CN111041028A - 人ttll4基因的用途及相关产品 - Google Patents

人ttll4基因的用途及相关产品 Download PDF

Info

Publication number
CN111041028A
CN111041028A CN201911330112.2A CN201911330112A CN111041028A CN 111041028 A CN111041028 A CN 111041028A CN 201911330112 A CN201911330112 A CN 201911330112A CN 111041028 A CN111041028 A CN 111041028A
Authority
CN
China
Prior art keywords
lung cancer
ttll4
gene
strand
cells
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911330112.2A
Other languages
English (en)
Inventor
魏益群
李静
杨拴盈
杨淑梅
曹燕飞
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shaanxi Provincial Peoples Hospital
Original Assignee
Shaanxi Provincial Peoples Hospital
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shaanxi Provincial Peoples Hospital filed Critical Shaanxi Provincial Peoples Hospital
Priority to CN201911330112.2A priority Critical patent/CN111041028A/zh
Publication of CN111041028A publication Critical patent/CN111041028A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K45/00Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P11/00Drugs for disorders of the respiratory system
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/85Vectors or expression systems specially adapted for eukaryotic hosts for animal cells
    • C12N15/86Viral vectors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2310/00Structure or type of the nucleic acid
    • C12N2310/10Type of nucleic acid
    • C12N2310/14Type of nucleic acid interfering N.A.
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2740/00Reverse transcribing RNA viruses
    • C12N2740/00011Details
    • C12N2740/10011Retroviridae
    • C12N2740/15011Lentivirus, not HIV, e.g. FIV, SIV
    • C12N2740/15041Use of virus, viral particle or viral elements as a vector
    • C12N2740/15043Use of virus, viral particle or viral elements as a vector viral genome or elements thereof as genetic vector
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N2800/00Nucleic acids vectors
    • C12N2800/10Plasmid DNA
    • C12N2800/106Plasmid DNA for vertebrates
    • C12N2800/107Plasmid DNA for vertebrates for mammalian
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y603/00Ligases forming carbon-nitrogen bonds (6.3)
    • C12Y603/02Acid—amino-acid ligases (peptide synthases)(6.3.2)

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Wood Science & Technology (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Animal Behavior & Ethology (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biophysics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biochemistry (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Virology (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Plant Pathology (AREA)
  • Pulmonology (AREA)
  • Epidemiology (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)

Abstract

本发明属于生物医药研究领域,具体涉及人TTLL4基因作为靶标在制备肺癌治疗药物中的用途。本发明经过广泛而深入的研究发现,采用RNAi方法下调人TTLL4基因的表达后可有效地抑制肺癌细胞的增殖、促进细胞凋亡,可以有效地控制肺癌的生长进程。本发明提供的siRNA或者包含该siRNA序列的核酸构建体、慢病毒能够特异性抑制肺癌细胞的增殖速率、促进肺癌细胞凋亡、抑制肺癌细胞克隆、抑制肺癌细胞侵袭、抑制肺癌细胞转移、抑制肺癌生长,从而治疗肺癌,为肺癌治疗开辟新的方向。

