A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113358866A (zh) * 2021-04-22 2021-09-07 四川大学华西医院 基于三重并联杂交链式反应的破伤风抗原的均相超灵敏二维可视化和荧光分析方法及应用

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
LI ZOU ET AL: "Hybridization chain reaction and DNAzyme-based dual signal amplification strategy for sensitive colorimetric sensing of acetylcholinesterase activity and inhibitor screening in rat blood", 《SENSORS AND ACTUATORS B》 *
MIN QING ET AL: "Click Chemistry Reaction-Triggered 3D DNA Walking Machine for sensitive Electrochemical Detection of Copper ion", 《ANALYTICAL CHEMISTRY》 *
SAI BI ET AL: "Hybridization chain reaction: a versatile molecular tool for biosensing, bioimaging, and biomedicine", 《CHEM.SOC.REV.》 *
SAI BI ET AL: "Hyperbranched Hybridization Chain Reaction for Triggered Signal Amplification and Concatenated Logic Circuits", 《ANGEW.CHEM.INT.ED.》 *
SEAN D.MASON ET AL: "Emerging bioanalytical applications of DNA walkers", 《TRENDS IN ANALYTICAL CHEMISTRY》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113358866A (zh) * 2021-04-22 2021-09-07 四川大学华西医院 基于三重并联杂交链式反应的破伤风抗原的均相超灵敏二维可视化和荧光分析方法及应用

Similar Documents

Publication Publication Date Title
Zhang et al. A ratiometric electrochemical biosensor for the exosomal microRNAs detection based on bipedal DNA walkers propelled by locked nucleic acid modified toehold mediate strand displacement reaction
Li et al. A target responsive aptamer machine for label-free and sensitive non-enzymatic recycling amplification detection of ATP
CN111004622B (zh) 一种检测多巴胺的高灵敏荧光探针的制备方法及其应用
CN107828772B (zh) 一种用于比率荧光检测的固定化酶反应器及其制备方法
CN108872173B (zh) 一种荧光增强型适体传感器及其制备方法和应用
US20210269421A1 (en) Water-soluble fluorescent probe and nanoparticals with aggregation-induced emission effect for ovarian cancer and preparation method and use thereof
CN113046422A (zh) 基于免疫磁珠和滚环扩增的外泌体膜蛋白的流式检测方法及应用
CN109116040B (zh) 一种基于双巯基核酸适配体检测可卡因的方法
CN109536577B (zh) 一种末端脱氧核酸酶活力的测定方法与应用
CN111041080A (zh) 一种新型的硅球上超支化放大的荧光信号探针及其制备和应用
CN113933500A (zh) 一种莱克多巴胺便携式高灵敏免疫分析测定试剂盒及其应用
Chen et al. A sandwich sensor based on imprinted polymers and aptamers for highly specific double recognition of viruses
CN114113582B (zh) 金属有机框架纳米酶生物探针和elisa试剂盒
CN108383774B (zh) 一种基于端基炔酮的半胱氨酸荧光探针及其制备和应用
Dong et al. Precise selection of aptamers targeting PD-L1 positive small extracellular vesicles on magnetic chips
CN108414596B (zh) 微电极生物传感器及其在检测端粒酶中的应用
CN110553991B (zh) 基于中空金纳米粒-dna复合物的生物/化学检测试剂和检测方法
CN112080551A (zh) 一种双酶介导级联信号放大的氨苄西林检测适体传感器
CN111349071A (zh) 一种用于检测onoo-的氧杂蒽衍生物及其合成方法和应用
CN111458506A (zh) 一种基于TdT信号放大的结直肠癌外泌体检测方法和体系
CN116004769A (zh) 一种基于磁珠和氧化石墨烯的辅助作用检测miRNA Let-7a的试剂盒及其应用
CN106119344B (zh) 一种结合荧光强度和荧光偏振检测dna的纳米探针
WO2017221875A1 (ja) 複合体及びその使用
CN112415080B (zh) 一种基于比率无机质谱检测的atp分析方法
CN101760527B (zh) 一种免pcr扩增无需检测仪器的核酸分析方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20200421