Description

人TTLL4基因的用途及相关产品
技术领域
本发明属于生物医药研究领域,具体涉及人TTLL4基因的用途及相关产品。
背景技术
TTLL4属于TTLL蛋白质家族,具有TTL同源结构域,能催化多种氨基酸的连接,如酪氨酸化、多聚糖基化和多聚谷氨酰胺化(Westermann S,Weber K.Post-translationalmodifications regulate microtubule function.Nat Rev Mol Cell Biol 2003;4:938–47)。近年来,一些TTLL家族成员被证实具有多聚谷氨酸微管蛋白和微管相关蛋白的活性(Janke C,Rogowski K,Wloga D,et al.Tubulin polyglutamylase enzymes are membersof the TTL domain protein family.Science 2005;308:1758–62.)。聚谷氨酰胺化是一类新的翻译后修饰,它在靶蛋白上形成可变长度的谷氨酸侧链,并首次在微管蛋白上发现。多聚谷氨酰胺化可能影响蛋白质的稳定性、细胞周期控以及微管与其相关蛋白之间的相互作用(Glutamylation of centriole and cytoplasmic tubulin in proliferating non-neuronal cells.Cell Motil Cytoskeleton 1998;39:223–32;Tubulinpolyglutamylase:isozymic variants and regulation during the cell cycle inHeLa cells.J Cell Sci 1999;112:4281–9.Structural insights into microtubulefunction.Annu Rev Biochem 2000;69:277–302.)。此外,TTLL4和TTLL5被证明具有聚合多个非微管蛋白蛋白的能力(van Dijk J,Miro J,Strub JM,et al.Polyglutamylation isa post-translational modification with a broad range of substrates.J BiolChem 2008;283:3915–22.)。然而,这些蛋白质的多聚谷氨酰胺化的生物学意义仍然没有得到很好的理解。
通过对胰腺导管腺癌(PDAC)细胞全基因组表达谱的分析,发现TTLL4在PDAC细胞中的高表达。SiRNA-TTLL4抑制了PDAC细胞的生长,并且外源性导入TTLL4促进了细胞的生长。进一步的实验表明TTLL4可能通过其多聚淀粉酶活性和染色质重塑的协同作用在胰腺癌发生中发挥重要作用,TTLL4可能是开发新的胰腺癌治疗策略的一个很好的分子候选者(doi:10.1158/0008-5472.CAN-09-4444.)。但是其在肺癌中的作用尚未有报道。
发明内容
为了克服现有技术中所存在的问题,本发明的目的在于提供人TTLL4基因的用途及相关产品。
为了实现上述目的以及其他相关目的,本发明采用如下技术方案:
本发明的第一方面,提供人TTLL4基因作为靶标在制备肺癌治疗药物中的用途。
所述人TTLL4基因作为靶标在制备肺癌治疗药物具体是指:将TTLL4基因作为作用对象,对药物或制剂进行筛选,以找到可以抑制人TTLL4基因表达的药物作为肺癌治疗备选药物。如本发明所述的TTLL4基因小分子干扰RNA(siRNA)即是以人TTLL4基因为作用对象筛选获得的,可用作具有抑制肺癌细胞增殖作用的药物。除此之外,诸如抗体药物,小分子药物等也可将TTLL4基因作为作用对象。
所述肺癌治疗药物为能够特异性抑制TTLL4基因的转录或翻译,或能够特异性抑制TTLL4蛋白的表达或活性的分子,从而降低肺癌细胞中TTLL4基因的表达水平,达到抑制肺癌细胞的增殖、生长、分化和/或存活的目的。
所述通过TTLL4基因制备获得的肺癌治疗药物包括但不限于:核酸分子、碳水化合物、脂类、小分子化学药、抗体药、多肽、蛋白或干扰慢病毒。
所述核酸包括但不限于:反义寡核苷酸、双链RNA(dsRNA)、核酶、核糖核酸内切酶III制备的小干扰RNA或者短发夹RNA(shRNA)。
所述肺癌治疗药物的施用量为足够降低人TTLL4基因的转录或翻译,或者足够降低人TTLL4蛋白的表达或活性的剂量。以使人TTLL4基因的表达至少被降低50%、80%、90%、95%或99%。
采用前述肺癌治疗药物治疗肺癌的方法,主要是通过降低人TTLL4基因的表达水平抑制肺癌细胞的增殖来达到治疗的目的。具体的,治疗时,将能有效降低人TTLL4基因表达水平的物质给药于患者。
在一种实施方式中,所述TTLL4基因的靶标序列如SEQ ID NO:1所示。具体为:5’-CCTCATCTACAGTCTCTTT-3’。
本发明的第二方面,提供TTLL4抑制剂在制备至少具备以下功效之一的产品中的用途:
治疗肺癌;
抑制肺癌细胞的增殖速率;
促进肺癌细胞凋亡;
抑制肺癌细胞克隆;
抑制肺癌细胞侵袭;
抑制肺癌细胞转移;
抑制肺癌生长。
所述产品必然包括TTLL4抑制剂,并以TTLL4抑制剂作为前述功效的有效成分。
所述产品中,发挥前述功用的有效成分可仅为TTLL4抑制剂,亦可包含其他可起到前述功用的分子。
亦即,TTLL4抑制剂为所述产品的唯一有效成分或有效成分之一。
所述产品可以为单成分物质,亦可为多成分物质。
所述产品的形式无特殊限制,可以为固体、液体、凝胶、半流质、气雾等各种物质形式。
所述产品主要针对的对象为哺乳动物。所述哺乳动物优选为啮齿目动物、偶蹄目动物、奇蹄目动物、兔形目动物、灵长目动物等。所述灵长目动物优选为猴、猿或人。
所述产品包括但不限于药物、保健品、食品等。
所述TTLL4抑制剂可以为核酸分子、抗体、小分子化合物。
如本发明实施例列举的,所述TTLL4抑制剂可以为降低肺癌细胞中TTLL4基因表达的核酸分子。具体的,可以是双链RNA或shRNA。
本发明的第三方面,提供了一种治疗肺癌的方法,为向对象施用TTLL4抑制剂。
所述的对象可以为哺乳动物或哺乳动物的肺癌细胞。所述哺乳动物优选为啮齿目动物、偶蹄目动物、奇蹄目动物、兔形目动物、灵长目动物等。所述灵长目动物优选为猴、猿或人。所述肺癌细胞可以为离体肺癌细胞。
所述对象可以是罹患肺癌的患者或者期待治疗的肺癌的个体。或者所述对象为肺癌患者或者期待治疗肺癌的个体的离体肺癌细胞。
所述TTLL4抑制剂可以在接受肺癌治疗前、中、后向对象施用。
本发明第四方面公开了一种降低肺癌细胞中TTLL4基因表达的核酸分子,所述核酸分子包含双链RNA或shRNA。
其中,所述双链RNA中含有能够与TTLL4基因杂交的核苷酸序列;
所述shRNA中含有能够与TTLL4基因杂交的核苷酸序列。
进一步的,所述双链RNA包含第一链和第二链,所述第一链和所述第二链互补共同形成RNA二聚体,并且所述第一链的序列与TTLL4基因中的靶序列基本相同。
所述TTLL4基因中的靶序列即为核酸分子用于特异性沉默TTLL4基因表达时,被所述核酸分子识别并沉默的mRNA片段所对应的TTLL4基因中的片段。
进一步的,所述双链RNA的靶序列如SEQ ID NO:1所示。具体为:5’-CCTCATCTACAGTCTCTTT-3’。更进一步的,所述双链RNA第一链的序列如SEQ ID NO:2所示。具体为5’-CCUCAUCUACAGUCUCUUU-3’。
进一步的,所述双链RNA为小干扰RNA(siRNA)。
SEQ ID NO:2为以SEQ ID NO:1所示的序列为RNA干扰靶序列设计的、针对人TTLL4基因的小干扰RNA的一条链,另一条链即第二链的序列与第一链序列互补,该siRNA可以起到特异性沉默肺癌细胞中内源TTLL4基因表达的作用。
所述shRNA包括正义链片段和反义链片段,以及连接所述正义链片段和反义链片段的茎环结构,所述正义链片段和所述反义链片段的序列互补,并且所述正义链片段的序列与TTLL4基因中的靶序列基本相同。
进一步的,所述sh RNA的靶序列如SEQ ID NO:1所示。
所述shRNA经酶切加工后可成为小干扰RNA(siRNA)进而起到特异性沉默肺癌细胞中内源TTLL4基因表达的作用。
进一步的,所述shRNA的茎环结构的序列可选自以下任一:UUCAAGAGA、AUG、CCC、UUCG、CCACC、CTCGAG、AAGCUU和CCACACC。
更进一步的,所述shRNA的序列如SEQ ID NO:3所示。具体为5’-GCCCUCAUCUACAGUCUCUUUCUCGAGAAAGAGACUGUAGAUGAGGGC-3’。
进一步的,所述TTLL4基因来源于人。
本发明第五方面,公开了一种TTLL4基因干扰核酸构建体,含有编码前述核酸分子中的shRNA的基因片段,能表达所述shRNA。
所述的TTLL4基因干扰核酸构建体可以是将编码前述人TTLL4基因shRNA的基因片段克隆入已知载体获得。
进一步的,所述TTLL4基因干扰核酸构建体为TTLL4基因干扰慢病毒载体。
本发明公开的TTLL4基因干扰慢病毒载体是将编码前述TTLL4基因shRNA的DNA片段克隆入已知载体获得,所述已知载体多为慢病毒载体,所述TTLL4基因干扰慢病毒载体经过病毒包装成为有感染力的病毒颗粒后,感染肺癌细胞,进而转录出本发明所述shRNA,通过酶切加工等步骤,最终获得所述siRNA,用于特异性沉默TTLL4基因的表达。
进一步的,所述TTLL4基因干扰慢病毒载体还含有启动子序列和/或编码肺癌细胞中可被检测的标记物的核苷酸序列;较优的,所述可被检测的标记物如绿色荧光蛋白(GFP)。
进一步的,所述慢病毒载体可以选自:pLKO.1-puro、pLKO.1-CMV-tGFP、pLKO.1-puro-CMV-tGFP、pLKO.1-CMV-Neo、pLKO.1-Neo、pLKO.1-Neo-CMV-tGFP、pLKO.1-puro-CMV-TagCFP、pLKO.1-puro-CMV-TagYFP、pLKO.1-puro-CMV-TagRFP、pLKO.1-puro-CMV-TagFP635、pLKO.1-puro-UbC-TurboGFP、pLKO.1-puro-UbC-TagFP635、pLKO-puro-IPTG-1xLacO、pLKO-puro-IPTG-3xLacO、pLP1、pLP2、pLP/VSV-G、pENTR/U6、pLenti6/BLOCK-iT-DEST、pLenti6-GW/U6-laminshrna、pcDNA1.2/V5-GW/lacZ、pLenti6.2/N-Lumio/V5-DEST、pGCSIL-GFP或pLenti6.2/N-Lumio/V5-GW/lacZ中的任一。
本发明实施例具体列举了以pGCSIL-GFP为载体构建的人TTLL4基因干扰慢病毒载体,命名为pGCSIL-GFP-TTLL4-siRNA。
本发明的TTLL4基因siRNA可用于抑制肺癌细胞的增殖,进一步地可以用作治疗肺癌的药物或制剂。TTLL4基因干扰慢病毒载体则可用于制备所述TTLL4基因siRNA。当用作治疗肺癌的药物或制剂时,是将安全有效量的所述核酸分子施用于哺乳动物。具体剂量还应考虑给药途径、病人健康状况等因素,这些都是熟练医师技能范围之内的。
本发明第六方面,公开了一种TTLL4基因干扰慢病毒,由前述TTLL4基因干扰核酸构建体在慢病毒包装质粒、细胞系的辅助下,经过病毒包装而成。该慢病毒可感染肺癌细胞并产生针对TTLL4基因的小分子干扰RNA,从而抑制肺癌细胞的增殖。该TTLL4基因干扰慢病毒可用于制备预防或治疗肺癌的药物。
本发明的第七方面,提供前述核酸分子,或前述TTLL4基因干扰核酸构建体,或前述TTLL4基因干扰慢病毒的用途,为:用于制备预防或治疗肺癌的药物,或用于制备降低肺癌细胞中TTLL4基因表达的试剂盒。
所述预防或治疗肺癌的药物的应用为肺癌的治疗提供了一种方法,具体为一种预防或治疗对象体内肺癌的方法,包括将有效剂量的所述的药物施用于对象中。
进一步的,所述药物用于预防或治疗对象体内肺癌时,需要将有效剂量的所述的药物施用于对象中。采用该方法,所述肺癌的生长、增殖、复发和/或转移被抑制。进一步的,所述肺癌的生长、增殖、复发和/或转移的至少10%、20%、30%、40%、50%、60%、70%、80%、90%、95%或99%的部分被抑制。
所述方法的对象可以为人。
本发明的第八方面,提供一种用于预防或治疗肺癌的组合物,其有效物质含有:
前述的核酸分子;和/或,前述TTLL4基因干扰核酸构建体;和/或,前述TTLL4基因干扰慢病毒,以及药学上可接受的载体、稀释剂或赋形剂。
所述组合物可以为药物组合物。
当所述组合物用于预防或治疗对象体内肺癌时,需要将有效剂量的所述的组合物施用于对象中。采用该方法,所述肺癌的生长、增殖、复发和/或转移被抑制。进一步的,所述肺癌的生长、增殖、复发和/或转移的至少10%、20%、30%、40%、50%、60%、70%、80%、90%、95%或99%的部分被抑制。
所述组合物的形式无特殊限制,可以为固体、液体、凝胶、半流质、气雾等各种物质形式。
所述组合物主要针对的对象为哺乳动物。所述哺乳动物优选为啮齿目动物、偶蹄目动物、奇蹄目动物、兔形目动物、灵长目动物等。所述灵长目动物优选为猴、猿或人。
综上所述,本发明设计了针对人TTLL4基因的RNAi靶点序列,构建相应的TTLL4RNAi载体,其中RNAi载体pGCSIL-GFP-TTLL4-siRNA能够显著下调TTLL4基因在mRNA水平和蛋白水平的表达。使用慢病毒(lentivirus,简写为Lv)作为基因操作工具携带RNAi载体pGCSIL-GFP-TTLL4-siRNA能够靶向地将针对TTLL4基因的RNAi序列高效导入A549人肺癌细胞和NCI-H1299非小细胞肺癌细胞,降低TTLL4基因的表达水平,显著抑制上述肿瘤细胞的增殖能力。因此慢病毒介导的TTLL4基因沉默是恶性肿瘤潜在的临床非手术治疗方式。
与现有技术相比,本发明具有如下有益效果:
本发明经过广泛而深入的研究发现,采用RNAi方法下调人TTLL4基因的表达后可有效地抑制肺癌细胞的增殖、促进细胞凋亡,可以有效地控制肺癌的生长进程。本发明提供的siRNA或者包含该siRNA序列的核酸构建体、慢病毒能够特异性抑制肺癌细胞的增殖速率、促进肺癌细胞凋亡、抑制肺癌细胞克隆、抑制肺癌细胞侵袭、抑制肺癌细胞转移、抑制肺癌生长,从而治疗肺癌,为肺癌治疗开辟新的方向。
附图说明
图1-1:RT-PCR检测A549细胞mRNA水平靶基因消减效率。
图1-2:RT-PCR检测NCI-H1299细胞mRNA水平靶基因消减效率。
图2-1:shRNA慢病毒感染A549细胞后,shTTLL4组与对照组(shCtrl组)细胞数量的变化(A图为细胞数量的荧光照片,B图为细胞数量的统计图)及倍数随时间变化(C图)的对比。
图2-2:shRNA慢病毒感染NCI-H1299细胞后,shTTLL4组与对照组(shCtrl组)细胞数量的变化(A图为细胞数量的荧光照片,B图为细胞数量的统计图)及倍数随时间变化(C图)的对比。
图3-1:shRNA慢病毒感染A549细胞,shTTLL4组与对照组(shCtrl组)在酶标仪对波长490nm的光的吸收率变化(左图)、倍数随时间变化(右图)的对比。OD490在这里反映了具有活力的细胞的数量。
图3-2:shRNA慢病毒感染NCI-H1299细胞,shTTLL4组与对照组(shCtrl组)在酶标仪对波长490nm的光的吸收率变化(左图)、倍数随时间变化(右图)的对比。OD490在这里反映了具有活力的细胞的数量。
图4-1:shRNA慢病毒感染A549细胞后,shTTLL4组与对照组(shCtrl组)形成的克隆照片(A图)和统计的克隆数量(B图)对比。
图4-2:shRNA慢病毒感染NCI-H1299细胞后,shTTLL4组与对照组(shCtrl组)形成的克隆照片(A图)和统计的克隆数量(B图)对比。
图5-1:shRNA慢病毒感染A549细胞5天后,shTTLL4组与对照组(shCtrl)凋亡率对比(A图为细胞凋亡的峰图,B图为统计的细胞凋亡率)。
图5-2:shRNA慢病毒感染NCI-H1299细胞5天后,shTTLL4组与对照组(shCtrl)凋亡率对比(A图为细胞凋亡的峰图,B图为统计的细胞凋亡率)。
图6-1:A549细胞中各实验组侵袭小室转移细胞数相比shCtrl组的变化值对比(A图为细胞侵袭的照片,B图为细胞侵袭的数量,C图为细胞侵袭倍数变化)。
图6-2:NCI-H1299细胞中各实验组侵袭小室转移细胞数相比shCtrl组的变化值对比。(A图为细胞侵袭的照片,B图为细胞侵袭的数量,C图为细胞侵袭倍数变化)。
图7-1:A549细胞中各实验组在transwell小室内转移细胞数相比shCtrl的变化值对比(A图为细胞转移的照片,B图为细胞转移的数量,C图为细胞转移倍数变化)。
图7-2:NCI-H1299细胞中各实验组在transwell小室内转移细胞数相比shCtrl的变化值对比(A图为细胞转移的照片,B图为细胞转移的数量,C图为细胞转移倍数变化)。
图8-1:shRNA慢病毒感染A549细胞3天后进行划痕愈合实验,shTTLL4组与对照组(shCtrl组)在不同时间迁移率对比(A图为细胞迁移照片,B图为细胞迁移率统计)。
图8-2:shRNA慢病毒感染NCI-H1299细胞3天后进行划痕愈合实验,shTTLL4组与对照组(shCtrl组)在不同时间迁移率对比(A图为细胞迁移照片,B图为细胞迁移率统计)。
附图中,
柱形图代表三次实验的平均值,误差线表示标准偏差(SD)。
**,shCtrl与目的基因shRNA慢病毒处理组相比,P<0.01。
*,shCtrl与目的基因shRNA慢病毒处理组相比,0.01≤P<0.05。
具体实施方式
本发明从细胞功能学角度出发证实TTLL4基因在肺癌发生中的作用。通过构建目的基因shRNA慢病毒后转染肺癌细胞,与转染对照慢病毒做对比,检测两组肺癌细胞系内mRNA及蛋白质水平目的基因的表达情况;随后通过细胞功能学实验进行细胞增殖、凋亡等检测,结果显示shRNA组与对照组对比,shRNA组肺癌细胞增殖抑制程度明显高于对照组,细胞凋亡率增加程度较对照组高。
TTLL4抑制剂
指对于TTLL4具有抑制效果的分子。对于TTLL4具有抑制效果包括但不限于:抑制TTLL4的表达或活性。
抑制TTLL4活性是指使TTLL4活力下降。优选地,相比抑制前,TTLL4活力下降至少10%,较佳的降低至少30%,再佳的降低至少50%,更佳的降低至少70%,最佳的降低至少90%。
抑制TTLL4表达具体的可以是抑制TTLL4基因的转录或翻译,具体的,可以是指:使TTLL4的基因不转录,或降低TTLL4的基因的转录活性,或者使TTLL4的基因不翻译,或降低TTLL4的基因的翻译水平。
本领域技术人员可以使用常规方法对TTLL4的基因表达进行调节,如基因敲除、同源重组,干扰RNA等。
TTLL4的基因表达的抑制可以通过PCR及Western Blot检测表达量验证。
优选地,与野生型相比,TTLL4基因表达降低至少10%,较佳的降低至少30%,再佳的降低至少50%,更佳的降低至少70%,又佳的降低至少90%,最佳地TTLL4基因完全没有表达。
小分子化合物
本发明中指由几个或几十个原子组成,分子质量在1000以下的化合物。
制备预防或治疗肺癌的药物
可以利用降低肺癌细胞中TTLL4基因表达的核酸分子;和/或,TTLL4基因干扰核酸构建体;和/或,TTLL4基因干扰慢病毒,作为有效成分,制备预防或治疗肺癌的药物。通常,所述药物中除了有效成分外,根据不同剂型的需要,还会包括一种或多种药学上可接受的载体或辅料。
“药学上可接受的”是指当分子本体和组合物适当地给予动物或人时,它们不会产生不利的、过敏的或其它不良反应。
“药学上可接受的载体或辅料”应当与所述有效成分相容,即能与其共混而不会在通常情况下大幅度降低药物的效果。可作为药学上可接受的载体或辅料的一些物质的具体例子是糖类,如乳糖、葡萄糖和蔗糖;淀粉,如玉米淀粉和土豆淀粉;纤维素及其衍生物,如甲基纤维素钠、乙基纤维素和甲基纤维素;西黄蓍胶粉末;麦芽;明胶;滑石;固体润滑剂,如硬脂酸和硬脂酸镁;硫酸钙;植物油,如花生油、棉籽油、芝麻油、橄榄油、玉米油和可可油;多元醇,如丙二醇、甘油、山梨糖醇、甘露糖醇和聚乙二醇;海藻酸;乳化剂,如Tween;润湿剂,如月桂基硫酸钠;着色剂;调味剂;压片剂、稳定剂;抗氧化剂;防腐剂;无热原水;等渗盐溶液;和磷酸盐缓冲液等。这些物质根据需要用于帮助配方的稳定性或有助于提高活性或它的生物有效性或在口服的情况下产生可接受的口感或气味。
本发明中,除非特别说明,药物剂型并无特别限定,可以被制成针剂、口服液、片剂、胶囊、滴丸、喷剂等剂型,可通过常规方法进行制备。药物剂型的选择应与给药方式相匹配。
在进一步描述本发明具体实施方式之前,应理解,本发明的保护范围不局限于下述特定的具体实施方案;还应当理解,本发明实施例中使用的术语是为了描述特定的具体实施方案,而不是为了限制本发明的保护范围。下列实施例中未注明具体条件的试验方法,通常按照常规条件,或者按照各制造商所建议的条件。
当实施例给出数值范围时,应理解,除非本发明另有说明,每个数值范围的两个端点以及两个端点之间任何一个数值均可选用。除非另外定义,本发明中使用的所有技术和科学术语与本技术领域技术人员通常理解的意义相同。除实施例中使用的具体方法、设备、材料外,根据本技术领域的技术人员对现有技术的掌握及本发明的记载,还可以使用与本发明实施例中所述的方法、设备、材料相似或等同的现有技术的任何方法、设备和材料来实现本发明。
除非另外说明,本发明中所公开的实验方法、检测方法、制备方法均采用本技术领域常规的分子生物学、生物化学、染色质结构和分析、分析化学、细胞培养、重组DNA技术及相关领域的常规技术。
实施例1针对人TTLL4基因RNAi慢病毒的制备
1.筛选针对人TTLL4基因的有效的siRNA靶点
从Genbank调取TTLL4(NM_014640)基因信息;设计针对TTLL4基因的有效的siRNA靶点。表1-1列出了筛选出的针对TTLL4基因的有效siRNA靶点序列。
表1-1靶向于人TTLL4基因的siRNA靶点序列
SEQ ID NO TargetSeq(5’-3’)
1 CCTCATCTACAGTCTCTTT
2.慢病毒载体的制备
针对siRNA靶点(以SEQ ID NO:1为例)合成两端含Age I和EcoR I酶切位点粘端的双链DNA Oligo序列(表1-2);以Age I和EcoR I限制性内切酶作用于pGCSIL-GFP载体(上海吉凯基因化学技术有限公司提供),使其线性化,琼脂糖凝胶电泳鉴定酶切片段。
表1-2两端含Age I和EcoR I酶切位点粘端的双链DNA Oligo
Figure BDA0002329340370000101
通过T4 DNA连接酶将双酶切线性化(酶切体系如表1-4所示,37℃,反应1h)的载体DNA和纯化好的双链DNA Oligo连接,在适当的缓冲体系(连接体系如表1-5所示)中于16℃连接过夜,回收连接产物。将连接产物转化氯化钙制备的新鲜的大肠杆菌感受态细胞(转化操作参考:分子克隆实验指南第二版55-56页)。在连接转化产物长出菌克隆表面沾一下,溶于10μl LB培养基,混匀取1μl作为模板;在以慢病毒载体中RNAi序列的上下游,设计通用PCR引物,上游引物序列:5’-CCTATTTCCCATGATTCCTTCATA-3’(SEQ ID NO:6);下游引物序列:5’-GTAATACGGTTATCCACGCG-3’(SEQ ID NO:7),进行PCR鉴定实验(PCR反应体系如表1-6,反应条件如表1-7)。对PCR鉴定阳性的克隆进行测序和比对分析,比对正确的克隆即为构建成功的针对SEQ ID NO:1的表达RNAi的载体,命名为pGCSIL-GFP-TTLL4-siRNA。
构建pGCSIL-GFP-Scr-siRNA阴性对照质粒,阴性对照siRNA靶序列为5’-TTCTCCGAACGTGTCACGT-3’(SEQ ID NO:8)。构建pGCSIL-GFP-Scr-siRNA阴性对照质粒时,针对Scr siRNA靶点合成两端含Age I和EcoR I酶切位点粘端的双链DNA Oligo序列(表1-3),其余构建方法、鉴定方法及条件均同pGCSIL-GFP-TTLL4-siRNA。
表1-3两端含Age I和EcoR I酶切位点粘端的双链DNA Oligo
Figure BDA0002329340370000111
表1-4 pGCSIL-GFP质粒酶切反应体系
试剂 体积(μl)
pGCSIL-GFP质粒(1μg/μl) 2.0
10×buffer 5.0
100×BSA 0.5
Age I(10U/μl) 1.0
EcoR I(10U/μl) 1.0
dd H<sub>2</sub>O 40.5
Total 50.0
表1-5载体DNA和双链DNA Oligo连接反应体系
试剂 阳性对照(μl) 自连对照(μl) 连接组(μl)
线性化的载体DNA(100ng/μl) 1.0 1.0 1.0
退火的双链DNA Oligo(100ng/μl) 1.0 - 1.0
10×T4噬菌体DNA连接酶缓冲液 1.0 1.0 1.0
T4噬菌体DNA连接酶 1.0 1.0 1.0
dd H<sub>2</sub>O 16.0 17.0 16.0
Total 20.0 20.0 20.0
表1-6 PCR反应体系
试剂 体积(μl)
10×buffer 2.0
dNTPs(2.5mM) 0.8
上游引物 0.4
下游引物 0.4
Taq聚合酶 0.2
模板 1.0
ddH<sub>2</sub>O 15.2
Total 20.0
表1-7 PCR反应体系程序设定
Figure BDA0002329340370000121
3.包装TTLL4-shRNA慢病毒
以Qiagen公司的质粒抽提试剂盒提取RNAi质粒pGCSIL-GFP-TTLL4-siRNA的DNA,配制成100ng/μl储存液。
转染前24h,用胰蛋白酶消化对数生长期的人胚肾细胞293T细胞,以含10%胎牛血清的DMEM完全培养基调整细胞密度为1.5×105细胞/ml,接种于6孔板,37℃,5%CO2培养箱内培养。待细胞密度达70%-80%时即可用于转染。转染前2h,吸出原有培养基,加入1.5ml新鲜的完全培养基。按照Sigma-aldrich公司的MISSION Lentiviral Packaging Mix试剂盒的说明,向一灭菌离心管中加入Packing Mix(PVM)20μl,PEI 12μl,无血清DMEM培养基400μl,取20μl上述抽提的质粒DNA,加至上述PVM/PEI/DMEM混合液。
将上述转染混和物在室温下孵育15min,转移至人胚肾细胞293T细胞的培养基中,37℃,5%CO2培养箱内培养16h。弃去含有转染混和物的培养介质,PBS溶液洗涤,加入完全培养基2ml,继续培养48h。收集细胞上清液,Centricon Plus-20离心超滤装置(Millipore)纯化和浓缩慢病毒,步骤如下:(1)4℃,4000g离心10min,除去细胞碎片;(2)0.45μm滤器过滤上清液于40ml超速离心管中;(3)4000g离心,10-15min,至需要的病毒浓缩体积;(4)离心结束后,将过滤杯和下面的滤过液收集杯分开,将过滤杯倒扣在样品收集杯上,离心2min离心力不超过1000g;(5)把离心杯从样品收集杯上移开,样品收集杯中的即为病毒浓缩液。将病毒浓缩液分装后于-80摄氏度保存。病毒浓缩液中含有的siRNA的第一链的序列如SEQ IDNO:2所示。对照慢病毒的包装过程同TTLL4-shRNA慢病毒,仅以pGCSIL-GFP-Scr-siRNA载体代替pGCSIL-GFP-TTLL4-siRNA载体。
实施例2实时荧光定量RT-PCR法检测基因的沉默效率
处于对数生长期的A549人肺癌细胞、NCI-H1299人非小细胞性肺癌细胞分别进行胰酶消化,制成细胞悬液(细胞数约为5×104/ml)分别接种于6孔板中,培养至细胞融合度达到约30%。根据侵染复数值(A549:10,NCI-H1299:5,说明书以下内容均使用此侵染复数),加入适宜量的实施例1制备的慢病毒,培养24h后更换培养基,待侵染时间达到5天后,收集细胞。根据Invitrogen公司的Trizol操作说明书,抽提总RNA。根据Promega公司的M-MLV操作说明书,将RNA逆转录获得cDNA(逆转录反应体系见表2-1,42℃反应1h,然后在70℃水浴锅中水浴10min使逆转录酶失活)。
采用TP800型Real time PCR仪(TAKARA)进行实时定量检测。TTLL4基因的引物如下:上游引物5’-TCTTTCTGCTTGCGTTCGAG-3’(SEQ ID NO:11)和下游引物5’-AGAGGTATGGTTCTGTGGATGAG-3’(SEQ ID NO:12)。以管家基因GAPDH为内参,引物序列如下:上游引物5’-TGACTTCAACAGCGACACCCA-3’(SEQ ID NO:13)和下游引物5’-CACCCTGTTGCTGTAGCCAAA-3’(SEQ ID NO:14)。按表2-2中的比例配置反应体系。
表2-1逆转录反应体系
试剂 体积(μl)
5×RT buffer 4.0
10mM dNTPs 2.0
RNasin 0.4
M-MLV-RTase 1.0
RNase-Free 2.6
Total 10.0
表2-2 Real-time PCR反应体系
试剂 体积(μl)
SYBR premix ex taq 6.0
引物MIX(5μM) 0.3
cDNA 0.6
ddH<sub>2</sub>O 5.1
Total 12.0
设定程序为两步法Real-time PCR:预变性95℃,30s;之后每一步变性95℃,5s;退火延伸60℃,30s;共进行40个循环。每次在延伸阶段读取吸光值。PCR结束后,95℃变性15s,然后冷却至60℃,使DNA双链充分结合。从60℃开始到95℃,每一步增加0.5℃,保持4s,同时读取吸光值,制作熔解曲线。采用2-ΔΔCt分析法计算侵染了TTLL4-shRNA慢病毒的细胞TTLL4mRNA的表达丰度。侵染对照病毒的细胞作为对照。
实验结果如图1-1和1-2所示,表明侵染慢病毒后,A549人肺癌细胞和NCI-H1299人非小细胞性肺癌细胞中TTLL4 mRNA的表达水平分别下调了65.0%和59.9%。
实施例3Celigo实验检测侵染了TTLL4-shRNA慢病毒的肿瘤细胞的增殖能力
处于对数生长期的A549人肺癌细胞和NCI-H1299非小细胞肺癌细胞进行胰酶消化,制成细胞悬液(细胞数约为5×104/ml)分别接种于6孔板中,培养至细胞融合度达到约30%。根据侵染复数,加入适宜量的病毒,培养24h后更换培养基,待侵染时间达到3天后,收集处于对数生长期的各实验组细胞。完全培养基重悬成细胞悬液(2×104/ml),A549以细胞密度约为2000个/孔,NCI-H1299 800个/孔接种96孔板。每组5个复孔,每孔100μl。铺好板后,置37℃、5%CO2培养箱培养。从铺板后第二天开始,每天用Celigo仪器(Nexcelom)检测读板一次,连续检测读板5天。通过调整analysis settings的输入参数,准确地计算出每次扫描孔板中的带绿色荧光的细胞的数量,对数据进行统计绘图,绘出细胞增殖曲线。
结果如图2-1至2-2所示,慢病毒侵染组各肿瘤细胞在体外培养5天后,增殖速度显著减缓,远低于对照组肿瘤细胞的增殖速度,A549活力细胞倍数下降比例38.39%,NCI-H1299活力细胞倍数下降比例69.81%,表明TTLL4基因沉默导致A549人肺癌细胞和NCI-H1299非小细胞肺癌细胞增殖能力被抑制。
实施例4MTT实验检测侵染了TTLL4-shRNA慢病毒的肿瘤细胞的增殖能力
处于对数生长期的A549人肺癌细胞和NCI-H1299非小细胞肺癌细胞进行胰酶消化,制成细胞悬液(细胞数约为5×104/ml)分别接种于6孔板中,培养至细胞融合度达到约30%。根据侵染复数,加入适宜量的病毒,培养24h后更换培养基,待侵染时间达到3天后,收集处于对数生长期的各实验组细胞。以细胞密度约为2000个/孔接种96孔板,每组3孔重复,统一铺好后,待细胞完全沉淀下来后,在显微镜下观察各实验组的细胞密度,如果密度不均匀,则固定一组,微调其他组细胞的量再次铺板,放入细胞培养箱中培养。从铺板后第二天开始,培养终止前4h加入20μL 5mg/mL的MTT于孔中,无需换液。4h后完全吸去培养液,注意不要吸掉孔板底部的甲瓒颗粒,加100μL DMSO溶解甲瓒颗粒。振荡器振荡2-5min,酶标仪490/570nm检测OD值。数据统计分析。
结果如图3-1至3-2所示,慢病毒侵染组各肿瘤细胞在体外培养5天后,增殖速度显著减缓,远低于对照组肿瘤细胞的增殖速度,A549活力细胞数目降低比率为41.58%,对波长490nm的光吸收率变化倍数降低了41.6%;NCI-H1299人非小细胞性肺癌细胞活力细胞数目降低了53.0%,对波长490nm的光吸收率变化倍数降低了54.3%。
实施例5侵染TTLL4-shRNA慢病毒的肿瘤细胞克隆形成能力的检测
将A549人肺癌细胞和NCI-H1299非小细胞肺癌细胞胰酶消化后接种于12孔板中,细胞密度为10-15%。第二天换为新鲜的培养基,内含5μg/ml polybrene。将TTLL4-shRNA慢病毒以及对照慢病毒按照侵染复数加入到培养板中,感染12-24h后换新鲜的培养基。感染72h后,荧光显微镜下观察荧光,感染效率达到80%。
将处于对数生长期的感染病毒后的细胞胰酶消化后,完全培养基重悬成细胞悬液;细胞计数后接种于6孔板中(500个细胞/孔),将接种好的细胞于培养箱中继续培养到10天,中途隔3day进行换液并观察细胞状态;实验终止前荧光显微镜下对细胞克隆进行拍照;实验终止时用多聚甲醛固定细胞,PBS洗涤细胞后,Giemsa染色,拍照。
结果如图4-1和4-2所示,与对照干扰(shCtrl组)相比,shTTLL4组RNA干扰降低基因的表达后,A549和NCI-H1299细胞形成的克隆数目显著减少;表明TTLL4基因沉默导致A549和NCI-H1299细胞形成克隆的能力下降。平板克隆形成实验检测降低基因的表达后,肿瘤细胞的克隆形成能力下降。
实施例6侵染TTLL4-shRNA慢病毒的肿瘤细胞凋亡水平检测
将A549人肺癌细胞和NCI-H1299非小细胞肺癌细胞胰酶消化后接种于12孔板中,细胞密度为10-15%。第二天换为新鲜的培养基,内含5μg/ml polybrene。将TTLL4-shRNA慢病毒以及对照慢病毒按照侵染复数加入到培养板中,感染12-24h后换新鲜的培养基。感染72h后传代,第5天检测,荧光显微镜下观察荧光,感染效率达到90%。
将处于对数生长期的细胞胰酶消化后,完全培养基重悬成细胞悬液;与上清细胞收集于同一5mL离心管中,每组设三个复孔(为保证上机细胞数足够,细胞数目≥5×105/孔)。1300rpm离心5min,弃上清,4℃预冷的PBS洗涤细胞沉淀。1×binding buffer(eBioscience,88-8007)洗涤细胞沉淀一次,1300rpm、3min离心,收集细胞。200μL 1×binding buffer重悬细胞沉淀。加入10μL Annexin V-APC(eBioscience,88-8007)染色,室温避光10-15min。根据细胞量,补加400-800μL 1×binding buffer,上流式细胞仪进行检测。
如图5-1和图5-2所示为Annexin V单染法检测降低基因的表达后,肿瘤细胞的细胞凋亡比例的变化。与对照干扰(shCtrl组)相比,shTTLL4组RNA干扰降低基因的表达后,凋亡肿瘤细胞数显著增多;表明基因沉默导致肿瘤细胞凋亡。
实施例7Transwell侵袭实验检测侵染TTLL4-shRNA慢病毒的肿瘤细胞侵袭水平
侵袭室放到培养箱中使其达到室温;用70%乙醇消毒镊子,用镊子处理transwell小室;加300μl无血清培养基加到小室内,室温放置1~2h使ECM层(Extracellular Matrix)再水化;用无血清培养基分别重悬1.0×105个A549慢病毒侵染后和未侵染的人肺癌细胞和NCI-H1299非小细胞肺癌细胞;ECM层再水化后,从小室内小心移去培养基;加500μl含10%FBS的培养基于下室中;加300μ上述用无血清培养基重悬的各组细胞悬液到每个小室中;A549、NCI-H1299细胞在组织培养箱中分别培养48h、24h;用棉拭子轻轻移去非侵袭细胞;加500μl染色液到板的空孔中;将小室浸泡在染色液中20min,在膜的下表面染色侵入细胞;浸泡小室在一个大的水杯中,冲洗数次。空气中晾干小室;显微镜拍照,每个小室,随机选取视野拍100X照片4张,200X照片9张。以200X的照片来计数的照片来计数的照片来计数,进行数据分析比较实验组与对照细胞侵袭能力的差异。
结果如图6-1至6-2所示,shTTLL4组与对照干扰(shCtrl组)相比,RNA干扰降低TTLL4基因的表达(shTTLL4组)后,肿瘤细胞的侵袭能力降低。
实施例8Transwell转移检测侵染TTLL4-shRNA慢病毒的肿瘤细胞转移水平
取出试剂盒(Corning,354480),将所需数目的小室置于新的24孔板中,上室加100μL无血清培养基,37℃培养箱中放置1h。制备A549人肺癌细胞和NCI-H1299非小细胞肺癌细胞无血清悬浮液,并计数,细胞数根据预实验调整,一般为105/孔(24孔板)。小心除去上室中培养基并加入100μL上述细胞悬液,下室内加入600μL含30%FBS的培养基。同时,使用该细胞悬液铺一块MTS 96孔板,每孔约接种5000个细胞,接种后即测定OD570,作为转移参照。37℃培养箱培养一段时间(A549:24h,NCI-H1299:16h)。倒扣小室于吸水纸上以去除培养基,用棉拭子轻轻移去小室内非转移细胞,滴2-3滴Giemsa染色液到膜的下表面染色转移细胞3-5min后,将小室浸泡冲洗数次,空气晾干。显微镜拍照:每个transwell小室,随机选取视野,拍100X照片4张,200X照片9张。以200X的照片来计数,进行数据分析,比较实验组与对照组细胞转移能力的差异:计算各组转移细胞数(Migratory cells per field),标准差,T-Test分析得到p值,判断是否有显著性差异(p<0.05,有显著性差异,否则无显著性差异)。
结果如图7-1至7-2所示,shTTLL4组与对照干扰(shCtrl组)相比,RNA干扰降低TTLL4基因的表达(shTTLL4组)后,肿瘤细胞的转移能力降低。
实施例9OrisTM plate划痕愈合实验检测侵染TTLL4-shRNA慢病毒的肿瘤细胞迁移水平
先将OrisTM(Platypus Technologies)阻塞物酒精浸泡灭菌,晾干后置于96well板中;按照实验设计的组别,在孔中加入约5×104个感染后的细胞,以次日细胞达到90%为宜;次日,小心拔去OrisTM阻塞物,使用PBS轻轻漂洗2-3遍,加入1%FBS培养基培养;Celigo扫板37℃、5%CO2培养箱培养,根据预实验选择合适的时间点拍照,,共拍3个时间点(0h、24h、48h);通过调整analysis settings的输入参数,准确地计算出每次扫描孔板中的白光或带绿色荧光的细胞的面积。根据细胞面积数值和时间点,通过比较可衡量肿瘤细胞迁移能力的差异。
结果如图8-1和8-2所示,shTTLL4组与对照干扰(shCtrl组)相比,RNA干扰降低TTLL4基因的表达(shTTLL4组)后,肿瘤细胞的迁移能力降低。
以上所述,仅为本发明的较佳实施例,并非对本发明任何形式上和实质上的限制,应当指出,对于本技术领域的普通技术人员,在不脱离本发明方法的前提下,还将可以做出若干改进和补充,这些改进和补充也应视为本发明的保护范围。凡熟悉本专业的技术人员,在不脱离本发明的精神和范围的情况下,当可利用以上所揭示的技术内容而做出的些许更动、修饰与演变的等同变化,均为本发明的等效实施例;同时,凡依据本发明的实质技术对上述实施例所作的任何等同变化的更动、修饰与演变,均仍属于本发明的技术方案的范围内。
序列表
<110> 陕西省人民医院
<120> 人TTLL4基因的用途及相关产品
<160> 14
<170> SIPOSequenceListing 1.0
<210> 1
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 1
cctcatctac agtctcttt 19
<210> 2
<211> 19
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 2
ccucaucuac agucucuuu 19
<210> 3
<211> 48
<212> RNA
<213> 人工序列(Artificial Sequence)
<400> 3
gcccucaucu acagucucuu ucucgagaaa gagacuguag augagggc 48
<210> 4
<211> 58
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 4
ccgggccctc atctacagtc tctttctcga gaaagagact gtagatgagg gctttttg 58
<210> 5
<211> 58
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 5
aattcaaaaa gccctcatct acagtctctt tctcgagaaa gagactgtag atgagggc 58
<210> 6
<211> 24
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 6
cctatttccc atgattcctt cata 24
<210> 7
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 7
gtaatacggt tatccacgcg 20
<210> 8
<211> 19
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 8
ttctccgaac gtgtcacgt 19
<210> 9
<211> 54
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 9
ccggttctcc gaacgtgtca cgtctcgaga cgtgacacgt tcggagaatt tttg 54
<210> 10
<211> 54
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 10
aattcaaaaa ttctccgaac gtgtcacgtc tcgagacgtg acacgttcgg agaa 54
<210> 11
<211> 20
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 11
tctttctgct tgcgttcgag 20
<210> 12
<211> 23
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 12
agaggtatgg ttctgtggat gag 23
<210> 13
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 13
tgacttcaac agcgacaccc a 21
<210> 14
<211> 21
<212> DNA
<213> 人工序列(Artificial Sequence)
<400> 14
caccctgttg ctgtagccaa a 21

Claims (10)

1.人TTLL4基因作为靶标在制备肺癌治疗药物中的用途。
2.TTLL4抑制剂在制备至少具备以下功效之一的产品中的用途:
治疗肺癌;
抑制肺癌细胞的增殖速率;
促进肺癌细胞凋亡;
抑制肺癌细胞克隆;
抑制肺癌细胞侵袭;
抑制肺癌细胞转移;
抑制肺癌生长。
3.根据权利要求2所述的用途,其特征在于,还包括以下特征中的一项或多项:
1)所述TTLL4抑制剂是指对TTLL4具有抑制效果的分子;
2)所述TTLL4抑制剂为产品的唯一有效成分或有效成分之一;
3)所述TTLL4抑制剂选自双链RNA、shRNA、抗体或小分子化合物。
4.根据权利要求3所述的用途,其特征在于,还包括以下特征中的一项或多项:
1)所述shRNA或双链RNA靶序列如SEQ ID NO:1所示;
2)所述双链RNA包含第一链和第二链,所述第一链和所述第二链互补共同形成RNA二聚体,所述第一链的序列如SEQ ID NO:2所示;
3)所述shRNA的核苷酸序列如SEQ ID NO:3所示。
5.一种降低肺癌细胞中TTLL4基因表达的核酸分子,所述核酸分子包含:
a.双链RNA,所述双链RNA中含有能够与TTLL4基因杂交的核苷酸序列;或者
b.shRNA,所述shRNA中含有能够与TTLL4基因杂交的核苷酸序列;
其中,所述双链RNA包含第一链和第二链,所述第一链和所述第二链互补共同形成RNA二聚体,并且所述第一链的序列与TTLL4基因中的靶序列基本相同;所述shRNA包括正义链片段和反义链片段,以及连接所述正义链片段和反义链片段的茎环结构,所述正义链片段和所述反义链片段的序列互补,并且所述正义链片段的序列与TTLL4基因中的靶序列基本相同。
6.根据权利要求5所述的降低肺癌细胞中TTLL4基因表达的核酸分子,其特征在于,还包括以下特征中的一项或多项:
1)所述shRNA或双链RNA靶序列如SEQ ID NO:1所示;
2)所述双链RNA为siRNA,所述siRNA的第一链的序列如SEQ ID NO:2所示;
3)所述shRNA的核苷酸序列如SEQ ID NO:3所示。
7.一种TTLL4基因干扰核酸构建体,含有编码权利要求5-6任一权利要求所述核酸分子中的shRNA的基因片段,能表达所述shRNA。
8.一种TTLL4基因干扰慢病毒,由权利要求7所述干扰核酸构建体在慢病毒包装质粒、细胞系的辅助下,经过病毒包装而成。
9.根据权利要求5-6任一权利要求所述的核酸分子,或权利要求7所述TTLL4基因干扰核酸构建体,或权利要求8所述的TTLL4基因干扰慢病毒的用途,为:用于制备预防或治疗肺癌的药物,或用于制备降低肺癌细胞中TTLL4基因表达的试剂盒。
10.一种用于预防或治疗肺癌的组合物,其有效物质含有:
权利要求5-6任一权利要求所述的核酸分子;和/或,权利要求7所述TTLL4基因干扰核酸构建体;和/或,权利要求8所述的TTLL4基因干扰慢病毒,以及药学上可接受的载体、稀释剂或赋形剂。
CN201911330112.2A 2019-12-20 2019-12-20 人ttll4基因的用途及相关产品 Pending CN111041028A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911330112.2A CN111041028A (zh) 2019-12-20 2019-12-20 人ttll4基因的用途及相关产品

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911330112.2A CN111041028A (zh) 2019-12-20 2019-12-20 人ttll4基因的用途及相关产品

Publications (1)

Publication Number Publication Date
CN111041028A true CN111041028A (zh) 2020-04-21

Family

ID=70237297

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911330112.2A Pending CN111041028A (zh) 2019-12-20 2019-12-20 人ttll4基因的用途及相关产品

Country Status (1)

Country Link
CN (1) CN111041028A (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110251090A1 (en) * 2008-08-27 2011-10-13 Oncotherapy Science, Inc. Pancreatic cancer related gene ttll4
US20110287034A1 (en) * 2008-11-14 2011-11-24 The Brigham And Womens Hospital, Inc. Therapeutic and diagnostic methods relating to cancer stem cells
CN103189510A (zh) * 2010-09-07 2013-07-03 肿瘤疗法科学股份有限公司 Ttll4肽及包含它们的疫苗
US20140378425A1 (en) * 2013-03-15 2014-12-25 Veracyte, Inc. Biomarkers for diagnosis of lung diseases and methods of use thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110251090A1 (en) * 2008-08-27 2011-10-13 Oncotherapy Science, Inc. Pancreatic cancer related gene ttll4
US20110287034A1 (en) * 2008-11-14 2011-11-24 The Brigham And Womens Hospital, Inc. Therapeutic and diagnostic methods relating to cancer stem cells
CN103189510A (zh) * 2010-09-07 2013-07-03 肿瘤疗法科学股份有限公司 Ttll4肽及包含它们的疫苗
US20140378425A1 (en) * 2013-03-15 2014-12-25 Veracyte, Inc. Biomarkers for diagnosis of lung diseases and methods of use thereof

Similar Documents

Publication Publication Date Title
CN110791566B (zh) 人shcbp1基因的用途及相关产品
CN111518802A (zh) 人ddx10基因的用途及相关产品
CN110917357B (zh) 人gsdmb基因的用途及相关产品
CN110938691B (zh) 人dus4l基因的用途及相关产品
CN111349701B (zh) Rsph14基因用途、rsph14抑制剂用途、核酸分子、构建体及组合物
CN110904104B (zh) 人hist1h2bk基因的用途及相关产品
CN111803633A (zh) 人psmd7基因的用途及相关产品
CN111926010A (zh) 人uap1l1基因的用途及相关产品
CN113917145A (zh) 人capn7基因的用途及相关产品
CN111041028A (zh) 人ttll4基因的用途及相关产品
CN110863047B (zh) 人ccdc154基因的用途及相关产品
CN110938692A (zh) 人impa2基因的用途及相关产品
CN110882390B (zh) 人lsm5基因的用途及相关产品
CN111035762B (zh) 人eddm3a基因的用途及相关产品
CN113913423A (zh) 人cfap65基因的用途及相关产品
CN111304327B (zh) 人grpel2基因的用途及相关产品
CN110863050A (zh) 人eme1基因的用途及相关产品
CN111073889B (zh) 人cspg5基因的用途及相关产品
CN110938630B (zh) 人b3gnt5基因的用途及相关产品
CN110819631B (zh) 人dmbx1基因的用途及相关产品
CN111269910B (zh) 人depdc1基因的用途及相关产品
CN110938628B (zh) 人urb1基因的用途及相关产品
CN116716302B (zh) 一种用于降低食管癌细胞中nek2基因表达的核酸分子
CN103656673B (zh) 人ywhaq基因的用途及其相关药物
CN111304328A (zh) 人exosc2基因的用途及相关产品

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination